Skip to main content
Top
Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 5/2019

01-09-2019 | Original Article

Experimental friction and deflection forces of orthodontic leveling archwires in three-bracket model experiments

Authors: Dr. Konstantinos Naziris, Neltje E. Piro, Rudolf Jäger, Falko Schmidt, Fayez Elkholy, Bernd G. Lapatki

Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Issue 5/2019

Login to get access

Abstract

Objective

In vitro testing of archwires in a multibracket model may provide estimates of force–moment (F/M) systems applied to individual teeth in a realistic geometry. Such investigations have mostly been performed by continuous wire deflection, leading to frictional forces biasing the pure deflection forces. Aim of this study was to quantify this bias and the pure deflection forces for leveling archwires.

Materials and methods

Three nickel–titanium (NiTi) and two multistranded wires were tested in a three-bracket model simulating vertical movement of an upper incisor with a typical interbracket distance of 8 mm (intercenter). To determine pure deflection forces, the middle bracket was first leveled incrementally from its vertical malposition to neutral position with repeated wire insertion at each step (so-called “static leveling mode”). For comparison, forces at the middle bracket were also determined during dynamic leveling with or without ligation of the wire at the lateral brackets by either elastic, tight or loose steel ligatures.

Results

The dynamic mode resulted in significantly lower mean leveling forces for all the tested wires (ANOVA [analysis of variance], p < 0.01) compared to the static mode. Expressed in numbers, dynamic wire unloading resulted in mean force underestimation of 53 ± 9% (loose steel ligatures), 56 ± 11% (elastic ligatures) or 91 ± 29% (tight steel ligatures).

Conclusions

Orthodontic tooth movement is quasi-static. This concerns the initial hyalinization phase in particular. Thus, especially static testing of archwires provides valid reference data for the peak forces exerted directly after clinical insertion of a leveling wire. In dynamic wire testing, significant underestimation of actual forces exerted on individual teeth may occur due to experimental friction, which might considerably differ from that occurring during clinical therapy. This aspect has to be taken into account in the interpretation of published stiffness values for orthodontic wires, and in the selection of the appropriate archwire for leveling of the present tooth malposition, respectively.
Literature
1.
go back to reference Alobeid A, Dirk C, Reimann S et al (2017) Mechanical properties of different esthetic and conventional orthodontic wires in bending tests: an in vitro study. J Orofac Orthop 78(3):241–252CrossRefPubMed Alobeid A, Dirk C, Reimann S et al (2017) Mechanical properties of different esthetic and conventional orthodontic wires in bending tests: an in vitro study. J Orofac Orthop 78(3):241–252CrossRefPubMed
2.
go back to reference Armstrong D, Kharbanda OP, Petocz P et al (2006) Root resorption after orthodontic treatment. Aust Orthod J 22(2):153–160PubMed Armstrong D, Kharbanda OP, Petocz P et al (2006) Root resorption after orthodontic treatment. Aust Orthod J 22(2):153–160PubMed
3.
go back to reference Badawi HM, Toogood RW, Carey JPR et al (2009) Three-dimensional orthodontic force measurements. Am J Orthod Dentofacial Orthop 136(4):518–528CrossRefPubMed Badawi HM, Toogood RW, Carey JPR et al (2009) Three-dimensional orthodontic force measurements. Am J Orthod Dentofacial Orthop 136(4):518–528CrossRefPubMed
4.
go back to reference Bantleon HP, Droschl H, Stern G (1989) Different applications of various wire alloys in fixed appliance technic. Inf Orthod Kieferorthop 21(2):173–183PubMed Bantleon HP, Droschl H, Stern G (1989) Different applications of various wire alloys in fixed appliance technic. Inf Orthod Kieferorthop 21(2):173–183PubMed
5.
go back to reference Bartzela TN, Senn C, Wichelhaus A (2007) Load-deflection characteristics of superelastic nickel-titanium wires. Angle Orthod 77(6):991–998CrossRefPubMed Bartzela TN, Senn C, Wichelhaus A (2007) Load-deflection characteristics of superelastic nickel-titanium wires. Angle Orthod 77(6):991–998CrossRefPubMed
6.
go back to reference Braun S, Bluestein M, Moore BK et al (1999) Friction in perspective. Am J Orthod Dentofacial Orthop 115(6):619–627CrossRefPubMed Braun S, Bluestein M, Moore BK et al (1999) Friction in perspective. Am J Orthod Dentofacial Orthop 115(6):619–627CrossRefPubMed
7.
go back to reference Drescher D, Bourauel C, Thier M (1991) Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 13(3):169–178CrossRefPubMed Drescher D, Bourauel C, Thier M (1991) Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 13(3):169–178CrossRefPubMed
8.
go back to reference Franchi L, Baccetti T, Camporesi M et al (2009) Forces released by nonconventional bracket or ligature systems during alignment of buccally displaced teeth. Am J Orthod Dentofacial Orthop 136(3):316CrossRefPubMed Franchi L, Baccetti T, Camporesi M et al (2009) Forces released by nonconventional bracket or ligature systems during alignment of buccally displaced teeth. Am J Orthod Dentofacial Orthop 136(3):316CrossRefPubMed
9.
go back to reference Fuck L‑M, Drescher D (2006) Force systems in the initial phase of orthodontic treatment—a comparison of different leveling arch wires. J Orofac Orthop 67(1):6–18CrossRefPubMed Fuck L‑M, Drescher D (2006) Force systems in the initial phase of orthodontic treatment—a comparison of different leveling arch wires. J Orofac Orthop 67(1):6–18CrossRefPubMed
10.
go back to reference Fuck L‑M, Wilmes B, Gürler G et al (2007) Frictional behavior of self ligating brackets in comparison to conventional brackets. Inf Orthod Kieferorthop 39(1):6–17CrossRef Fuck L‑M, Wilmes B, Gürler G et al (2007) Frictional behavior of self ligating brackets in comparison to conventional brackets. Inf Orthod Kieferorthop 39(1):6–17CrossRef
11.
go back to reference Kasuya S, Nagasaka S, Hanyuda A et al (2007) The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire. Eur J Orthod 29(6):578–582CrossRefPubMed Kasuya S, Nagasaka S, Hanyuda A et al (2007) The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire. Eur J Orthod 29(6):578–582CrossRefPubMed
12.
go back to reference Krishnan V (2007) Orthodontic pain: from causes to management—a review. Eur J Orthod 29(2):170–179CrossRefPubMed Krishnan V (2007) Orthodontic pain: from causes to management—a review. Eur J Orthod 29(2):170–179CrossRefPubMed
13.
go back to reference Kurol J, Owman-Moll P (1998) Hyalinization and root resorption during early orthodontic tooth movement in adolescents. Angle Orthod 68(2):161–165PubMed Kurol J, Owman-Moll P (1998) Hyalinization and root resorption during early orthodontic tooth movement in adolescents. Angle Orthod 68(2):161–165PubMed
14.
go back to reference Lapatki BG, Paul O (2007) Smart brackets for 3D-force-moment measurements in orthodontic research and therapy—developmental status and prospects. J Orofac Orthop 68(5):377–396CrossRefPubMed Lapatki BG, Paul O (2007) Smart brackets for 3D-force-moment measurements in orthodontic research and therapy—developmental status and prospects. J Orofac Orthop 68(5):377–396CrossRefPubMed
15.
go back to reference Lindhe J, Karring T, Araujo M (2003) Anatomy of the periodontium. In: Lindhe J, Karring T, Lang NP (eds) Clinical periodontology and implant dentistry, 4th edn. Blackwell Munksgaard, Oxford, pp 3–49 Lindhe J, Karring T, Araujo M (2003) Anatomy of the periodontium. In: Lindhe J, Karring T, Lang NP (eds) Clinical periodontology and implant dentistry, 4th edn. Blackwell Munksgaard, Oxford, pp 3–49
16.
go back to reference Moyers RE, van der Linden FPGM, Riolo ML, Mc Namara JA (1976) Tooth Size. In: Moyers RE (ed) Standards of human occlusal development. Center for Human Growth and Development, Univ. of Michigan, Ann Arbor Moyers RE, van der Linden FPGM, Riolo ML, Mc Namara JA (1976) Tooth Size. In: Moyers RE (ed) Standards of human occlusal development. Center for Human Growth and Development, Univ. of Michigan, Ann Arbor
17.
go back to reference Nakano H, Satoh K, Norris R et al (1999) Mechanical properties of several nickel-titanium alloy wires in three-point bending tests. Am J Orthod Dentofacial Orthop 115(4):390–395CrossRefPubMed Nakano H, Satoh K, Norris R et al (1999) Mechanical properties of several nickel-titanium alloy wires in three-point bending tests. Am J Orthod Dentofacial Orthop 115(4):390–395CrossRefPubMed
18.
go back to reference Nucera R, Gatto E, Borsellino C et al (2014) Influence of bracket-slot design on the forces released by superelastic nickel-titanium alignment wires in different deflection configurations. Angle Orthod 84(3):541–547CrossRefPubMed Nucera R, Gatto E, Borsellino C et al (2014) Influence of bracket-slot design on the forces released by superelastic nickel-titanium alignment wires in different deflection configurations. Angle Orthod 84(3):541–547CrossRefPubMed
19.
go back to reference Oltjen JM, Duncanson MG, Ghosh J et al (1997) Stiffness-deflection behavior of selected orthodontic wires. Angle Orthod 67(3):209–218PubMed Oltjen JM, Duncanson MG, Ghosh J et al (1997) Stiffness-deflection behavior of selected orthodontic wires. Angle Orthod 67(3):209–218PubMed
20.
go back to reference Pesce RE, Uribe F, Janakiraman N et al (2014) Evaluation of rotational control and forces generated during first-order archwire deflections: a comparison of self-ligating and conventional brackets. Eur J Orthod 36(3):245–254CrossRefPubMed Pesce RE, Uribe F, Janakiraman N et al (2014) Evaluation of rotational control and forces generated during first-order archwire deflections: a comparison of self-ligating and conventional brackets. Eur J Orthod 36(3):245–254CrossRefPubMed
21.
go back to reference Proffit WR (2007) Biological Basis of Orthodontic Therapy. In: Proffit WR, Fields HW, Sarver DM (eds) Contemporary orthodontics, 4th edn. Elsevier Mosby, St. Louis, pp 331–358 Proffit WR (2007) Biological Basis of Orthodontic Therapy. In: Proffit WR, Fields HW, Sarver DM (eds) Contemporary orthodontics, 4th edn. Elsevier Mosby, St. Louis, pp 331–358
22.
go back to reference Risinger RK, Proffit WR (1996) Continuous overnight observation of human premolar eruption. Arch Oral Biol 41(8–9):779–789CrossRefPubMed Risinger RK, Proffit WR (1996) Continuous overnight observation of human premolar eruption. Arch Oral Biol 41(8–9):779–789CrossRefPubMed
23.
go back to reference Schumacher HA, Bourauel C, Drescher D (1992) Deactivation and effectiveness of orthodontic levelling arches—a dynamic analysis of the force systems. J Orofac Orthop 53(5):273–285 Schumacher HA, Bourauel C, Drescher D (1992) Deactivation and effectiveness of orthodontic levelling arches—a dynamic analysis of the force systems. J Orofac Orthop 53(5):273–285
24.
go back to reference Segner D, Ibe D (1995) Properties of superelastic wires and their relevance to orthodontic treatment. Eur J Orthod 17(5):395–402CrossRefPubMed Segner D, Ibe D (1995) Properties of superelastic wires and their relevance to orthodontic treatment. Eur J Orthod 17(5):395–402CrossRefPubMed
Metadata
Title
Experimental friction and deflection forces of orthodontic leveling archwires in three-bracket model experiments
Authors
Dr. Konstantinos Naziris
Neltje E. Piro
Rudolf Jäger
Falko Schmidt
Fayez Elkholy
Bernd G. Lapatki
Publication date
01-09-2019
Publisher
Springer Medizin
Published in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Issue 5/2019
Print ISSN: 1434-5293
Electronic ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-019-00187-5

Other articles of this Issue 5/2019

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 5/2019 Go to the issue

Mitteilungen der DGKFO

Mitteilungen der DGKFO