Skip to main content
Top
Published in: Sports Medicine 7/2017

Open Access 01-07-2017 | Review Article

Step Counting: A Review of Measurement Considerations and Health-Related Applications

Authors: David R. Bassett Jr., Lindsay P. Toth, Samuel R. LaMunion, Scott E. Crouter

Published in: Sports Medicine | Issue 7/2017

Login to get access

Abstract

Step counting has long been used as a method of measuring distance. Starting in the mid-1900s, researchers became interested in using steps per day to quantify ambulatory physical activity. This line of research gained momentum after 1995, with the introduction of reasonably accurate spring-levered pedometers with digital displays. Since 2010, the use of accelerometer-based “activity trackers” by private citizens has skyrocketed. Steps have several advantages as a metric for assessing physical activity: they are intuitive, easy to measure, objective, and they represent a fundamental unit of human ambulatory activity. However, since they measure a human behavior, they have inherent biological variability; this means that measurements must be made over 3–7 days to attain valid and reliable estimates. There are many different kinds of step counters, designed to be worn on various sites on the body; all of these devices have strengths and limitations. In cross-sectional studies, strong associations between steps per day and health variables have been documented. Currently, at least eight prospective, longitudinal studies using accelerometers are being conducted that may help to establish dose–response relationships between steps/day and health outcomes. Longitudinal interventions using step counters have shown that they can help inactive individuals to increase by 2500 steps per day. Step counting is useful for surveillance, and studies have been conducted in a number of countries around the world. Future challenges include the need to establish testing protocols and accuracy standards, and to decide upon the best placement sites. These challenges should be addressed in order to achieve harmonization between studies, and to accurately quantify dose–response relationships.
Literature
1.
go back to reference Stunkard A. A method of studying physical activity in man. Am J Clin Nutr. 1960;8:595–600. Stunkard A. A method of studying physical activity in man. Am J Clin Nutr. 1960;8:595–600.
2.
go back to reference Bassett DR, Strath SJ. Use of pedometers to assess physical activity. In: Welk GJ, editor. Physical activity assessments for health-related research. Champaign: Human Kinetics; 2002. p. 163–77. Bassett DR, Strath SJ. Use of pedometers to assess physical activity. In: Welk GJ, editor. Physical activity assessments for health-related research. Champaign: Human Kinetics; 2002. p. 163–77.
5.
go back to reference Bassett DR Jr, Mahar MT, Rowe DA, Morrow JR Jr. Walking and measurement. Med Sci Sports Exerc. 2008;40(7 Suppl):S529–36.CrossRefPubMed Bassett DR Jr, Mahar MT, Rowe DA, Morrow JR Jr. Walking and measurement. Med Sci Sports Exerc. 2008;40(7 Suppl):S529–36.CrossRefPubMed
6.
go back to reference Gibbs-Smith C. The inventions of Leonardo da Vinci. London: Phaidon Press; 1978. Gibbs-Smith C. The inventions of Leonardo da Vinci. London: Phaidon Press; 1978.
7.
go back to reference Dumbauld E. Thomas Jefferson: American tourist. Norman: University of Oklahoma Press; 1946. Dumbauld E. Thomas Jefferson: American tourist. Norman: University of Oklahoma Press; 1946.
8.
go back to reference Wilson DL, Stanton L, editors. Jefferson Abroad. New York: Modern Library; 1999. Wilson DL, Stanton L, editors. Jefferson Abroad. New York: Modern Library; 1999.
10.
go back to reference Daniels G. The Art of Breguet. London: Sotheby Parke Bernet; 1975. Daniels G. The Art of Breguet. London: Sotheby Parke Bernet; 1975.
11.
go back to reference Hatano Y. Pedometer-assessed physical activity: Measurement and motivations. In: Presented at 48th annual meeting of the American College of Sports Medicine (May 30–June 3), 2001, Baltimore, MD; 2001. Hatano Y. Pedometer-assessed physical activity: Measurement and motivations. In: Presented at 48th annual meeting of the American College of Sports Medicine (May 30–June 3), 2001, Baltimore, MD; 2001.
12.
go back to reference Bassett DR, Ainsworth BE, Leggett SR, Mathien CA, Main JA, Hunter DC, et al. Accuracy of five electronic pedometers for measuring distance walked. Med Sci Sports Exerc. 1996;28(8):1071–7.CrossRefPubMed Bassett DR, Ainsworth BE, Leggett SR, Mathien CA, Main JA, Hunter DC, et al. Accuracy of five electronic pedometers for measuring distance walked. Med Sci Sports Exerc. 1996;28(8):1071–7.CrossRefPubMed
13.
go back to reference Bassett DR, Cureton AL, Ainsworth BE. Measurement of daily walking distance-questionnaire versus pedometer. Med Sci Sports Exerc. 2000;32(5):1018–23.CrossRefPubMed Bassett DR, Cureton AL, Ainsworth BE. Measurement of daily walking distance-questionnaire versus pedometer. Med Sci Sports Exerc. 2000;32(5):1018–23.CrossRefPubMed
14.
go back to reference Sequeira MM, Richardson M, Wietlisbach V, Tullen B, Schutz Y. Physical activity assessment using a pedometer and its comparison with a questionnaire in a large population study. Am J Epidemiol. 1995;142(9):989–99.CrossRefPubMed Sequeira MM, Richardson M, Wietlisbach V, Tullen B, Schutz Y. Physical activity assessment using a pedometer and its comparison with a questionnaire in a large population study. Am J Epidemiol. 1995;142(9):989–99.CrossRefPubMed
15.
go back to reference Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.CrossRefPubMed Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.CrossRefPubMed
16.
go back to reference Tudor-Locke C, Johnson WD, Katzmarzyk PT. Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc. 2009;41(7):1384–91.CrossRefPubMed Tudor-Locke C, Johnson WD, Katzmarzyk PT. Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc. 2009;41(7):1384–91.CrossRefPubMed
17.
go back to reference Bergman RJ, Bassett DR, Klein DA. Validity of 2 devices for measuring steps taken by older adults in assisted-living facilities. J Phys Act Health. 2008;5(Supp 1):S166–75.CrossRefPubMed Bergman RJ, Bassett DR, Klein DA. Validity of 2 devices for measuring steps taken by older adults in assisted-living facilities. J Phys Act Health. 2008;5(Supp 1):S166–75.CrossRefPubMed
18.
go back to reference Crouter SE, Schneider PL, Bassett DR Jr. Spring-levered versus piezo-electric pedometer accuracy in overweight and obese adults. Med Sci Sports Exerc. 2005;37(10):1673–9.CrossRefPubMed Crouter SE, Schneider PL, Bassett DR Jr. Spring-levered versus piezo-electric pedometer accuracy in overweight and obese adults. Med Sci Sports Exerc. 2005;37(10):1673–9.CrossRefPubMed
19.
go back to reference Feito Y, Bassett D, Tyo B, Thompson D. Effects of body mass index and tilt angle on output of two wearable activity monitors. Med Sci Sports Exerc. 2011;43(5):861–6.CrossRefPubMed Feito Y, Bassett D, Tyo B, Thompson D. Effects of body mass index and tilt angle on output of two wearable activity monitors. Med Sci Sports Exerc. 2011;43(5):861–6.CrossRefPubMed
20.
go back to reference Tyo B, Fitzhugh E, Bassett D, John D, Thompson D. Effects of body mass index and step rate on pedometer error in a free-living environment. Med Sci Sports Exerc. 2011;43(2):350–6.CrossRefPubMed Tyo B, Fitzhugh E, Bassett D, John D, Thompson D. Effects of body mass index and step rate on pedometer error in a free-living environment. Med Sci Sports Exerc. 2011;43(2):350–6.CrossRefPubMed
21.
go back to reference Grant PM, Dall PM, Mitchell SL, Granat MH. Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults. J Aging Phys Act. 2008;16(2):201–14.CrossRefPubMed Grant PM, Dall PM, Mitchell SL, Granat MH. Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults. J Aging Phys Act. 2008;16(2):201–14.CrossRefPubMed
22.
go back to reference Kanoun N. Validation of the ActivPAL activity monitor as a measure of walking at pre-determined slow walking speeds in a healthy population in a controlled setting. Age (Years). 2009;23(4.0):18.0–39.0. Kanoun N. Validation of the ActivPAL activity monitor as a measure of walking at pre-determined slow walking speeds in a healthy population in a controlled setting. Age (Years). 2009;23(4.0):18.0–39.0.
23.
go back to reference Foster RC, Lanningham-Foster LM, Manohar C, McCrady SK, Nysse LJ, Kaufman KR, et al. Precision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditure. Prev Med. 2005;41(3–4):778–83.CrossRefPubMed Foster RC, Lanningham-Foster LM, Manohar C, McCrady SK, Nysse LJ, Kaufman KR, et al. Precision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditure. Prev Med. 2005;41(3–4):778–83.CrossRefPubMed
24.
go back to reference Karabulut M, Crouter SE, Bassett DR. Comparison of two waist-mounted and two ankle-mounted electronic pedometers. Eur J Appl Physiol. 2005;95:335–43.CrossRefPubMed Karabulut M, Crouter SE, Bassett DR. Comparison of two waist-mounted and two ankle-mounted electronic pedometers. Eur J Appl Physiol. 2005;95:335–43.CrossRefPubMed
25.
go back to reference Mudge S, Stott NS, Walt SE. Criterion validity of the StepWatch Activity Monitor as a measure of walking activity in patients after stroke. Arch Phys Med Rehabil. 2007;88(12):1710–5.CrossRefPubMed Mudge S, Stott NS, Walt SE. Criterion validity of the StepWatch Activity Monitor as a measure of walking activity in patients after stroke. Arch Phys Med Rehabil. 2007;88(12):1710–5.CrossRefPubMed
26.
go back to reference Hickey A, John D, Sasaki JE, Mavilia M, Freedson P. Validity of activity monitor step detection is related to movement patterns. J Phys Act Health. 2016;13(2):145–53. CrossRefPubMed Hickey A, John D, Sasaki JE, Mavilia M, Freedson P. Validity of activity monitor step detection is related to movement patterns. J Phys Act Health. 2016;13(2):145–53. CrossRefPubMed
27.
go back to reference Hoodless DJ, Stainer K, Savic N, Batin P, Hawkins M, Cowley AJ. Reduced customary activity in chronic heart failure: assessment with a new shoe-mounted pedometer. Int J Cardiol. 1994;43:39–42.CrossRefPubMed Hoodless DJ, Stainer K, Savic N, Batin P, Hawkins M, Cowley AJ. Reduced customary activity in chronic heart failure: assessment with a new shoe-mounted pedometer. Int J Cardiol. 1994;43:39–42.CrossRefPubMed
28.
go back to reference Chen MD, Kuo CC, Pellegrini CA, Hsu MJ. Accuracy of wristband activity monitors during ambulation and activities. Med Sci Sports Exerc. 2016;48(10):1942–9.CrossRefPubMed Chen MD, Kuo CC, Pellegrini CA, Hsu MJ. Accuracy of wristband activity monitors during ambulation and activities. Med Sci Sports Exerc. 2016;48(10):1942–9.CrossRefPubMed
29.
go back to reference El-Amrawy F, Nounou MI. Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Healthc Inform Res. 2015;21(4):315–20.CrossRefPubMedPubMedCentral El-Amrawy F, Nounou MI. Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Healthc Inform Res. 2015;21(4):315–20.CrossRefPubMedPubMedCentral
30.
go back to reference Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med. 2014;48(13):1019–23.CrossRefPubMedPubMedCentral Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med. 2014;48(13):1019–23.CrossRefPubMedPubMedCentral
31.
go back to reference Tudor-Locke C, Barreira TV, Schuna JM Jr. Comparison of step outputs for waist and wrist accelerometer attachment sites. Med Sci Sports Exerc. 2015;47(4):839–42.CrossRefPubMed Tudor-Locke C, Barreira TV, Schuna JM Jr. Comparison of step outputs for waist and wrist accelerometer attachment sites. Med Sci Sports Exerc. 2015;47(4):839–42.CrossRefPubMed
32.
go back to reference Tryon WW. Activity measurement in psychology and medicine. New York: Springer Science & Business Media; 2013. Tryon WW. Activity measurement in psychology and medicine. New York: Springer Science & Business Media; 2013.
33.
go back to reference Tudor-Locke CE, Bassett DR. How many steps are enough? Pedometer-determined physical activity indices. Sports Med. 2004;34(1):1–8.CrossRefPubMed Tudor-Locke CE, Bassett DR. How many steps are enough? Pedometer-determined physical activity indices. Sports Med. 2004;34(1):1–8.CrossRefPubMed
34.
go back to reference Hatano Y. Use of the pedometer for promoting daily walking exercise. Int Counc Health Phys Educ Recreat (ICHPER) J. 1993;29(4):4–8. Hatano Y. Use of the pedometer for promoting daily walking exercise. Int Counc Health Phys Educ Recreat (ICHPER) J. 1993;29(4):4–8.
37.
go back to reference Orendurff MS, Schoen JA, Bernatz GC, Segal AD, Klute GK. How humans walk: bout duration, steps per bout, and rest duration. J Rehabil Res Dev. 2008;45(7):1077–89.CrossRefPubMed Orendurff MS, Schoen JA, Bernatz GC, Segal AD, Klute GK. How humans walk: bout duration, steps per bout, and rest duration. J Rehabil Res Dev. 2008;45(7):1077–89.CrossRefPubMed
38.
go back to reference Crouter SE, Schneider PL, Karabulut M, Bassett DR Jr. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003;35(8):1455–60.CrossRefPubMed Crouter SE, Schneider PL, Karabulut M, Bassett DR Jr. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003;35(8):1455–60.CrossRefPubMed
39.
go back to reference Feito Y, Bassett D, Thompson D, Tyo B. Effects of body mass index on step count accuracy of physical activity monitors. J Phys Act Health. 2012;9(4):594–600.CrossRefPubMed Feito Y, Bassett D, Thompson D, Tyo B. Effects of body mass index on step count accuracy of physical activity monitors. J Phys Act Health. 2012;9(4):594–600.CrossRefPubMed
40.
go back to reference Hatano Y. Prevalence and use of pedometer [article written in Japanese]. Res J Walk. 1997;1:45–54. Hatano Y. Prevalence and use of pedometer [article written in Japanese]. Res J Walk. 1997;1:45–54.
41.
go back to reference Schmidt M, Cleland V, Shaw K, Dwyer T, Venn A. Cardiometabolic risk in younger and older adults across an index of ambulatory activity. Am J Prev Med. 2009;2009(37):4. Schmidt M, Cleland V, Shaw K, Dwyer T, Venn A. Cardiometabolic risk in younger and older adults across an index of ambulatory activity. Am J Prev Med. 2009;2009(37):4.
42.
go back to reference Sisson S, Camhi S, Church T, Tudor-Locke C, Johnson W, Katzmarzyk P. Accelerometer-determined steps/day and metabolic syndrome. Am J Prev Med. 2010;38(6):575–82.CrossRefPubMed Sisson S, Camhi S, Church T, Tudor-Locke C, Johnson W, Katzmarzyk P. Accelerometer-determined steps/day and metabolic syndrome. Am J Prev Med. 2010;38(6):575–82.CrossRefPubMed
43.
go back to reference Inoue S, Ohya Y, Tudor-Locke C, Yoshiike N, Shimomitsu T. Step-defined physical activity and cardiovascular risk among middle-aged Japanese: the National Health and Nutrition Survey of Japan 2006. J Phys Act Health. 2012;9(8):1117–24.CrossRefPubMed Inoue S, Ohya Y, Tudor-Locke C, Yoshiike N, Shimomitsu T. Step-defined physical activity and cardiovascular risk among middle-aged Japanese: the National Health and Nutrition Survey of Japan 2006. J Phys Act Health. 2012;9(8):1117–24.CrossRefPubMed
44.
go back to reference Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput JP, Fogelholm M, et al. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900.CrossRefPubMedPubMedCentral Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput JP, Fogelholm M, et al. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900.CrossRefPubMedPubMedCentral
46.
go back to reference Richardson CR, Newton TL, Abraham JJ, Sen A, Jimbo M, Swartz AM. A meta-analysis of pedometer-based walking interventions and weight loss. Ann Fam Med. 2008;6(1):69–77.CrossRefPubMedPubMedCentral Richardson CR, Newton TL, Abraham JJ, Sen A, Jimbo M, Swartz AM. A meta-analysis of pedometer-based walking interventions and weight loss. Ann Fam Med. 2008;6(1):69–77.CrossRefPubMedPubMedCentral
47.
go back to reference Kang M, Marshall SJ, Barreira TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. Res Quart Exerc Sport. 2009;80(3):648–55. Kang M, Marshall SJ, Barreira TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. Res Quart Exerc Sport. 2009;80(3):648–55.
48.
go back to reference Patel MS, Asch DA, Volpp KG. Wearable devices as facilitators, not drivers, of health behavior change. JAMA. 2015;313(5):459–60.CrossRefPubMed Patel MS, Asch DA, Volpp KG. Wearable devices as facilitators, not drivers, of health behavior change. JAMA. 2015;313(5):459–60.CrossRefPubMed
49.
go back to reference Richardson CR, Mehari KS, McIntyre LG, Janney AW, Fortlage LA, Sen A, et al. A randomized trial comparing structured and lifestyle goals in an internet-mediated walking program for people with type 2 diabetes. Int J Behav Nutr Phys Act. 2007;4:59.CrossRefPubMedPubMedCentral Richardson CR, Mehari KS, McIntyre LG, Janney AW, Fortlage LA, Sen A, et al. A randomized trial comparing structured and lifestyle goals in an internet-mediated walking program for people with type 2 diabetes. Int J Behav Nutr Phys Act. 2007;4:59.CrossRefPubMedPubMedCentral
50.
go back to reference Martinez CH, Moy ML, Nguyen HQ, Cohen M, Kadri R, Roman P, et al. Taking Healthy Steps: rationale, design and baseline characteristics of a randomized trial of a pedometer-based Internet-mediated walking program in veterans with chronic obstructive pulmonary disease. BMC Pulm Med. 2014;14:12.CrossRefPubMedPubMedCentral Martinez CH, Moy ML, Nguyen HQ, Cohen M, Kadri R, Roman P, et al. Taking Healthy Steps: rationale, design and baseline characteristics of a randomized trial of a pedometer-based Internet-mediated walking program in veterans with chronic obstructive pulmonary disease. BMC Pulm Med. 2014;14:12.CrossRefPubMedPubMedCentral
51.
go back to reference Krein SL, Kadri R, Hughes M, Kerr EA, Piette JD, Holleman R, et al. Pedometer-based internet-mediated intervention for adults with chronic low back pain: randomized controlled trial. J Med Internet Res. 2013;15(8):e181.CrossRefPubMedPubMedCentral Krein SL, Kadri R, Hughes M, Kerr EA, Piette JD, Holleman R, et al. Pedometer-based internet-mediated intervention for adults with chronic low back pain: randomized controlled trial. J Med Internet Res. 2013;15(8):e181.CrossRefPubMedPubMedCentral
52.
go back to reference Djuric Z, Ellsworth JS, Weldon AL, Ren J, Richardson CR, Resnicow K, et al. A diet and exercise intervention during chemotherapy for breast cancer. Open Obes J. 2011;3:87–97.CrossRefPubMedPubMedCentral Djuric Z, Ellsworth JS, Weldon AL, Ren J, Richardson CR, Resnicow K, et al. A diet and exercise intervention during chemotherapy for breast cancer. Open Obes J. 2011;3:87–97.CrossRefPubMedPubMedCentral
53.
go back to reference Lindbergh R. Active living: on the road with the 10,000 steps program. J Am Diet Assoc. 2000;100(8):878–9.CrossRef Lindbergh R. Active living: on the road with the 10,000 steps program. J Am Diet Assoc. 2000;100(8):878–9.CrossRef
54.
go back to reference Pronk N. One step at a time—the 10,000 Steps program increases physical activity. Perm J. 2003;7(2):35–6. Pronk N. One step at a time—the 10,000 Steps program increases physical activity. Perm J. 2003;7(2):35–6.
55.
go back to reference McCormack G, Milligan R, Giles-Corti B, Clarkson JP. Physical activity levels of Western Australian Adults: results from the adult physical activity survey and pedometer study. Perth: Western Australian Government; 2003. McCormack G, Milligan R, Giles-Corti B, Clarkson JP. Physical activity levels of Western Australian Adults: results from the adult physical activity survey and pedometer study. Perth: Western Australian Government; 2003.
56.
go back to reference Inoue S, Ohya Y, Tudor-Locke C, Tanaka S, Yoshiike N, Shimomitsu T. Time trends for step-determined physical activity among Japanese adults. Med Sci Sports Exerc. 2011;43(10):1913–9.CrossRefPubMed Inoue S, Ohya Y, Tudor-Locke C, Tanaka S, Yoshiike N, Shimomitsu T. Time trends for step-determined physical activity among Japanese adults. Med Sci Sports Exerc. 2011;43(10):1913–9.CrossRefPubMed
57.
go back to reference Inoue S, Takamiya T, Yoshiike N, Shimomitsu T. Physical activity among the Japanese: results of the National Health and Nutrition Survey. In: Prevention CfDCa, editor. Proceedings of the international congress on physical activity and public health; 17–20 April 2006. Atlanta, GA: U.S. Department of Health and Human Services; 2006. p. 79. Inoue S, Takamiya T, Yoshiike N, Shimomitsu T. Physical activity among the Japanese: results of the National Health and Nutrition Survey. In: Prevention CfDCa, editor. Proceedings of the international congress on physical activity and public health; 17–20 April 2006. Atlanta, GA: U.S. Department of Health and Human Services; 2006. p. 79.
58.
go back to reference Feito Y, Bassett DR, Thompson DL. Evaluation of activity monitors in controlled and free-living environments. Med Sci Sports Exerc. 2012;44(4):733–41.CrossRefPubMed Feito Y, Bassett DR, Thompson DL. Evaluation of activity monitors in controlled and free-living environments. Med Sci Sports Exerc. 2012;44(4):733–41.CrossRefPubMed
59.
go back to reference Tudor-Locke C, Craig CL, Cameron C, Griffiths JM. Canadian children’s and youth’s pedometer-determined steps/day, parent-reported TV watching time, and overweight/obesity: the CANPLAY Surveillance Study. Int J Behav Nutr Phys Act. 2011;8:66.CrossRefPubMedPubMedCentral Tudor-Locke C, Craig CL, Cameron C, Griffiths JM. Canadian children’s and youth’s pedometer-determined steps/day, parent-reported TV watching time, and overweight/obesity: the CANPLAY Surveillance Study. Int J Behav Nutr Phys Act. 2011;8:66.CrossRefPubMedPubMedCentral
60.
go back to reference Beets MW, Bornstein D, Beighle A, Cardinal BJ, Morgan CF. Pedometer-measured physical activity patterns of youth: a 13-country review. Am J Prev Med. 2010;38(2):208–16.CrossRefPubMed Beets MW, Bornstein D, Beighle A, Cardinal BJ, Morgan CF. Pedometer-measured physical activity patterns of youth: a 13-country review. Am J Prev Med. 2010;38(2):208–16.CrossRefPubMed
62.
go back to reference Tudor-Locke C, Rowe DA. Using cadence to study free-living ambulatory behaviour. Sports Med. 2012;42(5):381–98.CrossRefPubMed Tudor-Locke C, Rowe DA. Using cadence to study free-living ambulatory behaviour. Sports Med. 2012;42(5):381–98.CrossRefPubMed
63.
go back to reference Dall PM, McCrorie PR, Granat MH, Stansfield BW. Step accumulation per minute epoch is not the same as cadence for free-living adults. Med Sci Sports Exerc. 2013;45(10):1995–2001.CrossRefPubMed Dall PM, McCrorie PR, Granat MH, Stansfield BW. Step accumulation per minute epoch is not the same as cadence for free-living adults. Med Sci Sports Exerc. 2013;45(10):1995–2001.CrossRefPubMed
64.
go back to reference Weyand P, Kelly M, Blackadar T, Darley J, Oliver S, Ohlenbusch N, et al. Ambulatory estimates of maximal aerobic power from foot-ground contact times and heart rates in running humans. J Appl Physiol. 2001;91(1):451–8.PubMed Weyand P, Kelly M, Blackadar T, Darley J, Oliver S, Ohlenbusch N, et al. Ambulatory estimates of maximal aerobic power from foot-ground contact times and heart rates in running humans. J Appl Physiol. 2001;91(1):451–8.PubMed
65.
go back to reference Ludlow LW, Weyand PG. Energy expenditure during level human walking: seeking a simple and accurate predictive solution. J Appl Physiol (Bethesda, Md: 1985). 2016;120(5):481–94.CrossRef Ludlow LW, Weyand PG. Energy expenditure during level human walking: seeking a simple and accurate predictive solution. J Appl Physiol (Bethesda, Md: 1985). 2016;120(5):481–94.CrossRef
Metadata
Title
Step Counting: A Review of Measurement Considerations and Health-Related Applications
Authors
David R. Bassett Jr.
Lindsay P. Toth
Samuel R. LaMunion
Scott E. Crouter
Publication date
01-07-2017
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 7/2017
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-016-0663-1

Other articles of this Issue 7/2017

Sports Medicine 7/2017 Go to the issue