Skip to main content
Top
Published in: Sports Medicine 1/2016

01-01-2016 | Review Article

Effects of Intermittent Fasting, Caloric Restriction, and Ramadan Intermittent Fasting on Cognitive Performance at Rest and During Exercise in Adults

Authors: Anissa Cherif, Bart Roelands, Romain Meeusen, Karim Chamari

Published in: Sports Medicine | Issue 1/2016

Login to get access

Abstract

The aim of this review was to highlight the potent effects of intermittent fasting on the cognitive performance of athletes at rest and during exercise. Exercise interacts with dietary factors and has a positive effect on brain functioning. Furthermore, physical activity and exercise can favorably influence brain plasticity. Mounting evidence indicates that exercise, in combination with diet, affects the management of energy metabolism and synaptic plasticity by affecting molecular mechanisms through brain-derived neurotrophic factor, an essential neurotrophin that acts at the interface of metabolism and plasticity. The literature has also shown that certain aspects of physical performance and mental health, such as coping and decision-making strategies, can be negatively affected by daylight fasting. However, there are several types of intermittent fasting. These include caloric restriction, which is distinct from fasting and allows subjects to drink water ad libitum while consuming a very low-calorie food intake. Another type is Ramadan intermittent fasting, which is a religious practice of Islam, where healthy adult Muslims do not eat or drink during daylight hours for 1 month. Other religious practices in Islam (Sunna) also encourage Muslims to practice intermittent fasting outside the month of Ramadan. Several cross-sectional and longitudinal studies have shown that intermittent fasting has crucial effects on physical and intellectual performance by affecting various aspects of bodily physiology and biochemistry that could be important for athletic success. Moreover, recent findings revealed that immunological variables are also involved in cognitive functioning and that intermittent fasting might impact the relationship between cytokine expression in the brain and cognitive deficits, including memory deficits.
Literature
1.
2.
go back to reference Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):58–65.PubMedCrossRef Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):58–65.PubMedCrossRef
3.
go back to reference Dishman RK, Berthoud HR, Booth FW, et al. Neurobiology of exercise. Obesity (Silver Spring). 2006;14(3):345–56.PubMedCrossRef Dishman RK, Berthoud HR, Booth FW, et al. Neurobiology of exercise. Obesity (Silver Spring). 2006;14(3):345–56.PubMedCrossRef
4.
go back to reference Chytrova G, Ying Z, Gomez-Pinilla F. Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res. 2010;23(1341):32–40.CrossRef Chytrova G, Ying Z, Gomez-Pinilla F. Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems. Brain Res. 2010;23(1341):32–40.CrossRef
7.
go back to reference Fabre C, Chamari K, Mucci P, et al. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med. 2002;23(6):415–21.PubMedCrossRef Fabre C, Chamari K, Mucci P, et al. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med. 2002;23(6):415–21.PubMedCrossRef
8.
go back to reference Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011;14(2):275–87.PubMedPubMedCentralCrossRef Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011;14(2):275–87.PubMedPubMedCentralCrossRef
9.
go back to reference Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35(s2):S74–8. Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35(s2):S74–8.
10.
go back to reference Paoli A, Bianco A, Damiani E, et al. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014;2014:10.CrossRef Paoli A, Bianco A, Damiani E, et al. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014;2014:10.CrossRef
11.
go back to reference Chaouachi A, Coutts AJ, Chamari K, et al. Effect of Ramadan intermittent fasting on aerobic and anaerobic performance and perception of fatigue in male elite judo athletes. J Strength Cond Res. 2009;23(9):2702–9.PubMedCrossRef Chaouachi A, Coutts AJ, Chamari K, et al. Effect of Ramadan intermittent fasting on aerobic and anaerobic performance and perception of fatigue in male elite judo athletes. J Strength Cond Res. 2009;23(9):2702–9.PubMedCrossRef
12.
go back to reference Zerguini Y, Kirkendall D, Junge A, et al. Impact of Ramadan on physical performance in professional soccer players. Br J Sports Med. 2007;41(6):398–400.PubMedPubMedCentralCrossRef Zerguini Y, Kirkendall D, Junge A, et al. Impact of Ramadan on physical performance in professional soccer players. Br J Sports Med. 2007;41(6):398–400.PubMedPubMedCentralCrossRef
13.
go back to reference Mouelhi Guizani S, Tenenbaum G, Bouzaouach I, et al. Information-processing under incremental levels of physical loads: comparing racquet to combat sports. J Sports Med Phys Fit. 2006;46(2):335–43. Mouelhi Guizani S, Tenenbaum G, Bouzaouach I, et al. Information-processing under incremental levels of physical loads: comparing racquet to combat sports. J Sports Med Phys Fit. 2006;46(2):335–43.
14.
go back to reference Mouelhi Guizani S, Bouzaouach I, Tenenbaum G, et al. Simple and choice reaction times under varying levels of physical load in high skilled fencers. J Sports Med Phys Fit. 2006;46(2):344–51. Mouelhi Guizani S, Bouzaouach I, Tenenbaum G, et al. Simple and choice reaction times under varying levels of physical load in high skilled fencers. J Sports Med Phys Fit. 2006;46(2):344–51.
15.
go back to reference Jarraya M, Chtourou H, Megdich K, et al. Effect of a moderate-intensity aerobic exercise on estimates of egocentric distance. Percept Mot Skills. 2013;116(2):658–70.PubMedCrossRef Jarraya M, Chtourou H, Megdich K, et al. Effect of a moderate-intensity aerobic exercise on estimates of egocentric distance. Percept Mot Skills. 2013;116(2):658–70.PubMedCrossRef
16.
go back to reference Ploughman M, Granter-Button S, Chernenko G, et al. Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain Res. 2007;30(1150):207–16.CrossRef Ploughman M, Granter-Button S, Chernenko G, et al. Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain Res. 2007;30(1150):207–16.CrossRef
17.
go back to reference Aloui A, Chaouachi A, Chtourou H, et al. Effects of Ramadan on the diurnal variations of repeated-sprint performances. Int J Sports Physiol Perform. 2013;8(3):254–62.PubMed Aloui A, Chaouachi A, Chtourou H, et al. Effects of Ramadan on the diurnal variations of repeated-sprint performances. Int J Sports Physiol Perform. 2013;8(3):254–62.PubMed
18.
go back to reference Shirreffs SM, Maughan RJ. Water and salt balance in young male football players in training during the holy month of Ramadan. J Sports Sci. 2008;26(Suppl 3):S47–54.PubMedCrossRef Shirreffs SM, Maughan RJ. Water and salt balance in young male football players in training during the holy month of Ramadan. J Sports Sci. 2008;26(Suppl 3):S47–54.PubMedCrossRef
19.
go back to reference Chaouachi A, Leiper JB, Souissi N, et al. Effects of Ramadan intermittent fasting on sports performance and training: a review. Int J Sports Physiol Perform. 2009;4(4):419–34.PubMed Chaouachi A, Leiper JB, Souissi N, et al. Effects of Ramadan intermittent fasting on sports performance and training: a review. Int J Sports Physiol Perform. 2009;4(4):419–34.PubMed
20.
go back to reference Varady KA, Bhutani S, Klempel MC, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12:146.PubMedPubMedCentralCrossRef Varady KA, Bhutani S, Klempel MC, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12:146.PubMedPubMedCentralCrossRef
21.
go back to reference Varady KA, Hellerstein MK. Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr. 2007;86(1):7–13.PubMed Varady KA, Hellerstein MK. Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr. 2007;86(1):7–13.PubMed
23.
go back to reference Mattson MP. Lifelong brain health is a lifelong challenge: From evolutionary principles to empirical evidence. Ageing Res Rev. 2015;20:37–45.PubMedCrossRef Mattson MP. Lifelong brain health is a lifelong challenge: From evolutionary principles to empirical evidence. Ageing Res Rev. 2015;20:37–45.PubMedCrossRef
24.
go back to reference Taormina G, Mirisola MG. Calorie restriction in mammals and simple model organisms. Biomed Res Int. 2014;2014:1–10.CrossRef Taormina G, Mirisola MG. Calorie restriction in mammals and simple model organisms. Biomed Res Int. 2014;2014:1–10.CrossRef
25.
go back to reference Singh R, Lakhanpal D, Kumar S, et al. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (Dordr). 2012;34(4):917–33.PubMedPubMedCentralCrossRef Singh R, Lakhanpal D, Kumar S, et al. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (Dordr). 2012;34(4):917–33.PubMedPubMedCentralCrossRef
26.
go back to reference Singh Kalra RR, Fults DW. Preuss award 121 leptomeningeal dissemination cascade in medulloblastoma. Neurosurgery. 2014;61(Suppl 1):198–9.CrossRef Singh Kalra RR, Fults DW. Preuss award 121 leptomeningeal dissemination cascade in medulloblastoma. Neurosurgery. 2014;61(Suppl 1):198–9.CrossRef
27.
go back to reference Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem. 2002;82(6):1367–75.PubMedCrossRef Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem. 2002;82(6):1367–75.PubMedCrossRef
28.
go back to reference Green MW, Elliman NA, Rogers PJ. Lack of effect of short-term fasting on cognitive function. J Psychiatr Res. 1995;29(3):245–53. Green MW, Elliman NA, Rogers PJ. Lack of effect of short-term fasting on cognitive function. J Psychiatr Res. 1995;29(3):245–53.
29.
go back to reference Yanai S, Okaichi Y, Okaichi H. Long-term dietary restriction causes negative effects on cognitive functions in rats. Neurobiol Aging. 2004;25(3):325–32.PubMedCrossRef Yanai S, Okaichi Y, Okaichi H. Long-term dietary restriction causes negative effects on cognitive functions in rats. Neurobiol Aging. 2004;25(3):325–32.PubMedCrossRef
31.
go back to reference Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16(3):129–37.PubMedCrossRef Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16(3):129–37.PubMedCrossRef
32.
go back to reference Green MW, Rogers PJ, Elliman NA, et al. Impairment of cognitive performance associated with dieting and high levels of dietary restraint. Physiol Behav. 1994;55(3):447–52.PubMedCrossRef Green MW, Rogers PJ, Elliman NA, et al. Impairment of cognitive performance associated with dieting and high levels of dietary restraint. Physiol Behav. 1994;55(3):447–52.PubMedCrossRef
33.
go back to reference Rogers PJ, Green MW. Dieting, dietary restraint and cognitive performance. Br J Clin Psychol. 1993;32(Pt 1):113–6.PubMedCrossRef Rogers PJ, Green MW. Dieting, dietary restraint and cognitive performance. Br J Clin Psychol. 1993;32(Pt 1):113–6.PubMedCrossRef
34.
35.
go back to reference Develioglu ON, Sirazi S, Topak M, et al. Differences in mucociliary activity of volunteers undergoing Ramadan versus Nineveh fasting. Eur Arch Otorhinolaryngol. 2013;270(5):1655–9.PubMedCrossRef Develioglu ON, Sirazi S, Topak M, et al. Differences in mucociliary activity of volunteers undergoing Ramadan versus Nineveh fasting. Eur Arch Otorhinolaryngol. 2013;270(5):1655–9.PubMedCrossRef
36.
go back to reference Gesundheit B. Medicine and Judaism—a patient is forbidden to endanger his life in order to fast on Yom Kippur. Harefuah. 2009;148(9):583–5, 659. Gesundheit B. Medicine and Judaism—a patient is forbidden to endanger his life in order to fast on Yom Kippur. Harefuah. 2009;148(9):583–5, 659.
37.
go back to reference Katz Y, Zangen D, Leibowitz G, et al. Diabetic patients in the Yom Kippur fast—who can fast and how to treat the fasting patients. Harefuah. 2009;148(9):586–91, 659, 8. Katz Y, Zangen D, Leibowitz G, et al. Diabetic patients in the Yom Kippur fast—who can fast and how to treat the fasting patients. Harefuah. 2009;148(9):586–91, 659, 8.
38.
go back to reference Chiu TH, Huang HY, Chiu YF, et al. Taiwanese vegetarians and omnivores: dietary composition, prevalence of diabetes and IFG. PLoS One. 2014;9(2):e88547.PubMedPubMedCentralCrossRef Chiu TH, Huang HY, Chiu YF, et al. Taiwanese vegetarians and omnivores: dietary composition, prevalence of diabetes and IFG. PLoS One. 2014;9(2):e88547.PubMedPubMedCentralCrossRef
39.
go back to reference Sarri KO, Tzanakis NE, Linardakis MK, et al. Effects of Greek orthodox christian church fasting on serum lipids and obesity. BMC Public Health. 2003;3:16.PubMedPubMedCentralCrossRef Sarri KO, Tzanakis NE, Linardakis MK, et al. Effects of Greek orthodox christian church fasting on serum lipids and obesity. BMC Public Health. 2003;3:16.PubMedPubMedCentralCrossRef
40.
go back to reference Kadri N, Tilane A, El Batal M, et al. Irritability during the month of Ramadan. Psychosom Med. 2000;62(2):280–5. Kadri N, Tilane A, El Batal M, et al. Irritability during the month of Ramadan. Psychosom Med. 2000;62(2):280–5.
41.
go back to reference Chaouachi A, Leiper JB, Chtourou H, et al. The effects of Ramadan intermittent fasting on athletic performance: recommendations for the maintenance of physical fitness. J Sports Sci. 2012;30(Suppl 1):S53–73.PubMedCrossRef Chaouachi A, Leiper JB, Chtourou H, et al. The effects of Ramadan intermittent fasting on athletic performance: recommendations for the maintenance of physical fitness. J Sports Sci. 2012;30(Suppl 1):S53–73.PubMedCrossRef
42.
go back to reference Tian HH, Aziz AR, Png W, et al. Effects of fasting during Ramadan month on cognitive function in muslim athletes. Asian J Sports Med. 2011;2(3):145–53.PubMedPubMedCentralCrossRef Tian HH, Aziz AR, Png W, et al. Effects of fasting during Ramadan month on cognitive function in muslim athletes. Asian J Sports Med. 2011;2(3):145–53.PubMedPubMedCentralCrossRef
43.
go back to reference Reilly T, Waterhouse J. Altered sleep-wake cycles and food intake: the Ramadan model. Physiol Behav. 2007;90(2–3):219–28.PubMedCrossRef Reilly T, Waterhouse J. Altered sleep-wake cycles and food intake: the Ramadan model. Physiol Behav. 2007;90(2–3):219–28.PubMedCrossRef
44.
go back to reference Trabelsi K, Rebai H, El-Abed K, et al. Effect of Ramadan fasting on body water status markers after a rugby sevens match. Asian J Sports Med. 2011;2(3):186–94.PubMedPubMedCentral Trabelsi K, Rebai H, El-Abed K, et al. Effect of Ramadan fasting on body water status markers after a rugby sevens match. Asian J Sports Med. 2011;2(3):186–94.PubMedPubMedCentral
45.
go back to reference Sakamoto K, Grunewald KK. Beneficial effects of exercise on growth of rats during intermittent fasting. J Nutr. 1987;117(2):390–5.PubMed Sakamoto K, Grunewald KK. Beneficial effects of exercise on growth of rats during intermittent fasting. J Nutr. 1987;117(2):390–5.PubMed
46.
go back to reference Jongbloed F, de Bruin RW, Pennings JL, et al. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice. PLoS One. 2014;9(6):1–9.CrossRef Jongbloed F, de Bruin RW, Pennings JL, et al. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice. PLoS One. 2014;9(6):1–9.CrossRef
48.
50.
go back to reference Izumida Y, Yahagi N, Takeuchi Y, et al. Glycogen shortage during fasting triggers liver-brain-adipose neurocircuitry to facilitate fat utilization. Nat Commun. 2013;4:8. Izumida Y, Yahagi N, Takeuchi Y, et al. Glycogen shortage during fasting triggers liver-brain-adipose neurocircuitry to facilitate fat utilization. Nat Commun. 2013;4:8.
51.
go back to reference Greenberg AS, Coleman RA, Kraemer FB, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121(6):2102–10.PubMedPubMedCentralCrossRef Greenberg AS, Coleman RA, Kraemer FB, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121(6):2102–10.PubMedPubMedCentralCrossRef
52.
go back to reference Viscarra JA, Ortiz RM. Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation. Metabolism. 2013;62(7):889–97.PubMedPubMedCentralCrossRef Viscarra JA, Ortiz RM. Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation. Metabolism. 2013;62(7):889–97.PubMedPubMedCentralCrossRef
53.
go back to reference Mattson MP. Energy intake, meal frequency, and health: a neurobiological perspective. Annu Rev Nutr. 2005;25:237–60.PubMedCrossRef Mattson MP. Energy intake, meal frequency, and health: a neurobiological perspective. Annu Rev Nutr. 2005;25:237–60.PubMedCrossRef
54.
go back to reference Widenfalk J, Olson L, Thoren P. Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neurosci Res. 1999;34(3):125–32.PubMedCrossRef Widenfalk J, Olson L, Thoren P. Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neurosci Res. 1999;34(3):125–32.PubMedCrossRef
55.
go back to reference Tong L, Shen H, Perreau VM, et al. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis. 2001;8(6):1046–56.PubMedCrossRef Tong L, Shen H, Perreau VM, et al. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis. 2001;8(6):1046–56.PubMedCrossRef
56.
go back to reference Fenneni MA, Latiri I, Aloui A, et al. Effects of Ramadan on physical capacities of North African boys fasting for the first time. Libyan J Med. 2014;24(9):25391. Fenneni MA, Latiri I, Aloui A, et al. Effects of Ramadan on physical capacities of North African boys fasting for the first time. Libyan J Med. 2014;24(9):25391.
58.
go back to reference Trabelsi K, El Abed K, Trepanowski JF, et al. Effects of Ramadan fasting on biochemical and anthropometric parameters in physically active men. Asian J Sports Med. 2011;2(3):134–44.PubMedPubMedCentral Trabelsi K, El Abed K, Trepanowski JF, et al. Effects of Ramadan fasting on biochemical and anthropometric parameters in physically active men. Asian J Sports Med. 2011;2(3):134–44.PubMedPubMedCentral
59.
go back to reference Trabelsi K, Stannard SR, Ghlissi Z, et al. Effect of fed- versus fasted state resistance training during Ramadan on body composition and selected metabolic parameters in bodybuilders. J Int Soc Sports Nutr. 2013;10(1):23.PubMedPubMedCentralCrossRef Trabelsi K, Stannard SR, Ghlissi Z, et al. Effect of fed- versus fasted state resistance training during Ramadan on body composition and selected metabolic parameters in bodybuilders. J Int Soc Sports Nutr. 2013;10(1):23.PubMedPubMedCentralCrossRef
60.
go back to reference Burke LM, King C. Ramadan fasting and the goals of sports nutrition around exercise. J Sports Sci. 2012;30(Suppl 1):S21–31.PubMedCrossRef Burke LM, King C. Ramadan fasting and the goals of sports nutrition around exercise. J Sports Sci. 2012;30(Suppl 1):S21–31.PubMedCrossRef
61.
go back to reference Latifynia A, Vojgani M, Gharagozlou MJ, et al. Effect of Ramadan on neutrophil’s respiratory burst (innate immunity) and circulating immune complex. J Ayub Med Coll Abbottabad. 2008;20(3):128–31. Latifynia A, Vojgani M, Gharagozlou MJ, et al. Effect of Ramadan on neutrophil’s respiratory burst (innate immunity) and circulating immune complex. J Ayub Med Coll Abbottabad. 2008;20(3):128–31.
62.
go back to reference Chtourou H, Hammouda O, Souissi H, et al. The effect of Ramadan fasting on physical performances, mood state and perceived exertion in young footballers. Asian J Sports Med. 2011;2(3):177–85.PubMedPubMedCentralCrossRef Chtourou H, Hammouda O, Souissi H, et al. The effect of Ramadan fasting on physical performances, mood state and perceived exertion in young footballers. Asian J Sports Med. 2011;2(3):177–85.PubMedPubMedCentralCrossRef
63.
go back to reference Intekhab A. Ramadan fasting in extreme latitudes. J Soc Health Diabetes. 2014;2(1):2. Intekhab A. Ramadan fasting in extreme latitudes. J Soc Health Diabetes. 2014;2(1):2.
64.
go back to reference Amirfakhraei A, Alinaghizadeh A. The impact of praying and fasting on the mental health of studentsattending the Bandar Abbas Branch of Islamic Azad University in Iran in 2012. Life Sci J. 2012;2012(9):6. Amirfakhraei A, Alinaghizadeh A. The impact of praying and fasting on the mental health of studentsattending the Bandar Abbas Branch of Islamic Azad University in Iran in 2012. Life Sci J. 2012;2012(9):6.
66.
go back to reference Alabed H, Abuzayan K, Fgie KZ. Effects of length of time of fasting upon subjective and objective variables when controlling sleep, food and fluid intakes International Journal of Medical, Health. Pharm Biomed Eng. 2014;8(5):9. Alabed H, Abuzayan K, Fgie KZ. Effects of length of time of fasting upon subjective and objective variables when controlling sleep, food and fluid intakes International Journal of Medical, Health. Pharm Biomed Eng. 2014;8(5):9.
67.
go back to reference Guvenc A. Effects of Ramadan fasting on body composition, aerobic performance and lactate, heart rate and perceptual responses in young soccer players. J Hum Kinet. 2011;29:79–91.PubMedPubMedCentralCrossRef Guvenc A. Effects of Ramadan fasting on body composition, aerobic performance and lactate, heart rate and perceptual responses in young soccer players. J Hum Kinet. 2011;29:79–91.PubMedPubMedCentralCrossRef
68.
go back to reference Chtourou H, Hammouda M, Aloui A, et al. The optimal time of day for training during Ramadan: a review study. J Fasting Health. 2014;2:7. Chtourou H, Hammouda M, Aloui A, et al. The optimal time of day for training during Ramadan: a review study. J Fasting Health. 2014;2:7.
69.
go back to reference Vasconcelos AR, Yshii LM, Viel TA, et al. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation. 2014;11:85.PubMedPubMedCentralCrossRef Vasconcelos AR, Yshii LM, Viel TA, et al. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation. 2014;11:85.PubMedPubMedCentralCrossRef
70.
go back to reference Fito M, Guxens M, Corella D, et al. Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med. 2007;167(11):1195–203.PubMedCrossRef Fito M, Guxens M, Corella D, et al. Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med. 2007;167(11):1195–203.PubMedCrossRef
71.
go back to reference Liu X, Wu Z, Hayashi Y, et al. Age-dependent neuroinflammatory responses and deficits in long-term potentiation in the hippocampus during systemic inflammation. Neuroscience. 2012;2(216):133–42.CrossRef Liu X, Wu Z, Hayashi Y, et al. Age-dependent neuroinflammatory responses and deficits in long-term potentiation in the hippocampus during systemic inflammation. Neuroscience. 2012;2(216):133–42.CrossRef
72.
go back to reference Thomson LM, Sutherland RJ. Systemic administration of lipopolysaccharide and interleukin-1beta have different effects on memory consolidation. Brain Res Bull. 2005;67(1–2):24–9.PubMedCrossRef Thomson LM, Sutherland RJ. Systemic administration of lipopolysaccharide and interleukin-1beta have different effects on memory consolidation. Brain Res Bull. 2005;67(1–2):24–9.PubMedCrossRef
73.
go back to reference Calabrese F, Rossetti AC, Racagni G, et al. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci. 2014;8:430.PubMedPubMedCentralCrossRef Calabrese F, Rossetti AC, Racagni G, et al. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci. 2014;8:430.PubMedPubMedCentralCrossRef
74.
go back to reference Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3(6):453–62.PubMed Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3(6):453–62.PubMed
75.
go back to reference Ben Menachem-Zidon O, Goshen I, Kreisel T, et al. Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology. 2008;33(9):2251–62. Ben Menachem-Zidon O, Goshen I, Kreisel T, et al. Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology. 2008;33(9):2251–62.
76.
go back to reference Hein AM, Stasko MR, Matousek SB, et al. Sustained hippocampal IL-1beta overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun. 2010;24(2):243–53.PubMedPubMedCentralCrossRef Hein AM, Stasko MR, Matousek SB, et al. Sustained hippocampal IL-1beta overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun. 2010;24(2):243–53.PubMedPubMedCentralCrossRef
77.
go back to reference Shaftel SS, Kyrkanides S, Olschowka JA, et al. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest. 2007;117(6):1595–604.PubMedPubMedCentralCrossRef Shaftel SS, Kyrkanides S, Olschowka JA, et al. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest. 2007;117(6):1595–604.PubMedPubMedCentralCrossRef
78.
go back to reference Heyser CJ, Masliah E, Samimi A, et al. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA. 1997;94(4):1500–5.PubMedPubMedCentralCrossRef Heyser CJ, Masliah E, Samimi A, et al. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA. 1997;94(4):1500–5.PubMedPubMedCentralCrossRef
79.
go back to reference Eyre H, Baune BT. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology. 2012;37(9):1397–416.PubMedCrossRef Eyre H, Baune BT. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology. 2012;37(9):1397–416.PubMedCrossRef
80.
go back to reference Navalta JW, McFarlin BK, Lyons S, et al. Cognitive awareness of carbohydrate intake does not alter exercise-induced lymphocyte apoptosis. Clinics (Sao Paulo). 2011;66(2):197–202.PubMedPubMedCentralCrossRef Navalta JW, McFarlin BK, Lyons S, et al. Cognitive awareness of carbohydrate intake does not alter exercise-induced lymphocyte apoptosis. Clinics (Sao Paulo). 2011;66(2):197–202.PubMedPubMedCentralCrossRef
81.
go back to reference Arumugam TV, Phillips TM, Cheng A, et al. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol. 2010;67(1):41–52.PubMedPubMedCentralCrossRef Arumugam TV, Phillips TM, Cheng A, et al. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol. 2010;67(1):41–52.PubMedPubMedCentralCrossRef
82.
go back to reference Ugochukwu NH, Figgers CL. Caloric restriction inhibits up-regulation of inflammatory cytokines and TNF-alpha, and activates IL-10 and haptoglobin in the plasma of streptozotocin-induced diabetic rats. J Nutr Biochem. 2007;18(2):120–6.PubMedCrossRef Ugochukwu NH, Figgers CL. Caloric restriction inhibits up-regulation of inflammatory cytokines and TNF-alpha, and activates IL-10 and haptoglobin in the plasma of streptozotocin-induced diabetic rats. J Nutr Biochem. 2007;18(2):120–6.PubMedCrossRef
84.
go back to reference Zhu B, Wang ZG, Ding J, et al. Chronic lipopolysaccharide exposure induces cognitive dysfunction without affecting BDNF expression in the rat hippocampus. Exp Ther Med. 2014;7(3):750–4.PubMedPubMedCentral Zhu B, Wang ZG, Ding J, et al. Chronic lipopolysaccharide exposure induces cognitive dysfunction without affecting BDNF expression in the rat hippocampus. Exp Ther Med. 2014;7(3):750–4.PubMedPubMedCentral
85.
go back to reference Krzyszton CP, Sparkman NL, Grant RW, et al. Exacerbated fatigue and motor deficits in interleukin-10-deficient mice after peripheral immune stimulation. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1109–14.PubMedPubMedCentralCrossRef Krzyszton CP, Sparkman NL, Grant RW, et al. Exacerbated fatigue and motor deficits in interleukin-10-deficient mice after peripheral immune stimulation. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1109–14.PubMedPubMedCentralCrossRef
86.
go back to reference Mansur RB, Zugman A, Asevedo EM, et al. Cytokines in schizophrenia: possible role of anti-inflammatory medications in clinical and preclinical stages. Psychiatry Clin Neurosci. 2012;66(4):247–60.PubMedCrossRef Mansur RB, Zugman A, Asevedo EM, et al. Cytokines in schizophrenia: possible role of anti-inflammatory medications in clinical and preclinical stages. Psychiatry Clin Neurosci. 2012;66(4):247–60.PubMedCrossRef
87.
go back to reference Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.PubMedPubMedCentralCrossRef Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.PubMedPubMedCentralCrossRef
88.
go back to reference Smith CJ, Emsley HC, Udeh CT, et al. Interleukin-1 receptor antagonist reverses stroke-associated peripheral immune suppression. Cytokine. 2012;58(3):384–9.PubMedCrossRef Smith CJ, Emsley HC, Udeh CT, et al. Interleukin-1 receptor antagonist reverses stroke-associated peripheral immune suppression. Cytokine. 2012;58(3):384–9.PubMedCrossRef
89.
go back to reference Richwine AF, Sparkman NL, Dilger RN, et al. Cognitive deficits in interleukin-10-deficient mice after peripheral injection of lipopolysaccharide. Brain Behav Immun. 2009;23(6):794–802.PubMedPubMedCentralCrossRef Richwine AF, Sparkman NL, Dilger RN, et al. Cognitive deficits in interleukin-10-deficient mice after peripheral injection of lipopolysaccharide. Brain Behav Immun. 2009;23(6):794–802.PubMedPubMedCentralCrossRef
90.
go back to reference Zhang XY, Liang J, da Chen C, et al. Low BDNF is associated with cognitive impairment in chronic patients with schizophrenia. Psychopharmacology (Berl). 2012;222(2):277–84.PubMedCrossRef Zhang XY, Liang J, da Chen C, et al. Low BDNF is associated with cognitive impairment in chronic patients with schizophrenia. Psychopharmacology (Berl). 2012;222(2):277–84.PubMedCrossRef
91.
go back to reference Oral E, Canpolat S, Yildirim S, et al. Cognitive functions and serum levels of brain-derived neurotrophic factor in patients with major depressive disorder. Brain Res Bull. 2012;88(5):454–9.PubMedCrossRef Oral E, Canpolat S, Yildirim S, et al. Cognitive functions and serum levels of brain-derived neurotrophic factor in patients with major depressive disorder. Brain Res Bull. 2012;88(5):454–9.PubMedCrossRef
92.
go back to reference Lapchak PA, Araujo DM, Hefti F. Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience. 1993;53(2):297–301.PubMedCrossRef Lapchak PA, Araujo DM, Hefti F. Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience. 1993;53(2):297–301.PubMedCrossRef
93.
go back to reference Trejo JL, Llorens-Martin MV, Torres-Aleman I. The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci. 2008;37(2):402–11.PubMedCrossRef Trejo JL, Llorens-Martin MV, Torres-Aleman I. The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci. 2008;37(2):402–11.PubMedCrossRef
94.
go back to reference Nascimento CM, Pereira JR, de Andrade LP, et al. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res. 2014;11(8):799–805.PubMedCrossRef Nascimento CM, Pereira JR, de Andrade LP, et al. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res. 2014;11(8):799–805.PubMedCrossRef
95.
go back to reference Whiteman AS, Young DE, He X, et al. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav Brain Res. 2014;1(259):302–12.CrossRef Whiteman AS, Young DE, He X, et al. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav Brain Res. 2014;1(259):302–12.CrossRef
96.
97.
go back to reference Draelos MT, Jacobson AM, Weinger K, et al. Cognitive function in patients with insulin-dependent diabetes mellitus during hyperglycemia and hypoglycemia. Am J Med. 1995;98(2):135–44.PubMedCrossRef Draelos MT, Jacobson AM, Weinger K, et al. Cognitive function in patients with insulin-dependent diabetes mellitus during hyperglycemia and hypoglycemia. Am J Med. 1995;98(2):135–44.PubMedCrossRef
98.
99.
go back to reference Brown AM, Baltan Tekkok S, Ransom BR. Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int. 2004;45(4):529–36.PubMedCrossRef Brown AM, Baltan Tekkok S, Ransom BR. Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int. 2004;45(4):529–36.PubMedCrossRef
100.
go back to reference Hamprecht B, Verleysdonk S, Wiesinger H. Enzymes of carbohydrate and energy metabolism. In: Kettenmann H, Ransom BR, editors. Neuroglia. 2nd ed. New York: Oxford University Press; 2005. p. 202–215. Hamprecht B, Verleysdonk S, Wiesinger H. Enzymes of carbohydrate and energy metabolism. In: Kettenmann H, Ransom BR, editors. Neuroglia. 2nd ed. New York: Oxford University Press; 2005. p. 202–215.
101.
go back to reference Warren RE, Frier BM. Hypoglycaemia and cognitive function. Diabetes Obes Metab. 2005;7(5):493–503.PubMedCrossRef Warren RE, Frier BM. Hypoglycaemia and cognitive function. Diabetes Obes Metab. 2005;7(5):493–503.PubMedCrossRef
102.
go back to reference Dalsgaard MK, Ide K, Cai Y, et al. The intent to exercise influences the cerebral O(2)/carbohydrate uptake ratio in humans. J Physiol. 2002;540(Pt 2):681–9.PubMedPubMedCentralCrossRef Dalsgaard MK, Ide K, Cai Y, et al. The intent to exercise influences the cerebral O(2)/carbohydrate uptake ratio in humans. J Physiol. 2002;540(Pt 2):681–9.PubMedPubMedCentralCrossRef
103.
go back to reference Madsen PL, Cruz NF, Sokoloff L, et al. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab. 1999;19(4):393–400.PubMedCrossRef Madsen PL, Cruz NF, Sokoloff L, et al. Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab. 1999;19(4):393–400.PubMedCrossRef
104.
go back to reference Williamson JW, McColl R, Mathews D, et al. Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol (1985). 1999;87(3):1213–9. Williamson JW, McColl R, Mathews D, et al. Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol (1985). 1999;87(3):1213–9.
105.
go back to reference Sappey-Marinier D, Calabrese G, Fein G, et al. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 1992;12(4):584–92.PubMedCrossRef Sappey-Marinier D, Calabrese G, Fein G, et al. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 1992;12(4):584–92.PubMedCrossRef
107.
go back to reference Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133–45.PubMedCrossRef Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133–45.PubMedCrossRef
108.
go back to reference Mergenthaler P, Lindauer U, Dienel GA, et al. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36(10):587–97.PubMedPubMedCentralCrossRef Mergenthaler P, Lindauer U, Dienel GA, et al. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36(10):587–97.PubMedPubMedCentralCrossRef
110.
go back to reference Rex A, Bert B, Fink H, et al. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis. Physiol Behav. 2009;98(4):467–73.PubMedCrossRef Rex A, Bert B, Fink H, et al. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis. Physiol Behav. 2009;98(4):467–73.PubMedCrossRef
111.
go back to reference Bruss MD, Khambatta CF, Ruby MA, et al. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab. 2010;298(1):E108–16.PubMedPubMedCentralCrossRef Bruss MD, Khambatta CF, Ruby MA, et al. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab. 2010;298(1):E108–16.PubMedPubMedCentralCrossRef
112.
go back to reference Hammouda O, Chtourou H, Aloui A, et al. Concomitant effects of Ramadan fasting and time-of-day on apolipoprotein AI, B, Lp-a and homocysteine responses during aerobic exercise in Tunisian soccer players. PLoS One. 2013;8(11):e79873.PubMedPubMedCentralCrossRef Hammouda O, Chtourou H, Aloui A, et al. Concomitant effects of Ramadan fasting and time-of-day on apolipoprotein AI, B, Lp-a and homocysteine responses during aerobic exercise in Tunisian soccer players. PLoS One. 2013;8(11):e79873.PubMedPubMedCentralCrossRef
113.
go back to reference Heilbronn LK, Smith SR, Martin CK, et al. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr. 2005;81(1):69–73.PubMed Heilbronn LK, Smith SR, Martin CK, et al. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr. 2005;81(1):69–73.PubMed
114.
go back to reference Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103(2):253–9.PubMedPubMedCentralCrossRef Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103(2):253–9.PubMedPubMedCentralCrossRef
115.
go back to reference Koutsari C, Jensen MD. Thematic review series: patient-oriented research. Free fatty acid metabolism in human obesity. J Lipid Res. 2006;47:8.CrossRef Koutsari C, Jensen MD. Thematic review series: patient-oriented research. Free fatty acid metabolism in human obesity. J Lipid Res. 2006;47:8.CrossRef
116.
go back to reference Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes. 2005;54(12):3458–65.PubMedCrossRef Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes. 2005;54(12):3458–65.PubMedCrossRef
118.
go back to reference Benefer MD, Corfe BM, Russell JM, et al. Water intake and post-exercise cognitive performance: an observational study of long-distance walkers and runners. Eur J Nutr. 2013;52(2):617–24.PubMedCrossRef Benefer MD, Corfe BM, Russell JM, et al. Water intake and post-exercise cognitive performance: an observational study of long-distance walkers and runners. Eur J Nutr. 2013;52(2):617–24.PubMedCrossRef
119.
go back to reference Lieberman HR, Bathalon GP, Falco CM, et al. Severe decrements in cognition function and mood induced by sleep loss, heat, dehydration, and undernutrition during simulated combat. Biol Psychiatry. 2005;57(4):422–9.PubMedCrossRef Lieberman HR, Bathalon GP, Falco CM, et al. Severe decrements in cognition function and mood induced by sleep loss, heat, dehydration, and undernutrition during simulated combat. Biol Psychiatry. 2005;57(4):422–9.PubMedCrossRef
120.
go back to reference Adam GE, Carter R 3rd, Cheuvront SN, et al. Hydration effects on cognitive performance during military tasks in temperate and cold environments. Physiol Behav. 2008;93(4–5):748–56.PubMedCrossRef Adam GE, Carter R 3rd, Cheuvront SN, et al. Hydration effects on cognitive performance during military tasks in temperate and cold environments. Physiol Behav. 2008;93(4–5):748–56.PubMedCrossRef
121.
go back to reference Burke L. Practical issues in nutrition for athletes. J Sports Sci. 1995;13:Spec No:S83–90. Burke L. Practical issues in nutrition for athletes. J Sports Sci. 1995;13:Spec No:S83–90.
122.
go back to reference Edwards AM, Mann ME, Marfell-Jones MJ, et al. Influence of moderate dehydration on soccer performance: physiological responses to 45 min of outdoor match-play and the immediate subsequent performance of sport-specific and mental concentration tests. Br J Sports Med. 2007;41(6):385–91.PubMedPubMedCentralCrossRef Edwards AM, Mann ME, Marfell-Jones MJ, et al. Influence of moderate dehydration on soccer performance: physiological responses to 45 min of outdoor match-play and the immediate subsequent performance of sport-specific and mental concentration tests. Br J Sports Med. 2007;41(6):385–91.PubMedPubMedCentralCrossRef
123.
go back to reference Edmonds CJ, Crombie R, Gardner MR. Subjective thirst moderates changes in speed of responding associated with water consumption. Front Hum Neurosci. 2013;7:363.PubMedPubMedCentralCrossRef Edmonds CJ, Crombie R, Gardner MR. Subjective thirst moderates changes in speed of responding associated with water consumption. Front Hum Neurosci. 2013;7:363.PubMedPubMedCentralCrossRef
124.
go back to reference Riebl SK, Davy BM. The hydration equation: update on water balance and cognitive performance. ACSMs Health Fit J. 2013;17(6):21–8.PubMedPubMedCentral Riebl SK, Davy BM. The hydration equation: update on water balance and cognitive performance. ACSMs Health Fit J. 2013;17(6):21–8.PubMedPubMedCentral
125.
go back to reference Ganio MS, Armstrong LE, Casa DJ, et al. Mild dehydration impairs cognitive performance and mood of men. Br J Nutr. 2011;106(10):1535–43.PubMedCrossRef Ganio MS, Armstrong LE, Casa DJ, et al. Mild dehydration impairs cognitive performance and mood of men. Br J Nutr. 2011;106(10):1535–43.PubMedCrossRef
126.
go back to reference Kempton MJ, Ettinger U, Foster R, et al. Dehydration affects brain structure and function in healthy adolescents. Hum Brain Mapp. 2011;32(1):71–9.PubMedCrossRef Kempton MJ, Ettinger U, Foster R, et al. Dehydration affects brain structure and function in healthy adolescents. Hum Brain Mapp. 2011;32(1):71–9.PubMedCrossRef
127.
go back to reference NasrAllah MM, Osman NA. Fasting during the month of Ramadan among patients with chronic kidney disease: renal and cardiovascular outcomes. Clin Kidney J. 2014;7(4):348–53.PubMedPubMedCentralCrossRef NasrAllah MM, Osman NA. Fasting during the month of Ramadan among patients with chronic kidney disease: renal and cardiovascular outcomes. Clin Kidney J. 2014;7(4):348–53.PubMedPubMedCentralCrossRef
128.
go back to reference Vaynman S, Ying Z, Gomez-Pinilla F. Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience. 2003;122(3):647–57.PubMedCrossRef Vaynman S, Ying Z, Gomez-Pinilla F. Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience. 2003;122(3):647–57.PubMedCrossRef
129.
go back to reference Ninan I. Synaptic regulation of affective behaviors; role of BDNF. Neuropharmacology. 2014;76(Part C):684–95. Ninan I. Synaptic regulation of affective behaviors; role of BDNF. Neuropharmacology. 2014;76(Part C):684–95.
130.
go back to reference Vaynman S, Ying Z, Wu A, et al. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience. 2006;139(4):1221–34.PubMedCrossRef Vaynman S, Ying Z, Wu A, et al. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience. 2006;139(4):1221–34.PubMedCrossRef
132.
go back to reference Knaepen K, Goekint M, Heyman EM, et al. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40(9):765–801.PubMedCrossRef Knaepen K, Goekint M, Heyman EM, et al. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40(9):765–801.PubMedCrossRef
133.
go back to reference Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–69.PubMedCrossRef Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–69.PubMedCrossRef
134.
go back to reference Hariri AR, Goldberg TE, Mattay VS, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003;23(17):6690–4.PubMed Hariri AR, Goldberg TE, Mattay VS, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003;23(17):6690–4.PubMed
135.
136.
go back to reference Ramsey MM, Adams MM, Ariwodola OJ, et al. Functional characterization of des-IGF-1 action at excitatory synapses in the CA1 region of rat hippocampus. J Neurophysiol. 2005;94(1):247–54.PubMedCrossRef Ramsey MM, Adams MM, Ariwodola OJ, et al. Functional characterization of des-IGF-1 action at excitatory synapses in the CA1 region of rat hippocampus. J Neurophysiol. 2005;94(1):247–54.PubMedCrossRef
137.
go back to reference Anlar B, Sullivan KA, Feldman EL. Insulin-like growth factor-I and central nervous system development. Horm Metab Res. 1999;31(2–3):120–5. Anlar B, Sullivan KA, Feldman EL. Insulin-like growth factor-I and central nervous system development. Horm Metab Res. 1999;31(2–3):120–5.
138.
go back to reference Saatman KE, Contreras PC, Smith DH, et al. Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol. 1997;147(2):418–27.PubMedCrossRef Saatman KE, Contreras PC, Smith DH, et al. Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol. 1997;147(2):418–27.PubMedCrossRef
139.
go back to reference Gomez-Pinilla F, Vaynman S, Ying Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci. 2008;28(11):2278–87.PubMedPubMedCentralCrossRef Gomez-Pinilla F, Vaynman S, Ying Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci. 2008;28(11):2278–87.PubMedPubMedCentralCrossRef
140.
go back to reference Gomez-Pinilla F, Zhuang Y, Feng J, et al. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci. 2011;33(3):383–90.PubMedPubMedCentralCrossRef Gomez-Pinilla F, Zhuang Y, Feng J, et al. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci. 2011;33(3):383–90.PubMedPubMedCentralCrossRef
141.
go back to reference Lee IH, Seo EJ, Lim IS. Effects of aquatic exercise and CES treatment on the changes of cognitive function, BDNF, IGF-1, and VEGF of persons with intellectual disabilities. J Exerc Nutr Biochem. 2014;18(1):19–24.CrossRef Lee IH, Seo EJ, Lim IS. Effects of aquatic exercise and CES treatment on the changes of cognitive function, BDNF, IGF-1, and VEGF of persons with intellectual disabilities. J Exerc Nutr Biochem. 2014;18(1):19–24.CrossRef
142.
go back to reference Fabre C, Masse-Biron J, Chamari K, et al. Evaluation of quality of life in elderly healthy subjects after aerobic and/or mental training. Arch Gerontol Geriatr. 1999;28(1):9–22. Fabre C, Masse-Biron J, Chamari K, et al. Evaluation of quality of life in elderly healthy subjects after aerobic and/or mental training. Arch Gerontol Geriatr. 1999;28(1):9–22.
143.
go back to reference Seifert T, Brassard P, Wissenberg M, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R372–7.PubMedCrossRef Seifert T, Brassard P, Wissenberg M, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R372–7.PubMedCrossRef
144.
go back to reference Babaei P, Damirchi A, Mehdipoor M, et al. Long term habitual exercise is associated with lower resting level of serum BDNF. Neurosci Lett. 2014;30(566):304–8.CrossRef Babaei P, Damirchi A, Mehdipoor M, et al. Long term habitual exercise is associated with lower resting level of serum BDNF. Neurosci Lett. 2014;30(566):304–8.CrossRef
145.
go back to reference Mang CS, Campbell KL, Ross CJ, et al. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther. 2013;93(12):1707–16.PubMedPubMedCentralCrossRef Mang CS, Campbell KL, Ross CJ, et al. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther. 2013;93(12):1707–16.PubMedPubMedCentralCrossRef
146.
go back to reference Vaughan S, Wallis M, Polit D, et al. The effects of multimodal exercise on cognitive and physical functioning and brain-derived neurotrophic factor in older women: a randomised controlled trial. Age Ageing. 2014;43(5):623–9.PubMedCrossRef Vaughan S, Wallis M, Polit D, et al. The effects of multimodal exercise on cognitive and physical functioning and brain-derived neurotrophic factor in older women: a randomised controlled trial. Age Ageing. 2014;43(5):623–9.PubMedCrossRef
147.
go back to reference Stranahan AM, Norman ED, Lee K, et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus. 2008;18(11):1085–8.PubMedPubMedCentralCrossRef Stranahan AM, Norman ED, Lee K, et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus. 2008;18(11):1085–8.PubMedPubMedCentralCrossRef
148.
go back to reference Chung JY, Yoo DY, Im W, et al. Electroacupuncture at the Zusanli and Baihui acupoints ameliorates type-2 diabetes-induced reductions in proliferating cells and differentiated neuroblast in the hippocampal dentate gyrus with increasing brain-derived neurotrophic factor levels. J Vet Med Sci. 2015;77(2):167–73.PubMedPubMedCentralCrossRef Chung JY, Yoo DY, Im W, et al. Electroacupuncture at the Zusanli and Baihui acupoints ameliorates type-2 diabetes-induced reductions in proliferating cells and differentiated neuroblast in the hippocampal dentate gyrus with increasing brain-derived neurotrophic factor levels. J Vet Med Sci. 2015;77(2):167–73.PubMedPubMedCentralCrossRef
149.
go back to reference Molteni R, Wu A, Vaynman S, et al. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience. 2004;123(2):429–40.PubMedCrossRef Molteni R, Wu A, Vaynman S, et al. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience. 2004;123(2):429–40.PubMedCrossRef
Metadata
Title
Effects of Intermittent Fasting, Caloric Restriction, and Ramadan Intermittent Fasting on Cognitive Performance at Rest and During Exercise in Adults
Authors
Anissa Cherif
Bart Roelands
Romain Meeusen
Karim Chamari
Publication date
01-01-2016
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 1/2016
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-015-0408-6

Other articles of this Issue 1/2016

Sports Medicine 1/2016 Go to the issue