Skip to main content
Top
Published in: PharmacoEconomics 6/2017

01-06-2017 | Practical Application

Bayesian Methods for Calibrating Health Policy Models: A Tutorial

Authors: Nicolas A. Menzies, Djøra I. Soeteman, Ankur Pandya, Jane J. Kim

Published in: PharmacoEconomics | Issue 6/2017

Login to get access

Abstract

Mathematical simulation models are commonly used to inform health policy decisions. These health policy models represent the social and biological mechanisms that determine health and economic outcomes, combine multiple sources of evidence about how policy alternatives will impact those outcomes, and synthesize outcomes into summary measures salient for the policy decision. Calibrating these health policy models to fit empirical data can provide face validity and improve the quality of model predictions. Bayesian methods provide powerful tools for model calibration. These methods summarize information relevant to a particular policy decision into (1) prior distributions for model parameters, (2) structural assumptions of the model, and (3) a likelihood function created from the calibration data, combining these different sources of evidence via Bayes’ theorem. This article provides a tutorial on Bayesian approaches for model calibration, describing the theoretical basis for Bayesian calibration approaches as well as pragmatic considerations that arise in the tasks of creating calibration targets, estimating the posterior distribution, and obtaining results to inform the policy decision. These considerations, as well as the specific steps for implementing the calibration, are described in the context of an extended worked example about the policy choice to provide (or not provide) treatment for a hypothetical infectious disease. Given the many simplifications and subjective decisions required to create prior distributions, model structure, and likelihood, calibration should be considered an exercise in creating a reasonable model that produces valid evidence for policy, rather than as a technique for identifying a unique theoretically optimal summary of the evidence.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vanni T, Karnon J, Madan J, et al. Calibrating models in economic evaluation: a seven-step approach. Pharmacoeconomics. 2011;29(1):35–49.CrossRef Vanni T, Karnon J, Madan J, et al. Calibrating models in economic evaluation: a seven-step approach. Pharmacoeconomics. 2011;29(1):35–49.CrossRef
2.
go back to reference Enns EA, Cipriano LE, Simons CT, Kong CY. Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach. Med Decis Making. 2015;35(2):170–82.CrossRef Enns EA, Cipriano LE, Simons CT, Kong CY. Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach. Med Decis Making. 2015;35(2):170–82.CrossRef
3.
go back to reference Waller LA, Smith D, Childs JE, Real LA. Monte Carlo assessments of goodness-of-fit for ecological simulation models. Ecol Model. 2003;164(1):49–63.CrossRef Waller LA, Smith D, Childs JE, Real LA. Monte Carlo assessments of goodness-of-fit for ecological simulation models. Ecol Model. 2003;164(1):49–63.CrossRef
4.
go back to reference Wong RK, Storlie CB, Lee T. A frequentist approach to computer model calibration. J Royal Stat Soc Ser B (Stat Method). (In press). Wong RK, Storlie CB, Lee T. A frequentist approach to computer model calibration. J Royal Stat Soc Ser B (Stat Method). (In press).
5.
go back to reference De Finetti B. La Previsoin: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincare. 1937;7:1–68. De Finetti B. La Previsoin: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincare. 1937;7:1–68.
6.
go back to reference Ramsey FP. Truth and probability. In: Braithwaite RB, editor. Foundations of mathematics and other essays. London: Routledge & Keegan Paul; 1931. Ramsey FP. Truth and probability. In: Braithwaite RB, editor. Foundations of mathematics and other essays. London: Routledge & Keegan Paul; 1931.
7.
go back to reference Raiffa H, Schaifer R. Applied statistical decision theory. Boston: Harvard Business School; 1961. Raiffa H, Schaifer R. Applied statistical decision theory. Boston: Harvard Business School; 1961.
8.
go back to reference van der Steen A, van Rosmalen J, Kroep S, et al. Calibrating parameters for microsimulation disease models: a review and comparison of different goodness-of-fit criteria. Med Decis Making. 2016;36(5):652–65.CrossRef van der Steen A, van Rosmalen J, Kroep S, et al. Calibrating parameters for microsimulation disease models: a review and comparison of different goodness-of-fit criteria. Med Decis Making. 2016;36(5):652–65.CrossRef
9.
go back to reference Brown T, Grassly NC, Garnett G, Stanecki K. Improving projections at the country level: the UNAIDS Estimation and Projection Package 2005. Sex Transm Infect. 2006;82(Suppl. 3):iii34–40. Brown T, Grassly NC, Garnett G, Stanecki K. Improving projections at the country level: the UNAIDS Estimation and Projection Package 2005. Sex Transm Infect. 2006;82(Suppl. 3):iii34–40.
10.
go back to reference Gilbert JA, Meyers LA, Galvani AP, Townsend JP. Probabilistic uncertainty analysis of epidemiological modeling to guide public health intervention policy. Epidemics. 2014;6:37–45.CrossRef Gilbert JA, Meyers LA, Galvani AP, Townsend JP. Probabilistic uncertainty analysis of epidemiological modeling to guide public health intervention policy. Epidemics. 2014;6:37–45.CrossRef
11.
go back to reference Weinstein MC, Siegel JE, Gold MR, et al. Recommendations of the panel on cost-effectiveness in health and medicine. JAMA. 1996;276(15):1253–8.CrossRef Weinstein MC, Siegel JE, Gold MR, et al. Recommendations of the panel on cost-effectiveness in health and medicine. JAMA. 1996;276(15):1253–8.CrossRef
12.
go back to reference Briggs AH, Weinstein MC, Fenwick EA, et al. Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group-6. Med Decis Making. 2012;32(5):722–32.CrossRef Briggs AH, Weinstein MC, Fenwick EA, et al. Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group-6. Med Decis Making. 2012;32(5):722–32.CrossRef
13.
go back to reference Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016;316(10):1093–103.CrossRef Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016;316(10):1093–103.CrossRef
14.
go back to reference Briggs AH. A Bayesian approach to stochastic cost-effectiveness analysis. Health Econ. 1999;8(3):257–61.CrossRef Briggs AH. A Bayesian approach to stochastic cost-effectiveness analysis. Health Econ. 1999;8(3):257–61.CrossRef
15.
go back to reference Fenwick E, O’Brien BJ, Briggs A. Cost-effectiveness acceptability curves: facts, fallacies and frequently asked questions. Health Econ. 2004;13(5):405–15.CrossRef Fenwick E, O’Brien BJ, Briggs A. Cost-effectiveness acceptability curves: facts, fallacies and frequently asked questions. Health Econ. 2004;13(5):405–15.CrossRef
16.
go back to reference Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res. 2001;10(4):277–303.CrossRef Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res. 2001;10(4):277–303.CrossRef
17.
go back to reference Ades AE, Sculpher M, Sutton A, et al. Bayesian methods for evidence synthesis in cost-effectiveness analysis. Pharmacoeconomics. 2006;24(1):1–19.CrossRef Ades AE, Sculpher M, Sutton A, et al. Bayesian methods for evidence synthesis in cost-effectiveness analysis. Pharmacoeconomics. 2006;24(1):1–19.CrossRef
18.
go back to reference Jackson CH, Jit M, Sharples LD, De Angelis D. Calibration of complex models through Bayesian evidence synthesis: a demonstration and tutorial. Med Decis Making. 2015;35(2):148–61.CrossRef Jackson CH, Jit M, Sharples LD, De Angelis D. Calibration of complex models through Bayesian evidence synthesis: a demonstration and tutorial. Med Decis Making. 2015;35(2):148–61.CrossRef
19.
go back to reference Welton NJ, Ades AE. Estimation of markov chain transition probabilities and rates from fully and partially observed data: uncertainty propagation, evidence synthesis, and model calibration. Med Decis Making. 2005;25(6):633–45.CrossRef Welton NJ, Ades AE. Estimation of markov chain transition probabilities and rates from fully and partially observed data: uncertainty propagation, evidence synthesis, and model calibration. Med Decis Making. 2005;25(6):633–45.CrossRef
20.
go back to reference Ades AE, Welton NJ, Caldwell D, et al. Multiparameter evidence synthesis in epidemiology and medical decision-making. J Health Serv Res Policy. 2008;13(Suppl. 3):12–22.CrossRef Ades AE, Welton NJ, Caldwell D, et al. Multiparameter evidence synthesis in epidemiology and medical decision-making. J Health Serv Res Policy. 2008;13(Suppl. 3):12–22.CrossRef
21.
go back to reference R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
22.
go back to reference Rubin D. Using the SIR algorithm to simulate posterior distributions. Bayesian Stat. 1988;3:395–402. Rubin D. Using the SIR algorithm to simulate posterior distributions. Bayesian Stat. 1988;3:395–402.
23.
go back to reference Kish L. Survey sampling. New York: Wiley; 1965. Kish L. Survey sampling. New York: Wiley; 1965.
24.
go back to reference Raftery AE, Bao L. Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics. 2010;66(4):1162–73.CrossRef Raftery AE, Bao L. Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics. 2010;66(4):1162–73.CrossRef
25.
go back to reference Whyte S, Walsh C, Chilcott J. Bayesian calibration of a natural history model with application to a population model for colorectal cancer. Med Decis Making. 2011;31(4):625–41.CrossRef Whyte S, Walsh C, Chilcott J. Bayesian calibration of a natural history model with application to a population model for colorectal cancer. Med Decis Making. 2011;31(4):625–41.CrossRef
26.
go back to reference Rutter CM, Miglioretti DL, Savarino JE. Bayesian calibration of microsimulation models. J Am Stat Assoc. 2009;104(488):1338–50.CrossRef Rutter CM, Miglioretti DL, Savarino JE. Bayesian calibration of microsimulation models. J Am Stat Assoc. 2009;104(488):1338–50.CrossRef
27.
go back to reference Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS: a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10:325–37.CrossRef Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS: a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10:325–37.CrossRef
28.
go back to reference Carpenter B, Gelman A, Hoffman M, et al. Stan: a probabilistic programming language. J Stat Softw. (In press). Carpenter B, Gelman A, Hoffman M, et al. Stan: a probabilistic programming language. J Stat Softw. (In press).
29.
go back to reference Sunnaker M, Busetto AG, Numminen E, et al. Approximate Bayesian computation. PLoS Comput Biol. 2013;9(1):e1002803.CrossRef Sunnaker M, Busetto AG, Numminen E, et al. Approximate Bayesian computation. PLoS Comput Biol. 2013;9(1):e1002803.CrossRef
30.
go back to reference Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162(4):2025–35.PubMedPubMedCentral Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162(4):2025–35.PubMedPubMedCentral
31.
go back to reference Cowles MK, Carlin BP. Markov Chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc. 1996;91(434):883–904.CrossRef Cowles MK, Carlin BP. Markov Chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc. 1996;91(434):883–904.CrossRef
32.
go back to reference Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7(4):434–55. Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7(4):434–55.
33.
go back to reference Gelman A, Meng XL, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica. 1996;6(4):733–60. Gelman A, Meng XL, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica. 1996;6(4):733–60.
34.
go back to reference Gelman A. Exploratory data analysis for complex models. J Comput Graph Stat. 2004;13(4):755–79.CrossRef Gelman A. Exploratory data analysis for complex models. J Comput Graph Stat. 2004;13(4):755–79.CrossRef
35.
go back to reference Garrett ES, Zeger SL. Latent class model diagnosis. Biometrics. 2000;56(4):1055–67.CrossRef Garrett ES, Zeger SL. Latent class model diagnosis. Biometrics. 2000;56(4):1055–67.CrossRef
36.
go back to reference Iman RL, Helton JC, Campbell JE. An approach to sensitivity analysis of computer models. Part II: ranking of input variables, response surface validation, distribution effect, and technique synopsis variable assessment. J Qual Technol. 1981;13:232–40.CrossRef Iman RL, Helton JC, Campbell JE. An approach to sensitivity analysis of computer models. Part II: ranking of input variables, response surface validation, distribution effect, and technique synopsis variable assessment. J Qual Technol. 1981;13:232–40.CrossRef
37.
go back to reference Iman RL, Helton JC, Campbell JE. An approach to sensitivity analysis of computer models. Part I: introduction, input variable selection and preliminary variable assessment. J Qual Technol. 1981;13:174–83.CrossRef Iman RL, Helton JC, Campbell JE. An approach to sensitivity analysis of computer models. Part I: introduction, input variable selection and preliminary variable assessment. J Qual Technol. 1981;13:174–83.CrossRef
38.
go back to reference Rutter CM, Savarino JE. An evidence-based microsimulation model for colorectal cancer: validation and application. Cancer Epidemiol Biomark Prev. 2010;19(8):1992–2002.CrossRef Rutter CM, Savarino JE. An evidence-based microsimulation model for colorectal cancer: validation and application. Cancer Epidemiol Biomark Prev. 2010;19(8):1992–2002.CrossRef
39.
go back to reference Farah M, Birrell P, Conti S, De Angelis D. Bayesian emulation and calibration of a dynamic epidemic model for A/H1N1 influenza. J Am Stat Assoc. 2014;109(508):1398–411.CrossRef Farah M, Birrell P, Conti S, De Angelis D. Bayesian emulation and calibration of a dynamic epidemic model for A/H1N1 influenza. J Am Stat Assoc. 2014;109(508):1398–411.CrossRef
40.
go back to reference Stout NK, Knudsen AB, Kong CY, et al. Calibration methods used in cancer simulation models and suggested reporting guidelines. Pharmacoeconomics. 2009;27(7):533–45.CrossRef Stout NK, Knudsen AB, Kong CY, et al. Calibration methods used in cancer simulation models and suggested reporting guidelines. Pharmacoeconomics. 2009;27(7):533–45.CrossRef
41.
go back to reference Kong CY, McMahon PM, Gazelle GS. Calibration of disease simulation model using an engineering approach. Value Health. 2009;12(4):521–9.CrossRef Kong CY, McMahon PM, Gazelle GS. Calibration of disease simulation model using an engineering approach. Value Health. 2009;12(4):521–9.CrossRef
42.
go back to reference Cevik M, Ergun MA, Stout NK, et al. Using active learning for speeding up calibration in simulation models. Med Decis Making. 2016;36(5):581–93.CrossRef Cevik M, Ergun MA, Stout NK, et al. Using active learning for speeding up calibration in simulation models. Med Decis Making. 2016;36(5):581–93.CrossRef
43.
go back to reference Gelman A, Shalizi CR. Philosophy and the practice of Bayesian statistics. Br J Math Stat Psychol. 2013;66:8–38.CrossRef Gelman A, Shalizi CR. Philosophy and the practice of Bayesian statistics. Br J Math Stat Psychol. 2013;66:8–38.CrossRef
Metadata
Title
Bayesian Methods for Calibrating Health Policy Models: A Tutorial
Authors
Nicolas A. Menzies
Djøra I. Soeteman
Ankur Pandya
Jane J. Kim
Publication date
01-06-2017
Publisher
Springer International Publishing
Published in
PharmacoEconomics / Issue 6/2017
Print ISSN: 1170-7690
Electronic ISSN: 1179-2027
DOI
https://doi.org/10.1007/s40273-017-0494-4

Other articles of this Issue 6/2017

PharmacoEconomics 6/2017 Go to the issue