Skip to main content
Top
Published in: Drugs 7/2023

Open Access 15-04-2023 | Alzheimer's Disease | Current Opinion

Anti-Amyloid Monoclonal Antibodies are Transformative Treatments that Redefine Alzheimer's Disease Therapeutics

Author: Jeffrey Cummings

Published in: Drugs | Issue 7/2023

Login to get access

Abstract

Two anti-amyloid monoclonal antibodies (MABs)—lecanemab (Leqembi®) and aducanumab (Aduhelm®)—have been approved in the USA for the treatment of Alzheimer's disease (AD). Anti-amyloid monoclonal antibodies are the first disease-modifying therapies for AD that achieve slowing of clinical decline by intervening in the basic biological processes of the disease. These are breakthrough agents that can slow the inevitable progression of AD into more severe cognitive impairment. The results of trials of anti-amyloid MABs support the amyloid hypothesis and amyloid as a target for AD drug development. The success of MABs reflects a relentless application of neuroscience knowledge to solving major challenges facing humankind. The success of these transformative agents will foster the development of more anti-amyloid MABs, other types of anti-amyloid therapies, treatments of other targets of AD biology, and new approaches to therapies for an array of neurodegenerative disorders. Monoclonal antibodies have side effects and, during the period of treatment initiation, patients must be closely monitored for the occurrence of amyloid-related imaging abnormalities (ARIA) and infusion reactions. A successful first step in the development of disease-modifying therapy for AD defines desirable features for the next phase of therapeutic development including less frequent ARIA, more convenient administration, and greater efficacy. Unprecedented agents make new demands on patients and care partners, clinicians, payers, and health care systems. Collaboration among stakeholders is essential to take advantage of the therapeutic benefits offered by these agents and to make them widely available. Monoclonal antibodies usher in a new era in AD therapy and define a new landscape of what is possible for therapeutic development for neurodegenerative disorders.
Literature
1.
go back to reference Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384(18):1691–704.PubMedCrossRef Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384(18):1691–704.PubMedCrossRef
2.
go back to reference Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Abeta protofibril antibody. Alzheimers Res Ther. 2021;13(1):80.PubMedPubMedCentralCrossRef Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Abeta protofibril antibody. Alzheimers Res Ther. 2021;13(1):80.PubMedPubMedCentralCrossRef
4.
go back to reference Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimer’s Dis. 2022;9(2):197–210. Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimer’s Dis. 2022;9(2):197–210.
5.
go back to reference Cummings J, Aisen P, Lemere C, Atri A, Sabbagh M, Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res Ther. 2021;13(1):98.PubMedPubMedCentralCrossRef Cummings J, Aisen P, Lemere C, Atri A, Sabbagh M, Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res Ther. 2021;13(1):98.PubMedPubMedCentralCrossRef
6.
go back to reference Writing Group & Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017;16(7):505–12. Writing Group & Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017;16(7):505–12.
7.
go back to reference Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020;383(10):919–30.PubMedPubMedCentralCrossRef Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020;383(10):919–30.PubMedPubMedCentralCrossRef
8.
go back to reference Cummings JL, Goldman DP, Simmons-Stern NR, Ponton E. The costs of developing treatments for Alzheimer’s disease: a retrospective exploration. Alzheimers Dement. 2022;18(3):469–77.PubMedCrossRef Cummings JL, Goldman DP, Simmons-Stern NR, Ponton E. The costs of developing treatments for Alzheimer’s disease: a retrospective exploration. Alzheimers Dement. 2022;18(3):469–77.PubMedCrossRef
9.
go back to reference Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6.PubMedCrossRef Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6.PubMedCrossRef
10.
go back to reference Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther. 2017;9(1):95–110.PubMedPubMedCentralCrossRef Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther. 2017;9(1):95–110.PubMedPubMedCentralCrossRef
12.
go back to reference Cummings J, Bateman R, Doody R, Salloway S, Black S. Topline results of phase III Graduate I & II pivotal trials with subcutaneous gantenerumab. In: Clinical trials on Alzheimer's disease, San Francisco. 2022. Cummings J, Bateman R, Doody R, Salloway S, Black S. Topline results of phase III Graduate I & II pivotal trials with subcutaneous gantenerumab. In: Clinical trials on Alzheimer's disease, San Francisco. 2022.
13.
go back to reference Walsh S, Merrick R, Richard E, Nurock S, Brayne C. Lecanemab for Alzheimer’s disease. BMJ. 2022;379:o3010.PubMedCrossRef Walsh S, Merrick R, Richard E, Nurock S, Brayne C. Lecanemab for Alzheimer’s disease. BMJ. 2022;379:o3010.PubMedCrossRef
15.
go back to reference Tahami Monfared AA, Tafazzoli A, Ye W, Chavan A, Zhang Q. Long-term health outcomes of lecanemab in patients with early Alzheimer’s disease using simulation modeling. Neurol Ther. 2022;11(2):863–80.PubMedPubMedCentralCrossRef Tahami Monfared AA, Tafazzoli A, Ye W, Chavan A, Zhang Q. Long-term health outcomes of lecanemab in patients with early Alzheimer’s disease using simulation modeling. Neurol Ther. 2022;11(2):863–80.PubMedPubMedCentralCrossRef
16.
go back to reference Tahami Monfared AA, Tafazzoli A, Chavan A, Ye W, Zhang Q. The potential economic value of lecanemab in patients with early Alzheimer’s disease using simulation modeling. Neurol Ther. 2022;11(3):1285–307.PubMedPubMedCentralCrossRef Tahami Monfared AA, Tafazzoli A, Chavan A, Ye W, Zhang Q. The potential economic value of lecanemab in patients with early Alzheimer’s disease using simulation modeling. Neurol Ther. 2022;11(3):1285–307.PubMedPubMedCentralCrossRef
17.
go back to reference DiBenedetti DB, Slota C, Wronski SL, Vradenburg G, Comer M, Callahan LF, et al. Assessing what matters most to patients with or at risk for Alzheimer’s and care partners: a qualitative study evaluating symptoms, impacts, and outcomes. Alzheimers Res Ther. 2020;12(1):90.PubMedPubMedCentralCrossRef DiBenedetti DB, Slota C, Wronski SL, Vradenburg G, Comer M, Callahan LF, et al. Assessing what matters most to patients with or at risk for Alzheimer’s and care partners: a qualitative study evaluating symptoms, impacts, and outcomes. Alzheimers Res Ther. 2020;12(1):90.PubMedPubMedCentralCrossRef
18.
go back to reference Assuncao SS, Sperling RA, Ritchie C, Kerwin DR, Aisen PS, Lansdall C, et al. Meaningful benefits: a framework to assess disease-modifying therapies in preclinical and early Alzheimer’s disease. Alzheimers Res Ther. 2022;14(1):54.PubMedPubMedCentralCrossRef Assuncao SS, Sperling RA, Ritchie C, Kerwin DR, Aisen PS, Lansdall C, et al. Meaningful benefits: a framework to assess disease-modifying therapies in preclinical and early Alzheimer’s disease. Alzheimers Res Ther. 2022;14(1):54.PubMedPubMedCentralCrossRef
19.
go back to reference Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.PubMedCrossRef Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.PubMedCrossRef
20.
go back to reference Teich AF, Arancio O. Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem J. 2012;446(2):165–77.PubMedCrossRef Teich AF, Arancio O. Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem J. 2012;446(2):165–77.PubMedCrossRef
21.
go back to reference Richard E, den Brok M, van Gool WA. Bayes analysis supports null hypothesis of anti-amyloid beta therapy in Alzheimer’s disease. Alzheimers Dement. 2021;17(6):1051–5.PubMedPubMedCentralCrossRef Richard E, den Brok M, van Gool WA. Bayes analysis supports null hypothesis of anti-amyloid beta therapy in Alzheimer’s disease. Alzheimers Dement. 2021;17(6):1051–5.PubMedPubMedCentralCrossRef
22.
go back to reference Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6(4):37.PubMedPubMedCentralCrossRef Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6(4):37.PubMedPubMedCentralCrossRef
23.
go back to reference Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov. 2022;21(4):306–18.PubMedCrossRef Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov. 2022;21(4):306–18.PubMedCrossRef
24.
go back to reference Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The amyloid-beta pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26(10):5481–503.PubMedPubMedCentralCrossRef Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The amyloid-beta pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26(10):5481–503.PubMedPubMedCentralCrossRef
26.
go back to reference Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51.PubMedCrossRef Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43–51.PubMedCrossRef
27.
go back to reference Elbert DL, Patterson BW, Lucey BP, Benzinger TLS, Bateman RJ. Importance of CSF-based Abeta clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways. Commun Biol. 2022;5(1):98.PubMedPubMedCentralCrossRef Elbert DL, Patterson BW, Lucey BP, Benzinger TLS, Bateman RJ. Importance of CSF-based Abeta clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways. Commun Biol. 2022;5(1):98.PubMedPubMedCentralCrossRef
28.
go back to reference Salehipour A, Bagheri M, Sabahi M, Dolatshahi M, Boche D. Combination therapy in Alzheimer’s disease: is it time? J Alzheimers Dis. 2022;87(4):1433–49.PubMedCrossRef Salehipour A, Bagheri M, Sabahi M, Dolatshahi M, Boche D. Combination therapy in Alzheimer’s disease: is it time? J Alzheimers Dis. 2022;87(4):1433–49.PubMedCrossRef
30.
go back to reference Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 2011;7(4):367–85.PubMedPubMedCentralCrossRef Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 2011;7(4):367–85.PubMedPubMedCentralCrossRef
31.
go back to reference Thijssen EH, La Joie R, Strom A, Fonseca C, Iaccarino L, Wolf A, et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study. Lancet Neurol. 2021;20(9):739–52.PubMedPubMedCentralCrossRef Thijssen EH, La Joie R, Strom A, Fonseca C, Iaccarino L, Wolf A, et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study. Lancet Neurol. 2021;20(9):739–52.PubMedPubMedCentralCrossRef
32.
go back to reference Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21(8):726–34.PubMedCrossRef Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21(8):726–34.PubMedCrossRef
33.
go back to reference Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.PubMedCrossRef Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.PubMedCrossRef
34.
go back to reference Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68–80.PubMedPubMedCentralCrossRef Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68–80.PubMedPubMedCentralCrossRef
35.
go back to reference Salloway S, Chalkias S, Barkhof F, Burkett P, Barakos J, Purcell D, et al. Amyloid-related imaging abnormalities in 2 Phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 2022;79(1):13–21.PubMedCrossRef Salloway S, Chalkias S, Barkhof F, Burkett P, Barakos J, Purcell D, et al. Amyloid-related imaging abnormalities in 2 Phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 2022;79(1):13–21.PubMedCrossRef
36.
go back to reference Cummings J, Rabinovici GD, Atri A, Aisen P, Apostolova LG, Hendrix S, et al. Aducanumab: appropriate use recommendations update. J Prev Alzheimers Dis. 2022;9(2):221–30.PubMedPubMedCentral Cummings J, Rabinovici GD, Atri A, Aisen P, Apostolova LG, Hendrix S, et al. Aducanumab: appropriate use recommendations update. J Prev Alzheimers Dis. 2022;9(2):221–30.PubMedPubMedCentral
37.
go back to reference Yamamoto K, Shimizu A, Aizawa F, Kawame H, Tokutomi T, Fukushima A. A comparison of genome cohort participants’ genetic knowledge and preferences to receive genetic results before and after a genetics workshop. J Hum Genet. 2018;63(11):1139–47.PubMedPubMedCentralCrossRef Yamamoto K, Shimizu A, Aizawa F, Kawame H, Tokutomi T, Fukushima A. A comparison of genome cohort participants’ genetic knowledge and preferences to receive genetic results before and after a genetics workshop. J Hum Genet. 2018;63(11):1139–47.PubMedPubMedCentralCrossRef
39.
go back to reference Dunn B, Stein P, Temple R, Cavazzoni P. An appropriate use of accelerated approval—aducanumab for Alzheimer’s disease. N Engl J Med. 2021;385(9):856–7.PubMedCrossRef Dunn B, Stein P, Temple R, Cavazzoni P. An appropriate use of accelerated approval—aducanumab for Alzheimer’s disease. N Engl J Med. 2021;385(9):856–7.PubMedCrossRef
40.
go back to reference Beakes-Read G, Neisser M, Frey P, Guarducci M. Analysis of FDA’s accelerated approval program performance December 1992–December 2021. Ther Innov Regul Sci. 2022;56(5):698–703.PubMedPubMedCentralCrossRef Beakes-Read G, Neisser M, Frey P, Guarducci M. Analysis of FDA’s accelerated approval program performance December 1992–December 2021. Ther Innov Regul Sci. 2022;56(5):698–703.PubMedPubMedCentralCrossRef
41.
go back to reference Rofo F, Buijs J, Falk R, Honek K, Lannfelt L, Lilja AM, et al. Novel multivalent design of a monoclonal antibody improves binding strength to soluble aggregates of amyloid beta. Transl Neurodegener. 2021;10(1):38.PubMedPubMedCentralCrossRef Rofo F, Buijs J, Falk R, Honek K, Lannfelt L, Lilja AM, et al. Novel multivalent design of a monoclonal antibody improves binding strength to soluble aggregates of amyloid beta. Transl Neurodegener. 2021;10(1):38.PubMedPubMedCentralCrossRef
42.
go back to reference Wang CY, Wang PN, Chiu MJ, Finstad CL, Lin F, Lynn S, et al. UB-311, a novel UBITh((R)) amyloid beta peptide vaccine for mild Alzheimer’s disease. Alzheimers Dement (N Y). 2017;3(2):262–72.PubMedCrossRef Wang CY, Wang PN, Chiu MJ, Finstad CL, Lin F, Lynn S, et al. UB-311, a novel UBITh((R)) amyloid beta peptide vaccine for mild Alzheimer’s disease. Alzheimers Dement (N Y). 2017;3(2):262–72.PubMedCrossRef
43.
go back to reference Doig AJ, Derreumaux P. Inhibition of protein aggregation and amyloid formation by small molecules. Curr Opin Struct Biol. 2015;30:50–6.PubMedCrossRef Doig AJ, Derreumaux P. Inhibition of protein aggregation and amyloid formation by small molecules. Curr Opin Struct Biol. 2015;30:50–6.PubMedCrossRef
44.
go back to reference Tolar M, Hey J, Power A, Abushakra S. Neurotoxic soluble amyloid oligomers drive Alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression. Int J Mol Sci. 2021;22(12):6355–68.PubMedPubMedCentralCrossRef Tolar M, Hey J, Power A, Abushakra S. Neurotoxic soluble amyloid oligomers drive Alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression. Int J Mol Sci. 2021;22(12):6355–68.PubMedPubMedCentralCrossRef
45.
go back to reference Michaeli DT, Yagmur HB, Achmadeev T, Michaeli T. Valuation and returns of drug development companies: lessons for bioentrepreneurs and investors. Ther Innov Regul Sci. 2022;56(2):313–22.PubMedPubMedCentralCrossRef Michaeli DT, Yagmur HB, Achmadeev T, Michaeli T. Valuation and returns of drug development companies: lessons for bioentrepreneurs and investors. Ther Innov Regul Sci. 2022;56(2):313–22.PubMedPubMedCentralCrossRef
46.
go back to reference Delrieu J, Bateman RJ, Touchon J, Sabbagh M, Cummings J. The future of AD clinical trials with the advent of anti-amyloid therapies: an CTAD Task Force report. J Prev Alzheimers Dis. 2022;9(3):393–9.PubMed Delrieu J, Bateman RJ, Touchon J, Sabbagh M, Cummings J. The future of AD clinical trials with the advent of anti-amyloid therapies: an CTAD Task Force report. J Prev Alzheimers Dis. 2022;9(3):393–9.PubMed
47.
go back to reference Grill JD, Karlawish J. Implications of FDA approval of a first disease-modifying therapy for a neurodegenerative disease on the design of subsequent clinical trials. Neurology. 2021;97(10):496–500.PubMedPubMedCentralCrossRef Grill JD, Karlawish J. Implications of FDA approval of a first disease-modifying therapy for a neurodegenerative disease on the design of subsequent clinical trials. Neurology. 2021;97(10):496–500.PubMedPubMedCentralCrossRef
48.
go back to reference Zhang Y, Salter A, Wallström E, Cutter G, Stüve O. Evolution of clinical trials in multiple sclerosis. Ther Adv Neurol Disord. 2019;12:1756286419826547. Zhang Y, Salter A, Wallström E, Cutter G, Stüve O. Evolution of clinical trials in multiple sclerosis. Ther Adv Neurol Disord. 2019;12:1756286419826547.
49.
go back to reference Shaw DL, Dhruva SS, Ross JS. Coverage of novel therapeutic agents by medicare prescription drug plans following FDA approval. J Manag Care Spec Pharm. 2018;24(12):1230–8.PubMed Shaw DL, Dhruva SS, Ross JS. Coverage of novel therapeutic agents by medicare prescription drug plans following FDA approval. J Manag Care Spec Pharm. 2018;24(12):1230–8.PubMed
50.
go back to reference Stern AM, Selkoe DJ. Unfairness to patients with Alzheimer disease in Medicare’s coverage of antiamyloid immunotherapy. JAMA Neurol. 2022;79(10):962–3.PubMedCrossRef Stern AM, Selkoe DJ. Unfairness to patients with Alzheimer disease in Medicare’s coverage of antiamyloid immunotherapy. JAMA Neurol. 2022;79(10):962–3.PubMedCrossRef
51.
go back to reference Ross EL, Weinberg MS, Arnold SE. Cost-effectiveness of aducanumab and donanemab for early Alzheimer disease in the US. JAMA Neurol. 2022;79(5):478–87.PubMedPubMedCentralCrossRef Ross EL, Weinberg MS, Arnold SE. Cost-effectiveness of aducanumab and donanemab for early Alzheimer disease in the US. JAMA Neurol. 2022;79(5):478–87.PubMedPubMedCentralCrossRef
52.
go back to reference Hampel H, Au R, Mattke S, van der Flier WM, Aisen P, Apostolova L, et al. Designing the next-generation clinical care pathway for Alzheimer’s disease. Nature Aging. 2022;2(8):692–703.PubMedCrossRef Hampel H, Au R, Mattke S, van der Flier WM, Aisen P, Apostolova L, et al. Designing the next-generation clinical care pathway for Alzheimer’s disease. Nature Aging. 2022;2(8):692–703.PubMedCrossRef
Metadata
Title
Anti-Amyloid Monoclonal Antibodies are Transformative Treatments that Redefine Alzheimer's Disease Therapeutics
Author
Jeffrey Cummings
Publication date
15-04-2023
Publisher
Springer International Publishing
Published in
Drugs / Issue 7/2023
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-023-01858-9

Other articles of this Issue 7/2023

Drugs 7/2023 Go to the issue