Skip to main content
Top
Published in: CNS Drugs 3/2018

01-03-2018 | Review Article

Gadolinium-Based Contrast Agent-Related Toxicities

Authors: Luca Pasquini, Antonio Napolitano, Emiliano Visconti, Daniela Longo, Andrea Romano, Paolo Tomà, Maria Camilla Rossi Espagnet

Published in: CNS Drugs | Issue 3/2018

Login to get access

Abstract

In recent years, gadolinium-based contrast agents have been associated with different types of toxicity. In particular, nephrogenic systemic fibrosis, a progressive sclerotic-myxedematous systemic disease of unknown etiology, is related to gadolinium-based contrast agent administration in patients with kidney dysfunction. More recently, evidence of magnetic resonance signal intensity changes on pre-contrast T1-weighted images after multiple gadolinium-based contrast agent administrations resulted in the hypothesis of gadolinium brain accumulation in patients with normal renal function, subsequently confirmed in pathological samples. However, there is limited current data and further investigations are necessary before drawing definite conclusions on the clinical consequences of gadolinium-based contrast agent accumulation in human tissues and particularly in the brain. Gadolinium-based contrast agent-related toxicity appears connected to molecular stability, which varies together with the pharmacokinetic properties of the compound and depends on the individual characteristics of the subject. During a lifetime, the physiological changes occurring in the human body may influence its interaction with gadolinium-based contrast agents: the integrity and developmental stage of the organs has an effect on the dynamics of gadolinium-based contrast agent distribution and excretion, thus leading to different possible mechanisms of deposition and toxicity. Therefore, the aim of this work is to discuss the pharmacokinetics and pharmacodynamics of gadolinium-based contrast agents, with a special focus on the brain, and to explore potential predominant gadolinium-based contrast agent-related toxicity in two cornerstone periods of the human life cycle: fetal/neonatal and adulthood/aged.
Literature
1.
go back to reference Idée J, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol. 2006;20:563–76.CrossRefPubMed Idée J, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol. 2006;20:563–76.CrossRefPubMed
2.
go back to reference Hao D, Ai T, Goerner F, et al. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36:1060–71.CrossRefPubMed Hao D, Ai T, Goerner F, et al. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36:1060–71.CrossRefPubMed
3.
go back to reference Cowper S, Robin H, Steinberg S, Su L, Gupta S, LeBoit P. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356:1000–1.CrossRefPubMed Cowper S, Robin H, Steinberg S, Su L, Gupta S, LeBoit P. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356:1000–1.CrossRefPubMed
4.
go back to reference Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–41.CrossRefPubMed Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–41.CrossRefPubMed
5.
go back to reference Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015;276:228–32.CrossRefPubMed Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015;276:228–32.CrossRefPubMed
6.
go back to reference McDonald R, McDonald J, Kallmes D, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275:772–82.CrossRefPubMed McDonald R, McDonald J, Kallmes D, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275:772–82.CrossRefPubMed
7.
go back to reference Le Mignon MM, Chambon C, Warrington S, et al. Gd-DOTA: pharmacokinetics and tolerability after intravenous injection into healthy volunteers. Invest Radiol. 1990;25:933–7.CrossRefPubMed Le Mignon MM, Chambon C, Warrington S, et al. Gd-DOTA: pharmacokinetics and tolerability after intravenous injection into healthy volunteers. Invest Radiol. 1990;25:933–7.CrossRefPubMed
8.
9.
go back to reference Huckle J, Altun E, Jay M, Semelka R. Gadolinium deposition in humans. Invest Radiol. 2016;51:236–40.CrossRefPubMed Huckle J, Altun E, Jay M, Semelka R. Gadolinium deposition in humans. Invest Radiol. 2016;51:236–40.CrossRefPubMed
10.
go back to reference Prybylski J, Maxwell E, Coste Sanchez C, Jay M. Gadolinium deposition in the brain: lessons learned from other metals known to cross the blood–brain barrier. Magn Reson Imaging. 2016;34:1366–72.CrossRefPubMed Prybylski J, Maxwell E, Coste Sanchez C, Jay M. Gadolinium deposition in the brain: lessons learned from other metals known to cross the blood–brain barrier. Magn Reson Imaging. 2016;34:1366–72.CrossRefPubMed
11.
go back to reference Maximova N, Gregori M, Zennaro F, Sonzogni A, Simeone R, Zanon D. Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology. 2016;281:418–26.CrossRefPubMed Maximova N, Gregori M, Zennaro F, Sonzogni A, Simeone R, Zanon D. Hepatic gadolinium deposition and reversibility after contrast agent-enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology. 2016;281:418–26.CrossRefPubMed
12.
go back to reference Birka M, Wentker K, Lusmöller E, et al. Diagnosis of nephrogenic systemic fibrosis by means of elemental bioimaging and speciation analysis. Anal Chem. 2015;87:3321–8.CrossRefPubMed Birka M, Wentker K, Lusmöller E, et al. Diagnosis of nephrogenic systemic fibrosis by means of elemental bioimaging and speciation analysis. Anal Chem. 2015;87:3321–8.CrossRefPubMed
13.
go back to reference Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann H. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 °C. Invest Radiol. 2008;43:817–28.CrossRefPubMed Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann H. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 °C. Invest Radiol. 2008;43:817–28.CrossRefPubMed
14.
go back to reference Prybylski J, Semelka R, Jay M. The stability of gadolinium-based contrast agents in human serum: a reanalysis of literature data and association with clinical outcomes. Magn Reson Imaging. 2017;38:145–51.CrossRefPubMed Prybylski J, Semelka R, Jay M. The stability of gadolinium-based contrast agents in human serum: a reanalysis of literature data and association with clinical outcomes. Magn Reson Imaging. 2017;38:145–51.CrossRefPubMed
15.
go back to reference Puttagunta NR, Gibby WA, Smith GT. Human in vivo comparative study of zinc and copper transmetallation after administration of magnetic resonance imaging contrast agents. Invest Radiol. 1996;31:739–42.CrossRefPubMed Puttagunta NR, Gibby WA, Smith GT. Human in vivo comparative study of zinc and copper transmetallation after administration of magnetic resonance imaging contrast agents. Invest Radiol. 1996;31:739–42.CrossRefPubMed
16.
go back to reference Kimura J, Ishiguchi T, Matsuda J, et al. Human comparative study of zinc and copper excretion via urine after administration of magnetic resonance imaging contrast agents. Radiat Med. 2005;23:322–6.PubMed Kimura J, Ishiguchi T, Matsuda J, et al. Human comparative study of zinc and copper excretion via urine after administration of magnetic resonance imaging contrast agents. Radiat Med. 2005;23:322–6.PubMed
17.
go back to reference Fretellier N, Poteau N, Factor C, et al. Analytical interference in serum iron determination reveals iron versus gadolinium transmetallation with linear gadolinium-based contrast agents. Invest Radiol. 2014;49:766–72.CrossRefPubMedPubMedCentral Fretellier N, Poteau N, Factor C, et al. Analytical interference in serum iron determination reveals iron versus gadolinium transmetallation with linear gadolinium-based contrast agents. Invest Radiol. 2014;49:766–72.CrossRefPubMedPubMedCentral
18.
go back to reference Niendorf HP, Seifert W. Serum iron and serum bilirubin after administration of Gd-DTPA in healthy volunteers. Invest Radiol. 1988;23:275–80.CrossRef Niendorf HP, Seifert W. Serum iron and serum bilirubin after administration of Gd-DTPA in healthy volunteers. Invest Radiol. 1988;23:275–80.CrossRef
19.
go back to reference Swaminathan S. Gadolinium toxicity: iron and ferroportin as central targets. Magn Reson Imaging. 2016;34:1373–6.CrossRefPubMed Swaminathan S. Gadolinium toxicity: iron and ferroportin as central targets. Magn Reson Imaging. 2016;34:1373–6.CrossRefPubMed
20.
go back to reference Mühler A, Saeed M, Brasch R, Higgins C. Amelioration of cardiodepressive effects of gadopentetate dimeglumine with addition of ionic calcium. Radiology. 1992;184:159–64.CrossRefPubMed Mühler A, Saeed M, Brasch R, Higgins C. Amelioration of cardiodepressive effects of gadopentetate dimeglumine with addition of ionic calcium. Radiology. 1992;184:159–64.CrossRefPubMed
21.
go back to reference Schaer CA, Schoedon G, Imhof A, Kurrer MO, Schaer DJ. Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ Res. 2006;99:943–50.CrossRefPubMed Schaer CA, Schoedon G, Imhof A, Kurrer MO, Schaer DJ. Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ Res. 2006;99:943–50.CrossRefPubMed
25.
go back to reference Webb JA, Thomsen HS, Morcos SK, et al. The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol. 2005;15:1234–40.CrossRefPubMed Webb JA, Thomsen HS, Morcos SK, et al. The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol. 2005;15:1234–40.CrossRefPubMed
26.
go back to reference Tirada N, Dreizin D, Khati N, Akin E, Zeman R. Imaging pregnant and lactating patients. Radiographics. 2015;35:1751–65.CrossRefPubMed Tirada N, Dreizin D, Khati N, Akin E, Zeman R. Imaging pregnant and lactating patients. Radiographics. 2015;35:1751–65.CrossRefPubMed
27.
go back to reference Oh K, Roberts V, Schabel M, Grove K, Woods M, Frias A. Gadolinium chelate contrast material in pregnancy: fetal biodistribution in the nonhuman primate. Radiology. 2015;276:110–8.CrossRefPubMedPubMedCentral Oh K, Roberts V, Schabel M, Grove K, Woods M, Frias A. Gadolinium chelate contrast material in pregnancy: fetal biodistribution in the nonhuman primate. Radiology. 2015;276:110–8.CrossRefPubMedPubMedCentral
28.
go back to reference Webb J, Thomsen H. Gadolinium contrast media during pregnancy and lactation. Acta Radiol. 2013;54:599–600.CrossRefPubMed Webb J, Thomsen H. Gadolinium contrast media during pregnancy and lactation. Acta Radiol. 2013;54:599–600.CrossRefPubMed
29.
go back to reference Okuda Y, Sagami F, Tirone P, Morisetti A, Bussi S, Masters R. Reproductive and developmental toxicity study of gadobenate dimeglumine formulation (E7155) (3): study of embryo-fetal toxicity in rabbits by intravenous administration. J Toxicol Sci. 1999;24(Suppl. 1):79–87.CrossRefPubMed Okuda Y, Sagami F, Tirone P, Morisetti A, Bussi S, Masters R. Reproductive and developmental toxicity study of gadobenate dimeglumine formulation (E7155) (3): study of embryo-fetal toxicity in rabbits by intravenous administration. J Toxicol Sci. 1999;24(Suppl. 1):79–87.CrossRefPubMed
30.
go back to reference Khairinisa M, Takatsuru Y, Amano I, et al. The effect of perinatal gadolinium-based contrast agents on adult mice behavior. Invest Radiol. 2018;53(2):110–8.PubMedCrossRef Khairinisa M, Takatsuru Y, Amano I, et al. The effect of perinatal gadolinium-based contrast agents on adult mice behavior. Invest Radiol. 2018;53(2):110–8.PubMedCrossRef
31.
go back to reference Ray J, Vermeulen M, Bharatha A, Montanera W, Park A. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316:952.CrossRefPubMed Ray J, Vermeulen M, Bharatha A, Montanera W, Park A. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016;316:952.CrossRefPubMed
32.
go back to reference Fraum T, Ludwig D, Bashir M, Fowler K. Gadolinium-based contrast agents: a comprehensive risk assessment. J Magn Reson Imaging. 2017;46:338–53.CrossRefPubMed Fraum T, Ludwig D, Bashir M, Fowler K. Gadolinium-based contrast agents: a comprehensive risk assessment. J Magn Reson Imaging. 2017;46:338–53.CrossRefPubMed
33.
go back to reference Kubik-Huch R, Gottstein-Aalame N, Frenzel T, et al. Gadopentetate dimeglumine excretion into human breast milk during lactation. Radiology. 2000;216:555–8.CrossRefPubMed Kubik-Huch R, Gottstein-Aalame N, Frenzel T, et al. Gadopentetate dimeglumine excretion into human breast milk during lactation. Radiology. 2000;216:555–8.CrossRefPubMed
34.
go back to reference Schmiedl U, Maravilla KR, Gerlach R, Dowling CA. Excretion of gadopentetate dimeglumine in human breast milk. AJR. 1990;154:1305–6.CrossRefPubMed Schmiedl U, Maravilla KR, Gerlach R, Dowling CA. Excretion of gadopentetate dimeglumine in human breast milk. AJR. 1990;154:1305–6.CrossRefPubMed
35.
go back to reference Rofsky NM, Weinreb JC, Litt AW. Quantitative analysis of gadopentetate dimeglumine excreted in breast milk. J Magn Reson Imaging. 1993;3:131–2.CrossRefPubMed Rofsky NM, Weinreb JC, Litt AW. Quantitative analysis of gadopentetate dimeglumine excreted in breast milk. J Magn Reson Imaging. 1993;3:131–2.CrossRefPubMed
36.
go back to reference Roccatagliata L, Vuolo L, Bonzano L, Pichiecchio A, Mancardi G. Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype. Radiology. 2009;251:503–10.CrossRefPubMed Roccatagliata L, Vuolo L, Bonzano L, Pichiecchio A, Mancardi G. Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype. Radiology. 2009;251:503–10.CrossRefPubMed
37.
go back to reference Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275:783–91.CrossRefPubMed Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 2015;275:783–91.CrossRefPubMed
38.
go back to reference Kanda T, Osawa M, Oba H, et al. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 2015;275:803–9.CrossRefPubMed Kanda T, Osawa M, Oba H, et al. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 2015;275:803–9.CrossRefPubMed
39.
go back to reference Cao Y, Huang DQ, Shih G, Prince MR. Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR. 2016;206:414–9.CrossRefPubMed Cao Y, Huang DQ, Shih G, Prince MR. Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR. 2016;206:414–9.CrossRefPubMed
40.
go back to reference Radbruch A, Weberling LD, Kieslich PJ, et al. Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol. 2016;51:683–90.CrossRefPubMed Radbruch A, Weberling LD, Kieslich PJ, et al. Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol. 2016;51:683–90.CrossRefPubMed
41.
go back to reference Radbruch A. Are some agents less likely to deposit gadolinium in the brain? Magn Reson Imaging. 2016;34:1351–4.CrossRefPubMed Radbruch A. Are some agents less likely to deposit gadolinium in the brain? Magn Reson Imaging. 2016;34:1351–4.CrossRefPubMed
42.
go back to reference Radbruch A, Haase R, Kickingereder P, et al. Pediatric brain: no increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast agent. Radiology. 2017;283:828–36.CrossRefPubMed Radbruch A, Haase R, Kickingereder P, et al. Pediatric brain: no increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast agent. Radiology. 2017;283:828–36.CrossRefPubMed
43.
go back to reference Conte G, Preda L, Cocorocchio E, et al. Signal intensity change on unenhanced T1-weighted images in dentate nucleus and globus pallidus after multiple administrations of gadoxetate disodium: an intraindividual comparative study. Eur Radiol. 2017;27:4372–8.CrossRefPubMed Conte G, Preda L, Cocorocchio E, et al. Signal intensity change on unenhanced T1-weighted images in dentate nucleus and globus pallidus after multiple administrations of gadoxetate disodium: an intraindividual comparative study. Eur Radiol. 2017;27:4372–8.CrossRefPubMed
44.
go back to reference Flood T, Stence N, Maloney J, Mirsky D. Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology. 2017;282:222–8.CrossRefPubMed Flood T, Stence N, Maloney J, Mirsky D. Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology. 2017;282:222–8.CrossRefPubMed
45.
go back to reference Miller J, Hu H, Pokorney A, Cornejo P, Towbin R. MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics. 2015;136:e1637–40.CrossRefPubMed Miller J, Hu H, Pokorney A, Cornejo P, Towbin R. MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics. 2015;136:e1637–40.CrossRefPubMed
46.
go back to reference Roberts D, Holden K. Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev. 2016;38:331–6.CrossRefPubMed Roberts D, Holden K. Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev. 2016;38:331–6.CrossRefPubMed
47.
go back to reference McDonald RJ, McDonald JS, Kallmes DF, et al. Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology. 2017;285:546–54.CrossRefPubMed McDonald RJ, McDonald JS, Kallmes DF, et al. Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology. 2017;285:546–54.CrossRefPubMed
48.
go back to reference Rossi Espagnet M, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol. 2017;47:1345–52.CrossRefPubMed Rossi Espagnet M, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol. 2017;47:1345–52.CrossRefPubMed
49.
go back to reference Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents: current status. Neuroradiology. 2016;58:433–41.CrossRefPubMed Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents: current status. Neuroradiology. 2016;58:433–41.CrossRefPubMed
50.
go back to reference Bjørnerud A, Vatnehol S, Larsson C, Due-Tønnessen P, Hol P, Groote I. Signal enhancement of the dentate nucleus at unenhanced MR imaging after very high cumulative doses of the macrocyclic gadolinium-based contrast agent gadobutrol: an observational study. Radiology. 2017;285:434–44.CrossRefPubMed Bjørnerud A, Vatnehol S, Larsson C, Due-Tønnessen P, Hol P, Groote I. Signal enhancement of the dentate nucleus at unenhanced MR imaging after very high cumulative doses of the macrocyclic gadolinium-based contrast agent gadobutrol: an observational study. Radiology. 2017;285:434–44.CrossRefPubMed
51.
go back to reference Tibussek D, Rademacher C, Caspers J, et al. Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology. 2017;285:223–30.CrossRefPubMed Tibussek D, Rademacher C, Caspers J, et al. Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology. 2017;285:223–30.CrossRefPubMed
52.
go back to reference Murata N, Gonzalez-Cuyar LF, Murata K, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol. 2016;51:447–53.CrossRefPubMed Murata N, Gonzalez-Cuyar LF, Murata K, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol. 2016;51:447–53.CrossRefPubMed
53.
go back to reference Wedeking P, Kumar K, Tweedle M. Dose-dependent biodistribution of [153Gd] Gd(acetate)n in mice. Nucl Med Biol. 1993;20:679–91.CrossRefPubMed Wedeking P, Kumar K, Tweedle M. Dose-dependent biodistribution of [153Gd] Gd(acetate)n in mice. Nucl Med Biol. 1993;20:679–91.CrossRefPubMed
54.
go back to reference Robert P, Violas X, Grand S, et al. Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Invest Radiol. 2016;51:73–82.CrossRefPubMedPubMedCentral Robert P, Violas X, Grand S, et al. Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Invest Radiol. 2016;51:73–82.CrossRefPubMedPubMedCentral
55.
go back to reference Adding L, Bannenberg G, Gustafsson L. Basic experimental studies and clinical aspects of gadolinium salts and chelates. Cardiovasc Drug Rev. 2006;19:41–56.CrossRef Adding L, Bannenberg G, Gustafsson L. Basic experimental studies and clinical aspects of gadolinium salts and chelates. Cardiovasc Drug Rev. 2006;19:41–56.CrossRef
56.
go back to reference Frenzel T, Apte C, Jost G, Schöckel L, Lohrke J, Pietsch H. Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Invest Radiol. 2017;52:396–404.CrossRefPubMedPubMedCentral Frenzel T, Apte C, Jost G, Schöckel L, Lohrke J, Pietsch H. Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Invest Radiol. 2017;52:396–404.CrossRefPubMedPubMedCentral
57.
go back to reference Gianolio E, Bardini P, Arena F, et al. Gadolinium retention in the rat brain: assessment of the amounts of insoluble gadolinium-containing species and intact gadolinium complexes after repeated administration of gadolinium-based contrast agents. Radiology. 2017;285(3):839–49.CrossRefPubMed Gianolio E, Bardini P, Arena F, et al. Gadolinium retention in the rat brain: assessment of the amounts of insoluble gadolinium-containing species and intact gadolinium complexes after repeated administration of gadolinium-based contrast agents. Radiology. 2017;285(3):839–49.CrossRefPubMed
58.
go back to reference Iliff J, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid b. Sci Transl Med. 2012;4:147ra111. Iliff J, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid b. Sci Transl Med. 2012;4:147ra111.
60.
go back to reference Burns E, Dobben G, Kruckeberg TW, Gaetano PK. Blood–brain barrier: morphology, physiology, and effects of contrast media. Adv Neurol. 1981;30:159–65.PubMed Burns E, Dobben G, Kruckeberg TW, Gaetano PK. Blood–brain barrier: morphology, physiology, and effects of contrast media. Adv Neurol. 1981;30:159–65.PubMed
61.
go back to reference Chung MC-M. Structure and function of transferrin. J Chem Inf Model. 1989;53:160. Chung MC-M. Structure and function of transferrin. J Chem Inf Model. 1989;53:160.
62.
go back to reference Chia W-J, Tan FCK, Ong W-Y, Dawe GS. Expression and localization of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochem Int. 2015;87:43–59.CrossRefPubMed Chia W-J, Tan FCK, Ong W-Y, Dawe GS. Expression and localization of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochem Int. 2015;87:43–59.CrossRefPubMed
63.
go back to reference Bressler JP, Cheong JH, Kim Y, Maerten A, Bannon D. Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol. 2007;26:221–9.CrossRefPubMed Bressler JP, Cheong JH, Kim Y, Maerten A, Bannon D. Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol. 2007;26:221–9.CrossRefPubMed
64.
go back to reference Xia D, Davis RL, Crawford J, Abraham JL. Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol. 2010;51:1126–36.CrossRefPubMed Xia D, Davis RL, Crawford J, Abraham JL. Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol. 2010;51:1126–36.CrossRefPubMed
65.
go back to reference Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, et al. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006;14:69–78.CrossRefPubMedPubMedCentral Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, et al. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006;14:69–78.CrossRefPubMedPubMedCentral
66.
go back to reference Bakker EN, Bacskai BJ, Arbel-Ornath M, et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:181–94.CrossRefPubMedPubMedCentral Bakker EN, Bacskai BJ, Arbel-Ornath M, et al. Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol. 2016;36:181–94.CrossRefPubMedPubMedCentral
67.
go back to reference Naganawa S, Nakane T, Kawai H, Taoka T. Lack of contrast enhancement in a giant perivascular space of the basal ganglion on delayed FLAIR images: implications for the glymphatic system. Magn Reson Med Sci. 2017;16:89–90.CrossRefPubMedPubMedCentral Naganawa S, Nakane T, Kawai H, Taoka T. Lack of contrast enhancement in a giant perivascular space of the basal ganglion on delayed FLAIR images: implications for the glymphatic system. Magn Reson Med Sci. 2017;16:89–90.CrossRefPubMedPubMedCentral
68.
go back to reference Jost G, Frenzel T, Lohrke J, Lenhard D, Naganawa S, Pietsch H. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue. Eur Radiol. 2016;27:2877–85.CrossRefPubMedPubMedCentral Jost G, Frenzel T, Lohrke J, Lenhard D, Naganawa S, Pietsch H. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue. Eur Radiol. 2016;27:2877–85.CrossRefPubMedPubMedCentral
69.
go back to reference Öner A, Barutcu B, Aykol Ş, Tali E. Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes. Invest Radiol. 2017;52:195–7.CrossRefPubMed Öner A, Barutcu B, Aykol Ş, Tali E. Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes. Invest Radiol. 2017;52:195–7.CrossRefPubMed
70.
go back to reference Marckmann P, Skov L, Rossen K, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17:2359–62.CrossRefPubMed Marckmann P, Skov L, Rossen K, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17:2359–62.CrossRefPubMed
71.
72.
go back to reference Thomsen H, Morcos S, Almén T, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2012;23:307–18.CrossRefPubMed Thomsen H, Morcos S, Almén T, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2012;23:307–18.CrossRefPubMed
73.
go back to reference Zou Z, Zhang H, Roditi G, Leiner T, Kucharczyk W, Prince M. Nephrogenic systemic fibrosis. JACC Cardiovasc. Imaging. 2011;4:1206–16. Zou Z, Zhang H, Roditi G, Leiner T, Kucharczyk W, Prince M. Nephrogenic systemic fibrosis. JACC Cardiovasc. Imaging. 2011;4:1206–16.
74.
go back to reference Edward M, Quinn JA, Burden AD, Newton BB, Jardine AG. Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology. 2010;256:735–43.CrossRefPubMed Edward M, Quinn JA, Burden AD, Newton BB, Jardine AG. Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology. 2010;256:735–43.CrossRefPubMed
75.
go back to reference Varani J, DaSilva M, Warner RL, et al. Effects of gadolinium-based magnetic resonance imaging contrast agents on human skin in organ culture and human skin fibroblasts. Invest Radiol. 2009;44:74–81.CrossRefPubMed Varani J, DaSilva M, Warner RL, et al. Effects of gadolinium-based magnetic resonance imaging contrast agents on human skin in organ culture and human skin fibroblasts. Invest Radiol. 2009;44:74–81.CrossRefPubMed
76.
go back to reference Steger-Hartmann T, Raschke M, Riefke B, Pietsch H, Sieber MA, Walter J. The involvement of pro-inflammatory cytokines in nephrogenic systemic fibrosis: a mechanistic hypothesis based on preclinical results from a rat model treated with gadodiamide. Exp Toxicol Pathol. 2009;61:537–52.CrossRefPubMed Steger-Hartmann T, Raschke M, Riefke B, Pietsch H, Sieber MA, Walter J. The involvement of pro-inflammatory cytokines in nephrogenic systemic fibrosis: a mechanistic hypothesis based on preclinical results from a rat model treated with gadodiamide. Exp Toxicol Pathol. 2009;61:537–52.CrossRefPubMed
77.
go back to reference Idée JM, Port M, Dencausse A, Lancelot E, Corot C. Involvement of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: an update. Radiol Clin North Am. 2009;47:855–69.CrossRefPubMed Idée JM, Port M, Dencausse A, Lancelot E, Corot C. Involvement of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: an update. Radiol Clin North Am. 2009;47:855–69.CrossRefPubMed
78.
go back to reference High WA, Ayers RA, Chandler J, Zito G, Cowper SE. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56:21–6.CrossRefPubMed High WA, Ayers RA, Chandler J, Zito G, Cowper SE. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56:21–6.CrossRefPubMed
79.
go back to reference Boyd AS, Zic JA, Abraham JL. Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol. 2007;56:27–30.CrossRefPubMed Boyd AS, Zic JA, Abraham JL. Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol. 2007;56:27–30.CrossRefPubMed
80.
go back to reference Kribben A, Witzke O, Hillen U, Barkhausen J, Daul AE, Erbel R. Nephrogenic systemic fibrosis: pathogenesis, diagnosis, and therapy. J Am Coll Cardiol. 2009;53:1621–8.CrossRefPubMed Kribben A, Witzke O, Hillen U, Barkhausen J, Daul AE, Erbel R. Nephrogenic systemic fibrosis: pathogenesis, diagnosis, and therapy. J Am Coll Cardiol. 2009;53:1621–8.CrossRefPubMed
81.
go back to reference Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–57.CrossRefPubMed Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–57.CrossRefPubMed
Metadata
Title
Gadolinium-Based Contrast Agent-Related Toxicities
Authors
Luca Pasquini
Antonio Napolitano
Emiliano Visconti
Daniela Longo
Andrea Romano
Paolo Tomà
Maria Camilla Rossi Espagnet
Publication date
01-03-2018
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 3/2018
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-018-0500-1

Other articles of this Issue 3/2018

CNS Drugs 3/2018 Go to the issue