Skip to main content
Top
Published in: CNS Drugs 3/2016

01-03-2016 | Review Article

Advances in the Development of Disease-Modifying Treatments for Amyotrophic Lateral Sclerosis

Authors: Diane Moujalled, Anthony R. White

Published in: CNS Drugs | Issue 3/2016

Login to get access

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset, neurodegenerative disease characterized by the degeneration of upper and lower motor neurons. Over recent years, numerous genes ha ve been identified that promote disease pathology, including SOD1, TARDBP, and the expanded hexanucleotide repeat (GGGGCC) within C9ORF72. However, despite these major advances in identifying genes contributing to ALS pathogenesis, there remains only one currently approved therapeutic: the glutamate antagonist, riluzole. Seminal breakthroughs in the pathomechanisms and genetic factors associated with ALS have heavily relied on the use of rodent models that recapitulate the ALS phenotype; however, while many therapeutics have proved to be significant in animal models by prolonging life and rescuing motor deficits, they have failed in human clinical trials. This may be due to fundamental differences between rodent models and human disease, the fact that animal models are based on overexpression of mutated genes, and confounding issues such as difficulties mimicking the dosing schedules and regimens implemented in mouse models to humans. Here, we review the major pathways associated with the pathology of ALS, the rodent models engineered to test efficacy of candidate drugs, the advancements being made in stem cell therapy for ALS, and what strategies may be important to circumvent the lack of successful translational studies in the clinic.
Literature
4.
go back to reference Joyce PI, Fratta P, Fisher EM, Acevedo-Arozena A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome. 2011;22(7–8):420–48. doi:10.1007/s00335-011-9339-1.PubMedCrossRef Joyce PI, Fratta P, Fisher EM, Acevedo-Arozena A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome. 2011;22(7–8):420–48. doi:10.​1007/​s00335-011-9339-1.PubMedCrossRef
6.
go back to reference Rosen DR. Mutations in Cu/Zn superoxide-dismutase gene are associated with familial amyotrophic-lateral-sclerosis. Nature. 1993;364(6435):362.PubMed Rosen DR. Mutations in Cu/Zn superoxide-dismutase gene are associated with familial amyotrophic-lateral-sclerosis. Nature. 1993;364(6435):362.PubMed
7.
go back to reference Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science. 1993;261(5124):1047–51.PubMedCrossRef Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science. 1993;261(5124):1047–51.PubMedCrossRef
9.
go back to reference DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56. doi:10.1016/J.Neuron.2011.09.011. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56. doi:10.​1016/​J.​Neuron.​2011.​09.​011.
10.
go back to reference Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68. doi:10.1016/J.Neuron.2011.09.010. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68. doi:10.​1016/​J.​Neuron.​2011.​09.​010.
11.
12.
go back to reference Bryson HM, Fulton B, Benfield P. Riluzole: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs. 1996;52(4):549–63.PubMedCrossRef Bryson HM, Fulton B, Benfield P. Riluzole: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs. 1996;52(4):549–63.PubMedCrossRef
18.
go back to reference Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–86.PubMedCrossRef Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–86.PubMedCrossRef
21.
go back to reference Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotroph Lateral Scler. 2003;4(3):191–206. Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotroph Lateral Scler. 2003;4(3):191–206.
22.
go back to reference Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7. doi:10.1038/nature03180.PubMedCrossRef Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7. doi:10.​1038/​nature03180.PubMedCrossRef
23.
24.
go back to reference Cudkowicz M, Bozik ME, Ingersoll EW, Miller R, Mitsumoto H, Shefner J, et al. The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis. Nat Med. 2011;17(12):1652–6. doi:10.1038/Nm.2579.PubMedCrossRef Cudkowicz M, Bozik ME, Ingersoll EW, Miller R, Mitsumoto H, Shefner J, et al. The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis. Nat Med. 2011;17(12):1652–6. doi:10.​1038/​Nm.​2579.PubMedCrossRef
28.
go back to reference Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997;69(5):2064–74.PubMedCrossRef Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997;69(5):2064–74.PubMedCrossRef
30.
go back to reference Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hirano A, et al. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res. 2001;917(1):97–104.PubMedCrossRef Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hirano A, et al. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res. 2001;917(1):97–104.PubMedCrossRef
33.
go back to reference Sarlette A, Krampfl K, Grothe C, Neuhoff N, Dengler R, Petri S. Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2008;67(11):1055–62. doi:10.1097/NEN.0b013e31818b4906.PubMedCrossRef Sarlette A, Krampfl K, Grothe C, Neuhoff N, Dengler R, Petri S. Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2008;67(11):1055–62. doi:10.​1097/​NEN.​0b013e31818b4906​.PubMedCrossRef
35.
go back to reference Neymotin A, Calingasan NY, Wille E, Naseri N, Petri S, Damiano M, et al. Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radical Biol Med. 2011;51(1):88–96. doi:10.1016/j.freeradbiomed.2011.03.027.CrossRef Neymotin A, Calingasan NY, Wille E, Naseri N, Petri S, Damiano M, et al. Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radical Biol Med. 2011;51(1):88–96. doi:10.​1016/​j.​freeradbiomed.​2011.​03.​027.CrossRef
36.
go back to reference Andreassen OA, Dedeoglu A, Klivenyi P, Beal MF, Bush AI. N-Acetyl-l-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. NeuroReport. 2000;11(11):2491–3.PubMedCrossRef Andreassen OA, Dedeoglu A, Klivenyi P, Beal MF, Bush AI. N-Acetyl-l-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. NeuroReport. 2000;11(11):2491–3.PubMedCrossRef
38.
go back to reference Louwerse ES, Weverling GJ, Bossuyt PMM, Meyjes FEP, Dejong JMBV. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic-lateral-sclerosis. Arch Neurol. 1995;52(6):559–64.PubMedCrossRef Louwerse ES, Weverling GJ, Bossuyt PMM, Meyjes FEP, Dejong JMBV. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic-lateral-sclerosis. Arch Neurol. 1995;52(6):559–64.PubMedCrossRef
42.
go back to reference Kwiecinski H, Janik P, Jamrozik Z, Opuchlik A. The effect of selegiline and vitamin E in the treatment of ALS: an open randomized clinical trials. Neurol Neurochir Pol. 2001;35(1 Suppl):101–6.PubMed Kwiecinski H, Janik P, Jamrozik Z, Opuchlik A. The effect of selegiline and vitamin E in the treatment of ALS: an open randomized clinical trials. Neurol Neurochir Pol. 2001;35(1 Suppl):101–6.PubMed
46.
go back to reference Miquel E, Cassina A, Martinez-Palma L, Souza JM, Bolatto C, Rodriguez-Bottero S, et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radical Bio Med. 2014;2014(70):204–13. doi:10.1016/J.Freeradbiomed.02.019.CrossRef Miquel E, Cassina A, Martinez-Palma L, Souza JM, Bolatto C, Rodriguez-Bottero S, et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radical Bio Med. 2014;2014(70):204–13. doi:10.​1016/​J.​Freeradbiomed.​02.​019.CrossRef
48.
go back to reference Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem. 2002;80(4):616–25.PubMedCrossRef Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem. 2002;80(4):616–25.PubMedCrossRef
49.
go back to reference Dhaliwal GK, Grewal RP. Mitochondrial DNA deletion mutation levels are elevated in ALS brains. NeuroReport. 2000;11(11):2507–9.PubMedCrossRef Dhaliwal GK, Grewal RP. Mitochondrial DNA deletion mutation levels are elevated in ALS brains. NeuroReport. 2000;11(11):2507–9.PubMedCrossRef
55.
go back to reference Bordet T, Buisson B, Michaud M, Drouot C, Galea P, Delaage P, et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther. 2007;322(2):709–20. doi:10.1124/Jpet.107.123000.PubMedCrossRef Bordet T, Buisson B, Michaud M, Drouot C, Galea P, Delaage P, et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther. 2007;322(2):709–20. doi:10.​1124/​Jpet.​107.​123000.PubMedCrossRef
56.
go back to reference Lenglet T, Lacomblez L, Abitbol JL, Ludolph A, Mora JS, Robberecht W, et al. A phase II-III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur J Neurol. 2014;21(3):529–36. doi:10.1111/Ene.12344.PubMedCrossRef Lenglet T, Lacomblez L, Abitbol JL, Ludolph A, Mora JS, Robberecht W, et al. A phase II-III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur J Neurol. 2014;21(3):529–36. doi:10.​1111/​Ene.​12344.PubMedCrossRef
58.
go back to reference Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol. 1992;140(3):691–707.PubMedPubMedCentral Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol. 1992;140(3):691–707.PubMedPubMedCentral
59.
go back to reference Zhang RZ, Gascon R, Miller RG, Gelinas DF, Mass J, Lancero M, et al. MCP-1 chemokine receptor CCR2 is decreased on circulating monocytes in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2006;179(1–2):87–93. doi:10.1016/J.Jneuroim.2006.06.008. Zhang RZ, Gascon R, Miller RG, Gelinas DF, Mass J, Lancero M, et al. MCP-1 chemokine receptor CCR2 is decreased on circulating monocytes in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2006;179(1–2):87–93. doi:10.​1016/​J.​Jneuroim.​2006.​06.​008.
60.
go back to reference Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2009;206(1–2):121–4. doi:10.1016/J.Jneuroim.2008.09.017. Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2009;206(1–2):121–4. doi:10.​1016/​J.​Jneuroim.​2008.​09.​017.
64.
go back to reference Kriz J, Nguyen MD, Julien JP. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2002;10(3):268–78.PubMedCrossRef Kriz J, Nguyen MD, Julien JP. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2002;10(3):268–78.PubMedCrossRef
65.
go back to reference Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;417(6884):74–8. doi:10.1038/417074a.PubMedCrossRef Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;417(6884):74–8. doi:10.​1038/​417074a.PubMedCrossRef
66.
67.
go back to reference Gamez J. Minocycline for the treatment of amyotrophic lateral sclerosis: neuroprotector or neurotoxin? Reflections on another failure of translational medicine. Neurologia. 2008;23(8):484–93.PubMed Gamez J. Minocycline for the treatment of amyotrophic lateral sclerosis: neuroprotector or neurotoxin? Reflections on another failure of translational medicine. Neurologia. 2008;23(8):484–93.PubMed
68.
go back to reference Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, et al. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol. 2002;52(6):771–8. doi:10.1002/ana.10374.PubMedCrossRef Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, et al. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol. 2002;52(6):771–8. doi:10.​1002/​ana.​10374.PubMedCrossRef
69.
70.
go back to reference Koza P. RNA processing TDP-43 protein has a main pathological role in FTLD and ALS. Postepy Biochem. 2015;61(2):159–67.PubMed Koza P. RNA processing TDP-43 protein has a main pathological role in FTLD and ALS. Postepy Biochem. 2015;61(2):159–67.PubMed
71.
go back to reference Arnold ES, Ling SC, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci. 2013;110(8):E736–45. doi:10.1073/pnas.1222809110.PubMedPubMedCentralCrossRef Arnold ES, Ling SC, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci. 2013;110(8):E736–45. doi:10.​1073/​pnas.​1222809110.PubMedPubMedCentralCrossRef
72.
go back to reference Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–8. doi:10.1126/science.1166066.PubMedCrossRef Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–8. doi:10.​1126/​science.​1166066.PubMedCrossRef
74.
go back to reference Chew J, Gendron TF, Prudencio M, Sasaguri H, Zhang YJ, Castanedes-Casey M, et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science. 2015;348(6239):1151–4. doi:10.1126/science.aaa9344. Chew J, Gendron TF, Prudencio M, Sasaguri H, Zhang YJ, Castanedes-Casey M, et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science. 2015;348(6239):1151–4. doi:10.​1126/​science.​aaa9344.
79.
go back to reference Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995;14(6):1105–16.PubMedCrossRef Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995;14(6):1105–16.PubMedCrossRef
84.
go back to reference Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75(5):822–31. doi:10.1086/425287.PubMedPubMedCentralCrossRef Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75(5):822–31. doi:10.​1086/​425287.PubMedPubMedCentralCrossRef
86.
go back to reference Gurney ME, Cutting FB, Zhai P, Doble A, Taylor CP, Andrus PK, et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol. 1996;39(2):147–57. doi:10.1002/ana.410390203.PubMedCrossRef Gurney ME, Cutting FB, Zhai P, Doble A, Taylor CP, Andrus PK, et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol. 1996;39(2):147–57. doi:10.​1002/​ana.​410390203.PubMedCrossRef
87.
go back to reference Van Damme P, Leyssen M, Callewaert G, Robberecht W, Van Den Bosch L. The AMPA receptor antagonist NBQX prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett. 2003;343(2):81–4.PubMedCrossRef Van Damme P, Leyssen M, Callewaert G, Robberecht W, Van Den Bosch L. The AMPA receptor antagonist NBQX prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett. 2003;343(2):81–4.PubMedCrossRef
88.
89.
go back to reference Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999;5(3):347–50. doi:10.1038/6568.PubMedCrossRef Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999;5(3):347–50. doi:10.​1038/​6568.PubMedCrossRef
90.
go back to reference Van Den Bosch L, Tilkin P, Lemmens G, Robberecht W. Minocycline delays disease onset and mortality in a transgenic model of ALS. NeuroReport. 2002;13(8):1067–70.CrossRef Van Den Bosch L, Tilkin P, Lemmens G, Robberecht W. Minocycline delays disease onset and mortality in a transgenic model of ALS. NeuroReport. 2002;13(8):1067–70.CrossRef
91.
go back to reference Ittner A, Bertz J, Suh LS, Stevens CH, Gotz J, Ittner LM. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem. 2015;132(1):135–45. doi:10.1111/jnc.12821.PubMedCrossRef Ittner A, Bertz J, Suh LS, Stevens CH, Gotz J, Ittner LM. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem. 2015;132(1):135–45. doi:10.​1111/​jnc.​12821.PubMedCrossRef
92.
go back to reference Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu. Zn superoxide dismutase mutation. Science. 1994;264(5166):1772–5.PubMedCrossRef Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu. Zn superoxide dismutase mutation. Science. 1994;264(5166):1772–5.PubMedCrossRef
93.
go back to reference Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997;18(2):327–38.PubMedCrossRef Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997;18(2):327–38.PubMedCrossRef
94.
go back to reference Heiman-Patterson TD, Sher RB, Blankenhorn EA, Alexander G, Deitch JS, Kunst CB, et al. Effect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers. Amyotroph Lateral Scler. 2011;12(2):79–86. doi:10.3109/17482968.2010.550626.PubMedCrossRef Heiman-Patterson TD, Sher RB, Blankenhorn EA, Alexander G, Deitch JS, Kunst CB, et al. Effect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers. Amyotroph Lateral Scler. 2011;12(2):79–86. doi:10.​3109/​17482968.​2010.​550626.PubMedCrossRef
96.
go back to reference Acevedo-Arozena A, Kalmar B, Essa S, Ricketts T, Joyce P, Kent R, et al. A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis. Dis Models Mech. 2011;4(5):686–700. doi:10.1242/dmm.007237.CrossRef Acevedo-Arozena A, Kalmar B, Essa S, Ricketts T, Joyce P, Kent R, et al. A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis. Dis Models Mech. 2011;4(5):686–700. doi:10.​1242/​dmm.​007237.CrossRef
98.
go back to reference Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602–11. doi:10.1016/j.bbrc.2006.10.093.PubMedCrossRef Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602–11. doi:10.​1016/​j.​bbrc.​2006.​10.​093.PubMedCrossRef
99.
102.
go back to reference Esmaeili MA, Panahi M, Yadav S, Hennings L, Kiaei M. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int J Exp Pathol. 2013;94(1):56–64. doi:10.1111/iep.12006.PubMedPubMedCentralCrossRef Esmaeili MA, Panahi M, Yadav S, Hennings L, Kiaei M. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int J Exp Pathol. 2013;94(1):56–64. doi:10.​1111/​iep.​12006.PubMedPubMedCentralCrossRef
104.
go back to reference Swarup V, Phaneuf D, Bareil C, Robertson J, Rouleau GA, Kriz J, et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain. 2011;134(Pt 9):2610–26. doi:10.1093/brain/awr159.PubMedCrossRef Swarup V, Phaneuf D, Bareil C, Robertson J, Rouleau GA, Kriz J, et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain. 2011;134(Pt 9):2610–26. doi:10.​1093/​brain/​awr159.PubMedCrossRef
106.
107.
108.
110.
111.
go back to reference Verbeeck C, Deng Q, Dejesus-Hernandez M, Taylor G, Ceballos-Diaz C, Kocerha J, et al. Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Mol Neurodegener. 2012;7:53. doi:10.1186/1750-1326-7-53.PubMedPubMedCentralCrossRef Verbeeck C, Deng Q, Dejesus-Hernandez M, Taylor G, Ceballos-Diaz C, Kocerha J, et al. Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Mol Neurodegener. 2012;7:53. doi:10.​1186/​1750-1326-7-53.PubMedPubMedCentralCrossRef
115.
go back to reference Hukema RK, Riemslagh FW, Melhem S, van der Linde HC, Severijnen LA, Edbauer D, et al. A new inducible transgenic mouse model for C9orf72-associated GGGGCC repeat expansion supports a gain-of-function mechanism in C9orf72-associated ALS and FTD. Acta Neuropathol Commun. 2014;2:166. doi:10.1186/s40478-014-0166-y.PubMedPubMedCentralCrossRef Hukema RK, Riemslagh FW, Melhem S, van der Linde HC, Severijnen LA, Edbauer D, et al. A new inducible transgenic mouse model for C9orf72-associated GGGGCC repeat expansion supports a gain-of-function mechanism in C9orf72-associated ALS and FTD. Acta Neuropathol Commun. 2014;2:166. doi:10.​1186/​s40478-014-0166-y.PubMedPubMedCentralCrossRef
123.
go back to reference Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218–21. doi:10.1126/science.1158799.PubMedCrossRef Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218–21. doi:10.​1126/​science.​1158799.PubMedCrossRef
125.
128.
go back to reference Lietner M, Menzies S, Cutz C. Working with ALS mice: guidelines for preclinical testing and colony management. In: PRIZE4LIFE, The Jackson Laboratory; 2009. Lietner M, Menzies S, Cutz C. Working with ALS mice: guidelines for preclinical testing and colony management. In: PRIZE4LIFE, The Jackson Laboratory; 2009.
Metadata
Title
Advances in the Development of Disease-Modifying Treatments for Amyotrophic Lateral Sclerosis
Authors
Diane Moujalled
Anthony R. White
Publication date
01-03-2016
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 3/2016
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-016-0317-8

Other articles of this Issue 3/2016

CNS Drugs 3/2016 Go to the issue