Skip to main content
Top
Published in: CNS Drugs 2/2014

01-02-2014 | Review Article

Clinical Relevance of Brain Volume Measures in Multiple Sclerosis

Authors: Nicola De Stefano, Laura Airas, Nikolaos Grigoriadis, Heinrich P. Mattle, Jonathan O’Riordan, Celia Oreja-Guevara, Finn Sellebjerg, Bruno Stankoff, Agata Walczak, Heinz Wiendl, Bernd C. Kieseier

Published in: CNS Drugs | Issue 2/2014

Login to get access

Abstract

Multiple sclerosis (MS) is a chronic disease with an inflammatory and neurodegenerative pathology. Axonal loss and neurodegeneration occurs early in the disease course and may lead to irreversible neurological impairment. Changes in brain volume, observed from the earliest stage of MS and proceeding throughout the disease course, may be an accurate measure of neurodegeneration and tissue damage. There are a number of magnetic resonance imaging-based methods for determining global or regional brain volume, including cross-sectional (e.g. brain parenchymal fraction) and longitudinal techniques (e.g. SIENA [Structural Image Evaluation using Normalization of Atrophy]). Although these methods are sensitive and reproducible, caution must be exercised when interpreting brain volume data, as numerous factors (e.g. pseudoatrophy) may have a confounding effect on measurements, especially in a disease with complex pathological substrates such as MS. Brain volume loss has been correlated with disability progression and cognitive impairment in MS, with the loss of grey matter volume more closely correlated with clinical measures than loss of white matter volume. Preventing brain volume loss may therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy on reducing the rate of brain volume loss. This article reviews the measurement of brain volume in clinical trials and practice, the effect of DMTs on brain volume change across trials and the clinical relevance of brain volume loss in MS.
Literature
3.
4.
go back to reference Siffrin V, Vogt J, Radbruch H, et al. Multiple sclerosis—candidate mechanisms underlying CNS atrophy. Trends Neurosci. 2010;33:202–10.PubMedCrossRef Siffrin V, Vogt J, Radbruch H, et al. Multiple sclerosis—candidate mechanisms underlying CNS atrophy. Trends Neurosci. 2010;33:202–10.PubMedCrossRef
6.
go back to reference Barten LJ, Allington DR, Procacci KA, et al. New approaches in the management of multiple sclerosis. Drug Des Devel Ther. 2010;4:343–66.PubMedCentralPubMed Barten LJ, Allington DR, Procacci KA, et al. New approaches in the management of multiple sclerosis. Drug Des Devel Ther. 2010;4:343–66.PubMedCentralPubMed
7.
go back to reference Filippi M, Rocca MA, Barkhof F, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2012;11:349–60.PubMedCrossRef Filippi M, Rocca MA, Barkhof F, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2012;11:349–60.PubMedCrossRef
8.
go back to reference Filippi M, Rocca M. Preventing brain atrophy should be the gold standard of effective theraphy in MS (after the first year of treatment): no. Mult Scler. 2013;19:1005–6.PubMedCrossRef Filippi M, Rocca M. Preventing brain atrophy should be the gold standard of effective theraphy in MS (after the first year of treatment): no. Mult Scler. 2013;19:1005–6.PubMedCrossRef
9.
go back to reference Rudick RA, Fisher E. Preventing brain atrophy should be the gold standard of effective therapy in MS (after the first year of treatment): yes. Mult Scler. 2013;19:1003–4.PubMedCrossRef Rudick RA, Fisher E. Preventing brain atrophy should be the gold standard of effective therapy in MS (after the first year of treatment): yes. Mult Scler. 2013;19:1003–4.PubMedCrossRef
10.
go back to reference Arnold D, De Stefano N. Preventing brain atrophy should be the gold standard of effective therapy in multiple sclerosis (after the first year of treatment): commentary. Mult Scler. 2013;19:1007–8.PubMedCrossRef Arnold D, De Stefano N. Preventing brain atrophy should be the gold standard of effective therapy in multiple sclerosis (after the first year of treatment): commentary. Mult Scler. 2013;19:1007–8.PubMedCrossRef
11.
go back to reference Barkhof F, Calabresi PA, Miller DH, et al. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol. 2009;5:256–66.PubMedCrossRef Barkhof F, Calabresi PA, Miller DH, et al. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol. 2009;5:256–66.PubMedCrossRef
12.
go back to reference Zivadinov R, Bakshi R. Central nervous system atrophy and clinical status in multiple sclerosis. J Neuroimaging. 2004;14(3 Suppl.):27S–35S.PubMedCrossRef Zivadinov R, Bakshi R. Central nervous system atrophy and clinical status in multiple sclerosis. J Neuroimaging. 2004;14(3 Suppl.):27S–35S.PubMedCrossRef
13.
go back to reference Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol. 2006;5:158–70.PubMedCrossRef Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol. 2006;5:158–70.PubMedCrossRef
14.
go back to reference Giorgio A, Battaglini M, Smith SM, et al. Brain atrophy assessment in multiple sclerosis: importance and limitations. Neuroimaging Clin N Am. 2008;18:675–86.PubMedCrossRef Giorgio A, Battaglini M, Smith SM, et al. Brain atrophy assessment in multiple sclerosis: importance and limitations. Neuroimaging Clin N Am. 2008;18:675–86.PubMedCrossRef
15.
go back to reference Zipp F. A new window in multiple sclerosis pathology: non-conventional quantitative magnetic resonance imaging outcomes. J Neurol Sci. 2009;287(Suppl 1):S24–9.PubMedCrossRef Zipp F. A new window in multiple sclerosis pathology: non-conventional quantitative magnetic resonance imaging outcomes. J Neurol Sci. 2009;287(Suppl 1):S24–9.PubMedCrossRef
16.
go back to reference Enzinger C, Fazekas F, Matthews PM, et al. Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology. 2005;64:1704–11.PubMedCrossRef Enzinger C, Fazekas F, Matthews PM, et al. Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology. 2005;64:1704–11.PubMedCrossRef
17.
go back to reference Zivadinov R, Weinstock-Guttman B, Hashmi K, et al. Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis. Neurology. 2009;73:504–10.PubMedCrossRef Zivadinov R, Weinstock-Guttman B, Hashmi K, et al. Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis. Neurology. 2009;73:504–10.PubMedCrossRef
18.
go back to reference Durand-Dubief F, Belaroussi B, Armspach JP, et al. Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. Am J Neuroradiol. 2012;33:1918–24.PubMedCrossRef Durand-Dubief F, Belaroussi B, Armspach JP, et al. Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. Am J Neuroradiol. 2012;33:1918–24.PubMedCrossRef
19.
go back to reference Rudick RA, Fisher E, Lee JC, et al. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology. 1999;53:1698–704.PubMedCrossRef Rudick RA, Fisher E, Lee JC, et al. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology. 1999;53:1698–704.PubMedCrossRef
20.
go back to reference Filippi M, Rovaris M, Inglese M, et al. Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet. 2004;364:1489–96.PubMedCrossRef Filippi M, Rovaris M, Inglese M, et al. Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet. 2004;364:1489–96.PubMedCrossRef
21.
go back to reference Kappos L, Freedman MS, Polman CH, et al. Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol. 2009;8:987–97.PubMedCrossRef Kappos L, Freedman MS, Polman CH, et al. Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol. 2009;8:987–97.PubMedCrossRef
22.
go back to reference Molyneux PD, Kappos L, Polman C, et al. The effect of interferon beta-1b treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis. European Study Group on Interferon beta-1b in secondary progressive multiple sclerosis. Brain. 2000;123(Pt 11):2256–63.PubMedCrossRef Molyneux PD, Kappos L, Polman C, et al. The effect of interferon beta-1b treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis. European Study Group on Interferon beta-1b in secondary progressive multiple sclerosis. Brain. 2000;123(Pt 11):2256–63.PubMedCrossRef
23.
go back to reference Sormani MP, Rovaris M, Valsasina P, et al. Measurement error of two different techniques for brain atrophy assessment in multiple sclerosis. Neurology. 2004;62:1432–4.PubMedCrossRef Sormani MP, Rovaris M, Valsasina P, et al. Measurement error of two different techniques for brain atrophy assessment in multiple sclerosis. Neurology. 2004;62:1432–4.PubMedCrossRef
24.
go back to reference Comi G, Martinelli V, Rodegher M, et al. Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult Scler. 2013;19:1074–83.PubMedCrossRef Comi G, Martinelli V, Rodegher M, et al. Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult Scler. 2013;19:1074–83.PubMedCrossRef
25.
go back to reference Vidal-Jordana A, Sastre-Garriga J, Pérez-Miralles F, et al. Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler. 2013;19:1175–81.PubMedCrossRef Vidal-Jordana A, Sastre-Garriga J, Pérez-Miralles F, et al. Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler. 2013;19:1175–81.PubMedCrossRef
26.
go back to reference Miller DH, Soon D, Fernando KT, et al. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology. 2007;68:1390–401.PubMedCrossRef Miller DH, Soon D, Fernando KT, et al. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology. 2007;68:1390–401.PubMedCrossRef
27.
go back to reference Barkhof F, Hulst HE, Drulovic J, et al. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant? Neurology. 2010;74:1033–40.PubMedCrossRef Barkhof F, Hulst HE, Drulovic J, et al. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant? Neurology. 2010;74:1033–40.PubMedCrossRef
28.
go back to reference Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362:387–401.PubMedCrossRef Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362:387–401.PubMedCrossRef
29.
go back to reference O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365:1293–303.PubMedCrossRef O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365:1293–303.PubMedCrossRef
30.
go back to reference Comi G, Jeffery D, Kappos L, et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med. 2012;366:1000–9.PubMedCrossRef Comi G, Jeffery D, Kappos L, et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med. 2012;366:1000–9.PubMedCrossRef
31.
go back to reference Filippi M, Rocca MA, Pagani E, et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry. Epub 12 Sep 2013. Filippi M, Rocca MA, Pagani E, et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry. Epub 12 Sep 2013.
32.
go back to reference Vollmer TL, Soelberg Sorensen P, Arnold DL, et al. A placebo-controlled and active comparator phase III trial (BRAVO) for relapsing–remitting multiple sclerosis. ECTRIMS 2011. Abstract P148. Vollmer TL, Soelberg Sorensen P, Arnold DL, et al. A placebo-controlled and active comparator phase III trial (BRAVO) for relapsing–remitting multiple sclerosis. ECTRIMS 2011. Abstract P148.
33.
go back to reference Arnold DL, Gold R, Kappos L, et al. Effects of BG-12 on magnetic resonance imaging outcomes in the DEFINE study. CMSC 2012. Poster DX21. Arnold DL, Gold R, Kappos L, et al. Effects of BG-12 on magnetic resonance imaging outcomes in the DEFINE study. CMSC 2012. Poster DX21.
34.
go back to reference Miller D, Fox RJ, Phillips JT, et al. Effects of BG-12 on magnetic resonance imaging outcomes in CONFIRM (Comparator and an Oral Fumarate in Relapsing-Remitting Multiple Sclerosis), a randomized, placebo-controlled, phase 3 study. ENS 2012. O259. Miller D, Fox RJ, Phillips JT, et al. Effects of BG-12 on magnetic resonance imaging outcomes in CONFIRM (Comparator and an Oral Fumarate in Relapsing-Remitting Multiple Sclerosis), a randomized, placebo-controlled, phase 3 study. ENS 2012. O259.
35.
go back to reference O’Connor P, Filippi M, Arnason B, et al. 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 2009;8:889–97.PubMedCrossRef O’Connor P, Filippi M, Arnason B, et al. 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 2009;8:889–97.PubMedCrossRef
36.
go back to reference Hardmeier M, Wagenpfeil S, Freitag P, et al. Rate of brain atrophy in relapsing MS decreases during treatment with IFN beta-1a. Neurology. 2005;64:236–40.PubMedCrossRef Hardmeier M, Wagenpfeil S, Freitag P, et al. Rate of brain atrophy in relapsing MS decreases during treatment with IFN beta-1a. Neurology. 2005;64:236–40.PubMedCrossRef
37.
go back to reference Borges IT, Shea CD, Ohayon J, et al. The effect of daclizumab on brain atrophy in relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2013;2:133–40.PubMedCrossRef Borges IT, Shea CD, Ohayon J, et al. The effect of daclizumab on brain atrophy in relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2013;2:133–40.PubMedCrossRef
38.
go back to reference Bendfeldt K, Egger H, Nichols TE, et al. Effect of immunomodulatory medication on regional gray matter loss in relapsing-remitting multiple sclerosis—a longitudinal MRI study. Brain Res. 2010;1325:174–82.PubMedCrossRef Bendfeldt K, Egger H, Nichols TE, et al. Effect of immunomodulatory medication on regional gray matter loss in relapsing-remitting multiple sclerosis—a longitudinal MRI study. Brain Res. 2010;1325:174–82.PubMedCrossRef
39.
go back to reference Khan O, Bao F, Shah M, et al. Effect of disease-modifying therapies on brain volume in relapsing-remitting multiple sclerosis: results of a five-year brain MRI study. J Neurol Sci. 2012;312:7–12.PubMedCrossRef Khan O, Bao F, Shah M, et al. Effect of disease-modifying therapies on brain volume in relapsing-remitting multiple sclerosis: results of a five-year brain MRI study. J Neurol Sci. 2012;312:7–12.PubMedCrossRef
40.
go back to reference Portaccio E, Stromillo ML, Goretti B, et al. Natalizumab may reduce cognitive changes and brain atrophy rate in relapsing-remitting multiple sclerosis: a prospective, non-randomized pilot study. Eur J Neurol. 2013;20:986–90.PubMedCrossRef Portaccio E, Stromillo ML, Goretti B, et al. Natalizumab may reduce cognitive changes and brain atrophy rate in relapsing-remitting multiple sclerosis: a prospective, non-randomized pilot study. Eur J Neurol. 2013;20:986–90.PubMedCrossRef
41.
go back to reference CAMMS223 Trial Investigators, Coles AJ, Compston DA, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359:1786–801. CAMMS223 Trial Investigators, Coles AJ, Compston DA, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359:1786–801.
42.
go back to reference Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380:1829–39.PubMedCrossRef Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380:1829–39.PubMedCrossRef
43.
go back to reference Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380:1819–28.PubMedCrossRef Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380:1819–28.PubMedCrossRef
44.
go back to reference Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15.PubMedCrossRef Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15.PubMedCrossRef
45.
go back to reference Takao H, Hayashi N, Ohtomo K. A longitudinal study of brain volume changes in normal aging. Eur J Radiol. 2012;81:2801–4.PubMedCrossRef Takao H, Hayashi N, Ohtomo K. A longitudinal study of brain volume changes in normal aging. Eur J Radiol. 2012;81:2801–4.PubMedCrossRef
46.
go back to reference Sidaros A, Skimminge A, Liptrot MG, et al. Long-term global and regional brain volume changes following severe traumatic brain injury: a longitudinal study with clinical correlates. Neuroimage. 2009;44:1–8.PubMedCrossRef Sidaros A, Skimminge A, Liptrot MG, et al. Long-term global and regional brain volume changes following severe traumatic brain injury: a longitudinal study with clinical correlates. Neuroimage. 2009;44:1–8.PubMedCrossRef
47.
go back to reference Scahill RI, Frost C, Jenkins R, et al. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol. 2003;60:989–94.PubMedCrossRef Scahill RI, Frost C, Jenkins R, et al. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol. 2003;60:989–94.PubMedCrossRef
48.
go back to reference Hedman AM, van Haren NE, Schnack HG, et al. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp. 2012;33:1987–2002.PubMedCrossRef Hedman AM, van Haren NE, Schnack HG, et al. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp. 2012;33:1987–2002.PubMedCrossRef
49.
go back to reference Giorgio A, Stromillo ML, Bartolozzi ML, et al. Ten-year brain atrophy and disability changes in multiple sclerosis. AAN 2012. Poster P065. Giorgio A, Stromillo ML, Bartolozzi ML, et al. Ten-year brain atrophy and disability changes in multiple sclerosis. AAN 2012. Poster P065.
50.
go back to reference De Stefano N, Giorgio A, Battaglini M, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74:1868–76.PubMedCrossRef De Stefano N, Giorgio A, Battaglini M, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74:1868–76.PubMedCrossRef
51.
go back to reference Fisher E, Lee JC, Nakamura K, et al. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol. 2008;64:255–65.PubMedCrossRef Fisher E, Lee JC, Nakamura K, et al. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol. 2008;64:255–65.PubMedCrossRef
52.
go back to reference Simon JH. Brain atrophy in multiple sclerosis: what we know and would like to know. Mult Scler. 2006;12:679–87.PubMedCrossRef Simon JH. Brain atrophy in multiple sclerosis: what we know and would like to know. Mult Scler. 2006;12:679–87.PubMedCrossRef
53.
go back to reference Minneboo A, Jasperse B, Barkhof F, et al. Predicting short-term disability progression in early multiple sclerosis: added value of MRI parameters. J Neurol Neurosurg Psychiatry. 2008;79:917–23.PubMedCrossRef Minneboo A, Jasperse B, Barkhof F, et al. Predicting short-term disability progression in early multiple sclerosis: added value of MRI parameters. J Neurol Neurosurg Psychiatry. 2008;79:917–23.PubMedCrossRef
54.
go back to reference Amato MP, Portaccio E, Goretti B, et al. Association of neocortical volume changes with cognitive deterioration in relapsing-remitting multiple sclerosis. Arch Neurol. 2007;64:1157–61.PubMedCrossRef Amato MP, Portaccio E, Goretti B, et al. Association of neocortical volume changes with cognitive deterioration in relapsing-remitting multiple sclerosis. Arch Neurol. 2007;64:1157–61.PubMedCrossRef
55.
go back to reference Fisniku LK, Altmann DR, Cercignani M, et al. Magnetization transfer ratio abnormalities reflect clinically relevant grey matter damage in multiple sclerosis. Mult Scler. 2009;15:668–77.PubMedCentralPubMedCrossRef Fisniku LK, Altmann DR, Cercignani M, et al. Magnetization transfer ratio abnormalities reflect clinically relevant grey matter damage in multiple sclerosis. Mult Scler. 2009;15:668–77.PubMedCentralPubMedCrossRef
57.
go back to reference Zivadinov R, Havrdová E, Bergsland N, et al. Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology. 2013;268:831–41.PubMedCrossRef Zivadinov R, Havrdová E, Bergsland N, et al. Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology. 2013;268:831–41.PubMedCrossRef
58.
go back to reference Popescu V, Agosta F, Hulst HE, et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84:1082–91.PubMedCrossRef Popescu V, Agosta F, Hulst HE, et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84:1082–91.PubMedCrossRef
59.
go back to reference Zivadinov R, Bergsland N, Dolezal O, et al. Evolution of cortical and thalamus atrophy and disability progression in early relapsing-remitting MS during 5 years. Am J Neuroradiol. 2013;34:1931–9.PubMedCrossRef Zivadinov R, Bergsland N, Dolezal O, et al. Evolution of cortical and thalamus atrophy and disability progression in early relapsing-remitting MS during 5 years. Am J Neuroradiol. 2013;34:1931–9.PubMedCrossRef
60.
go back to reference Fisniku LK, Chard DT, Jackson JS, et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol. 2008;64:247–54.PubMedCrossRef Fisniku LK, Chard DT, Jackson JS, et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol. 2008;64:247–54.PubMedCrossRef
61.
go back to reference Sanfilipo MP, Benedict RH, Sharma J, et al. The relationship between whole brain volume and disability in multiple sclerosis: a comparison of normalized gray vs. white matter with misclassification correction. Neuroimage. 2005;26:1068–77.PubMedCrossRef Sanfilipo MP, Benedict RH, Sharma J, et al. The relationship between whole brain volume and disability in multiple sclerosis: a comparison of normalized gray vs. white matter with misclassification correction. Neuroimage. 2005;26:1068–77.PubMedCrossRef
62.
go back to reference Fisher E, Rudick RA, Cutter G, et al. Relationship between brain atrophy and disability: an 8-year follow-up study of multiple sclerosis patients. Mult Scler. 2000;6:373–7.PubMed Fisher E, Rudick RA, Cutter G, et al. Relationship between brain atrophy and disability: an 8-year follow-up study of multiple sclerosis patients. Mult Scler. 2000;6:373–7.PubMed
63.
64.
go back to reference Lansley J, Mataix-Cols D, Grau M, et al. Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev. 2013;37:819–30.PubMedCrossRef Lansley J, Mataix-Cols D, Grau M, et al. Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev. 2013;37:819–30.PubMedCrossRef
65.
go back to reference Zivadinov R, Tekwe C, Bergsland N, et al. Bimonthly evolution of cortical atrophy in early relapsing–remitting multiple sclerosis over 2 years: a longitudinal study. Mult Scler Int. 2013;2013:231345.PubMedCentralPubMed Zivadinov R, Tekwe C, Bergsland N, et al. Bimonthly evolution of cortical atrophy in early relapsing–remitting multiple sclerosis over 2 years: a longitudinal study. Mult Scler Int. 2013;2013:231345.PubMedCentralPubMed
66.
go back to reference Fisher E, Rudick RA, Simon JH, et al. Eight-year follow-up study of brain atrophy in patients with MS. Neurology. 2002;59:1412–20.PubMedCrossRef Fisher E, Rudick RA, Simon JH, et al. Eight-year follow-up study of brain atrophy in patients with MS. Neurology. 2002;59:1412–20.PubMedCrossRef
67.
go back to reference Brex PA, Jenkins R, Fox NC, et al. Detection of ventricular enlargement in patients at the earliest clinical stage of MS. Neurology. 2000;54:1689–91.PubMedCrossRef Brex PA, Jenkins R, Fox NC, et al. Detection of ventricular enlargement in patients at the earliest clinical stage of MS. Neurology. 2000;54:1689–91.PubMedCrossRef
68.
go back to reference Dalton CM, Brex PA, Jenkins R, et al. Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2002;73:141–7.PubMedCrossRef Dalton CM, Brex PA, Jenkins R, et al. Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2002;73:141–7.PubMedCrossRef
69.
go back to reference Pérez-Miralles F, Sastre-Garriga J, Tintoré M, et al. Clinical impact of early brain atrophy in clinically isolated syndromes. Mult Scler. 2013;19:1878–86.PubMedCrossRef Pérez-Miralles F, Sastre-Garriga J, Tintoré M, et al. Clinical impact of early brain atrophy in clinically isolated syndromes. Mult Scler. 2013;19:1878–86.PubMedCrossRef
70.
go back to reference Ingle GT, Stevenson VL, Miller DH, et al. Two-year follow-up study of primary and transitional progressive multiple sclerosis. Mult Scler. 2002;8:108–14.PubMedCrossRef Ingle GT, Stevenson VL, Miller DH, et al. Two-year follow-up study of primary and transitional progressive multiple sclerosis. Mult Scler. 2002;8:108–14.PubMedCrossRef
71.
go back to reference Rudick RA, Fisher E, Lee JC, et al. Brain atrophy in relapsing multiple sclerosis: relationship to relapses, EDSS, and treatment with interferon beta-1a. Mult Scler. 2000;6:365–72.PubMed Rudick RA, Fisher E, Lee JC, et al. Brain atrophy in relapsing multiple sclerosis: relationship to relapses, EDSS, and treatment with interferon beta-1a. Mult Scler. 2000;6:365–72.PubMed
72.
go back to reference Lavorgna L, Bonavita S, Ippolito D, et al. Clinical and magnetic resonance imaging predictors of disease progression in multiple sclerosis: a nine-year follow-up study. Mult Scler. Epub 9 Jul 2013. Lavorgna L, Bonavita S, Ippolito D, et al. Clinical and magnetic resonance imaging predictors of disease progression in multiple sclerosis: a nine-year follow-up study. Mult Scler. Epub 9 Jul 2013.
73.
go back to reference Kearney H, Rocca M, Valsasina P, et al. Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler. 2014;20:72–80.PubMedCrossRef Kearney H, Rocca M, Valsasina P, et al. Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler. 2014;20:72–80.PubMedCrossRef
74.
go back to reference Rocca MA, Valsasina P, Damjanovic D, et al. Voxel-wise mapping of cervical cord damage in multiple sclerosis patients with different clinical phenotypes. J Neurol Neurosurg Psychiatry. 2013;84:35–41.PubMedCrossRef Rocca MA, Valsasina P, Damjanovic D, et al. Voxel-wise mapping of cervical cord damage in multiple sclerosis patients with different clinical phenotypes. J Neurol Neurosurg Psychiatry. 2013;84:35–41.PubMedCrossRef
75.
go back to reference Lukas C, Sombekke MH, Bellenberg B, et al. Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology. 2013;269:542–52.PubMedCrossRef Lukas C, Sombekke MH, Bellenberg B, et al. Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology. 2013;269:542–52.PubMedCrossRef
76.
go back to reference Valsasina P, Rocca MA, Horsfield MA, et al. Regional cervical cord atrophy and disability in multiple sclerosis: a voxel-based analysis. Radiology. 2013;266:853–61.PubMedCrossRef Valsasina P, Rocca MA, Horsfield MA, et al. Regional cervical cord atrophy and disability in multiple sclerosis: a voxel-based analysis. Radiology. 2013;266:853–61.PubMedCrossRef
77.
go back to reference Lukas C, Minneboo A, de Groot V, et al. Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010;81:1351–6.PubMedCrossRef Lukas C, Minneboo A, de Groot V, et al. Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010;81:1351–6.PubMedCrossRef
78.
go back to reference Horakova D, Dwyer MG, Havrdova E, et al. Gray matter atrophy and disability progression in patients with early relapsing-remitting multiple sclerosis: a 5-year longitudinal study. J Neurol Sci. 2009;282:112–9.PubMedCrossRef Horakova D, Dwyer MG, Havrdova E, et al. Gray matter atrophy and disability progression in patients with early relapsing-remitting multiple sclerosis: a 5-year longitudinal study. J Neurol Sci. 2009;282:112–9.PubMedCrossRef
79.
go back to reference Rocca MA, Mesaros S, Pagani E, et al. Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology. 2010;257:463–9.PubMedCrossRef Rocca MA, Mesaros S, Pagani E, et al. Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology. 2010;257:463–9.PubMedCrossRef
80.
go back to reference Filippi M, Preziosa P, Copetti M, et al. Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology. 2013;81:1759–67.PubMedCrossRef Filippi M, Preziosa P, Copetti M, et al. Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology. 2013;81:1759–67.PubMedCrossRef
81.
go back to reference Covey TJ, Zivadinov R, Shucard JL, et al. Information processing speed, neural efficiency, and working memory performance in multiple sclerosis: differential relationships with structural magnetic resonance imaging. J Clin Exp Neuropsychol. 2011;33:1129–45.PubMedCrossRef Covey TJ, Zivadinov R, Shucard JL, et al. Information processing speed, neural efficiency, and working memory performance in multiple sclerosis: differential relationships with structural magnetic resonance imaging. J Clin Exp Neuropsychol. 2011;33:1129–45.PubMedCrossRef
82.
go back to reference Nocentini U, Bozzali M, Spanó B, et al. Exploration of the relationships between regional grey matter atrophy and cognition in multiple sclerosis. Brain Imaging Behav. Epub 15 May 2012. Nocentini U, Bozzali M, Spanó B, et al. Exploration of the relationships between regional grey matter atrophy and cognition in multiple sclerosis. Brain Imaging Behav. Epub 15 May 2012.
83.
go back to reference Benedict RH, Hulst HE, Bergsland N, et al. Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler. 2013;19:1478–84.PubMedCrossRef Benedict RH, Hulst HE, Bergsland N, et al. Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler. 2013;19:1478–84.PubMedCrossRef
85.
go back to reference Calabrese M, Rinaldi F, Grossi P, et al. Cortical pathology and cognitive impairment in multiple sclerosis. Expert Rev Neurother. 2011;11:425–32.PubMedCrossRef Calabrese M, Rinaldi F, Grossi P, et al. Cortical pathology and cognitive impairment in multiple sclerosis. Expert Rev Neurother. 2011;11:425–32.PubMedCrossRef
86.
go back to reference Sicotte NL, Kern KC, Giesser BS, et al. Regional hippocampal atrophy in multiple sclerosis. Brain. 2008;131:1134–41.PubMedCrossRef Sicotte NL, Kern KC, Giesser BS, et al. Regional hippocampal atrophy in multiple sclerosis. Brain. 2008;131:1134–41.PubMedCrossRef
87.
go back to reference Amato MP, Bartolozzi ML, Zipoli V, et al. Neocortical volume decrease in relapsing-remitting MS patients with mild cognitive impairment. Neurology. 2004;63:89–93.PubMedCrossRef Amato MP, Bartolozzi ML, Zipoli V, et al. Neocortical volume decrease in relapsing-remitting MS patients with mild cognitive impairment. Neurology. 2004;63:89–93.PubMedCrossRef
88.
go back to reference Hulst HE, Steenwijk MD, Versteeg A, et al. Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology. 2013;80:1025–32.PubMedCrossRef Hulst HE, Steenwijk MD, Versteeg A, et al. Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology. 2013;80:1025–32.PubMedCrossRef
89.
90.
go back to reference Kapoor R, Furby J, Hayton T, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 2010;9:681–8.PubMedCrossRef Kapoor R, Furby J, Hayton T, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 2010;9:681–8.PubMedCrossRef
91.
go back to reference Zivadinov R, Reder AT, Filippi M, et al. Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology. 2008;71:136–44.PubMedCrossRef Zivadinov R, Reder AT, Filippi M, et al. Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology. 2008;71:136–44.PubMedCrossRef
92.
go back to reference Gauthier SA, Berger AM, Liptak Z, et al. Rate of brain atrophy in benign vs early multiple sclerosis. Arch Neurol. 2009;66:234–7.PubMedCrossRef Gauthier SA, Berger AM, Liptak Z, et al. Rate of brain atrophy in benign vs early multiple sclerosis. Arch Neurol. 2009;66:234–7.PubMedCrossRef
93.
go back to reference Romero JR, Vasan RS, Beiser AS, et al. Association of matrix metalloproteinases with MRI indices of brain ischemia and aging. Neurobiol Aging. 2010;31:2128–35.PubMedCentralPubMedCrossRef Romero JR, Vasan RS, Beiser AS, et al. Association of matrix metalloproteinases with MRI indices of brain ischemia and aging. Neurobiol Aging. 2010;31:2128–35.PubMedCentralPubMedCrossRef
94.
go back to reference Bernal F, Elias B, Hartung HP, et al. Regulation of matrix metalloproteinases and their inhibitors by interferon-beta: a longitudinal study in multiple sclerosis patients. Mult Scler. 2009;15:721–7.PubMedCrossRef Bernal F, Elias B, Hartung HP, et al. Regulation of matrix metalloproteinases and their inhibitors by interferon-beta: a longitudinal study in multiple sclerosis patients. Mult Scler. 2009;15:721–7.PubMedCrossRef
95.
go back to reference Debette S, Seshadri S, Beiser A, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77:461–8.PubMedCrossRef Debette S, Seshadri S, Beiser A, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77:461–8.PubMedCrossRef
96.
go back to reference Sumowski JF, Rocca MA, Leavitt VM, et al. Brain reserve and cognitive reserve in multiple sclerosis: what you’ve got and how you use it. Neurology. 2013;80:2186–93.PubMedCrossRef Sumowski JF, Rocca MA, Leavitt VM, et al. Brain reserve and cognitive reserve in multiple sclerosis: what you’ve got and how you use it. Neurology. 2013;80:2186–93.PubMedCrossRef
97.
go back to reference Amato MP, Razzolini L, Goretti B, et al. Cognitive reserve and cortical atrophy in multiple sclerosis: a longitudinal study. Neurology. 2013;80:1728–33.PubMedCrossRef Amato MP, Razzolini L, Goretti B, et al. Cognitive reserve and cortical atrophy in multiple sclerosis: a longitudinal study. Neurology. 2013;80:1728–33.PubMedCrossRef
98.
go back to reference Feinstein A, Lapshin H, O’Connor P, et al. Sub-threshold cognitive impairment in multiple sclerosis: the association with cognitive reserve. J Neurol. 2013;260:2256–61.PubMedCrossRef Feinstein A, Lapshin H, O’Connor P, et al. Sub-threshold cognitive impairment in multiple sclerosis: the association with cognitive reserve. J Neurol. 2013;260:2256–61.PubMedCrossRef
99.
go back to reference Booth AJ, Rodgers JD, Schwartz CE, et al. Active cognitive reserve influences the regional atrophy to cognition link in multiple sclerosis. J Int Neuropsychol Soc. 2013;19:1128–33.PubMedCrossRef Booth AJ, Rodgers JD, Schwartz CE, et al. Active cognitive reserve influences the regional atrophy to cognition link in multiple sclerosis. J Int Neuropsychol Soc. 2013;19:1128–33.PubMedCrossRef
100.
101.
go back to reference Barkhof F, Simon JH, Fazekas F, et al. MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nat Rev Neurol. 2011;8:13–21.PubMedCrossRef Barkhof F, Simon JH, Fazekas F, et al. MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nat Rev Neurol. 2011;8:13–21.PubMedCrossRef
102.
go back to reference Sormani MP, Arnold DL, De Stefano N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol. Epub 5 Sep 2013. Sormani MP, Arnold DL, De Stefano N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol. Epub 5 Sep 2013.
Metadata
Title
Clinical Relevance of Brain Volume Measures in Multiple Sclerosis
Authors
Nicola De Stefano
Laura Airas
Nikolaos Grigoriadis
Heinrich P. Mattle
Jonathan O’Riordan
Celia Oreja-Guevara
Finn Sellebjerg
Bruno Stankoff
Agata Walczak
Heinz Wiendl
Bernd C. Kieseier
Publication date
01-02-2014
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 2/2014
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-014-0140-z

Other articles of this Issue 2/2014

CNS Drugs 2/2014 Go to the issue