Skip to main content
Top
Published in: CNS Drugs 12/2012

01-12-2012 | Leading Article

Targeting Glutamate Receptors to Tackle the Pathogenesis, Clinical Symptoms and Levodopa-Induced Dyskinesia Associated with Parkinson’s Disease

Author: Susan Duty

Published in: CNS Drugs | Issue 12/2012

Login to get access

Abstract

The appearance of levodopa-induced dyskinesia (LID) and ongoing degeneration of nigrostriatal dopaminergic neurons are two key features of Parkinson’s disease (PD) that current treatments fail to address. Increased glutamate transmission contributes to the motor symptoms in PD, to the striatal plasticity that underpins LID and to the progression of neurodegeneration through excitotoxic mechanisms. Glutamate receptors have therefore long been considered as potential targets for pharmacological intervention in PD, with emphasis on either blocking activation of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA), N-methyl-d-aspartate (NMDA) or excitatory metabotropic glutamate (mGlu) 5 receptors or promoting the activation of group II/III mGlu receptors. Following a brief summary of the role of glutamate in PD and LID, this article explores the current status of pharmacological studies in pre-clinical rodent and primate models through to clinical trials, where applicable, that support the potential of glutamate-based therapeutic interventions. To date, AMPA antagonists have shown good efficacy against LID in rat and primate models, but the failure of perampanel to lessen LID in clinical trials casts doubt on the translational potential of this approach. In contrast, antagonists selective for NR2B-containing NMDA receptors were effective against LID in animal models and in small-scale clinical trials, though observed adverse cognitive effects need addressing. So far, mGlu5 antagonists or negative allosteric modulators (NAMs) look set to become the first introduced for tackling LID, with AFQ-056 reported to exhibit good efficacy in phase II clinical trials. NR2B antagonists and mGlu5 NAMs may subsequently prove to also be effective disease-modifying agents if their protective effects in rat and primate models of PD, respectively, are replicated in the next stages of investigation. Finally, group III mGlu4 agonists or positive allosteric modulators (PAMs), although in the early pre-clinical stages of investigation, are showing good efficacy against motor symptoms, neurodegeneration and LID. It is anticipated that the recent development of mGlu4 PAMs with improved systemic bioavailability will facilitate progression of these agents into the primate model of PD where their potential can be further explored.
Literature
1.
go back to reference de Rijk MC, Tzourio C, Breteler MM, et al. Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON collaborative study. European community concerted action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(1):10–5.PubMedCrossRef de Rijk MC, Tzourio C, Breteler MM, et al. Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON collaborative study. European community concerted action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(1):10–5.PubMedCrossRef
2.
go back to reference Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8(5):464–74.PubMedCrossRef Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8(5):464–74.PubMedCrossRef
3.
go back to reference Lang AE, Lozano AM. Parkinson’s disease: first of two parts. N Engl J Med. 1998;339(15):1044–53.PubMedCrossRef Lang AE, Lozano AM. Parkinson’s disease: first of two parts. N Engl J Med. 1998;339(15):1044–53.PubMedCrossRef
4.
go back to reference Blandini F, Nappi G, Tassorelli C, et al. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol. 2000;62(1):63–88.PubMedCrossRef Blandini F, Nappi G, Tassorelli C, et al. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol. 2000;62(1):63–88.PubMedCrossRef
5.
go back to reference Isaacson SH, Hauser RA. Improving symptom control in early Parkinson’s disease. Ther Adv Neurol Disord. 2009;2(6):29–41.PubMedCrossRef Isaacson SH, Hauser RA. Improving symptom control in early Parkinson’s disease. Ther Adv Neurol Disord. 2009;2(6):29–41.PubMedCrossRef
6.
go back to reference Marsden CD, Parkes JD. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet. 1997;1(8007):345–9. Marsden CD, Parkes JD. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet. 1997;1(8007):345–9.
7.
go back to reference Hametner E, Seppi K, Poewe W. The clinical spectrum of levodopa-induced motor complications. J Neurol. 2010;257(Suppl. 2):S268–75.PubMedCrossRef Hametner E, Seppi K, Poewe W. The clinical spectrum of levodopa-induced motor complications. J Neurol. 2010;257(Suppl. 2):S268–75.PubMedCrossRef
8.
go back to reference Blandini F, Porter RH, Greenamayre JT. Glutamate and Parkinson’s disease. Mol Neurobiol. 1996;12(1):73–94.PubMedCrossRef Blandini F, Porter RH, Greenamayre JT. Glutamate and Parkinson’s disease. Mol Neurobiol. 1996;12(1):73–94.PubMedCrossRef
9.
go back to reference Hirsch EC, Périer C, Orieux G, et al. Metabolic effects of nigrostriatal denervation in basal ganglia. Trends Neurosci. 2000;23(10 Suppl):S78–85.PubMedCrossRef Hirsch EC, Périer C, Orieux G, et al. Metabolic effects of nigrostriatal denervation in basal ganglia. Trends Neurosci. 2000;23(10 Suppl):S78–85.PubMedCrossRef
10.
go back to reference Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord. 2008;23(Suppl. 3):S548–59.PubMedCrossRef Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord. 2008;23(Suppl. 3):S548–59.PubMedCrossRef
11.
go back to reference Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91.PubMedCrossRef Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91.PubMedCrossRef
12.
go back to reference Kashani A, Batancur C, Giros B, et al. Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson’s disease. Neurobiol Aging. 2007;28(4):568–78.PubMedCrossRef Kashani A, Batancur C, Giros B, et al. Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson’s disease. Neurobiol Aging. 2007;28(4):568–78.PubMedCrossRef
13.
go back to reference Jiménez-Jiménez FJ, Molina JA, Vargas C, et al. Neurotransmitter amino acids in cerebrospinal fluid of patients with Parkinson’s disease. J Neurol Sci. 1996;141(1–2):39–44.PubMedCrossRef Jiménez-Jiménez FJ, Molina JA, Vargas C, et al. Neurotransmitter amino acids in cerebrospinal fluid of patients with Parkinson’s disease. J Neurol Sci. 1996;141(1–2):39–44.PubMedCrossRef
14.
go back to reference Kuiper MA, Teerlink T, Visser JJ, Bergmans PLM, et al. l-Glutamate, l-arginine and l-cirtulline levels in cerebrospinal fluid of Parkinson’s disease, multiple system atrophy, and Alzheimer’s patients. J Neural Transm. 2000;107(2):183–9.PubMedCrossRef Kuiper MA, Teerlink T, Visser JJ, Bergmans PLM, et al. l-Glutamate, l-arginine and l-cirtulline levels in cerebrospinal fluid of Parkinson’s disease, multiple system atrophy, and Alzheimer’s patients. J Neural Transm. 2000;107(2):183–9.PubMedCrossRef
15.
go back to reference Ondarza R, Velasco F, Velasco M, et al. Neurotransmitter levels in cerebrospinal fluid in relation to severity of symptoms and response to medical therapy in Parkinson’s disease. Stereotact Funct Neurosurg. 1994;62(1–4):90–7.PubMedCrossRef Ondarza R, Velasco F, Velasco M, et al. Neurotransmitter levels in cerebrospinal fluid in relation to severity of symptoms and response to medical therapy in Parkinson’s disease. Stereotact Funct Neurosurg. 1994;62(1–4):90–7.PubMedCrossRef
16.
go back to reference Gerlach M, Gsell W, Kornhuber J, et al. A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia thalamo-cortical circuits in Parkinson syndrome. Brain Res. 1996;741(1–2):142–52.PubMedCrossRef Gerlach M, Gsell W, Kornhuber J, et al. A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia thalamo-cortical circuits in Parkinson syndrome. Brain Res. 1996;741(1–2):142–52.PubMedCrossRef
17.
go back to reference Rinne JO, Halonen T, Riekkinen PJ, et al. Free amino acids in the brain of patients with Parkinson’s disease. Neurosci Lett. 1988;94(1–2):182–6.PubMedCrossRef Rinne JO, Halonen T, Riekkinen PJ, et al. Free amino acids in the brain of patients with Parkinson’s disease. Neurosci Lett. 1988;94(1–2):182–6.PubMedCrossRef
18.
go back to reference Cenci MA, Lundblad M. Post- versus presynaptic plasticity in l-dopa-induced dyskinesia. J Neurochem. 2006;99(2):381–92.PubMedCrossRef Cenci MA, Lundblad M. Post- versus presynaptic plasticity in l-dopa-induced dyskinesia. J Neurochem. 2006;99(2):381–92.PubMedCrossRef
19.
20.
go back to reference Calabresi P, Di Fillippo M, Ghiglieri V, et al. Levodopa-induced dyskinesia in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol. 2010;9(11):1106–17.PubMedCrossRef Calabresi P, Di Fillippo M, Ghiglieri V, et al. Levodopa-induced dyskinesia in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol. 2010;9(11):1106–17.PubMedCrossRef
21.
go back to reference Iravani MM, McCreary AC, Jenner P. Striatal plasticity in Parkinson’s disease and l-dopa-induced dyskinesia. Parkinsonism Relat Disord. 2012;18(Suppl. 1):S123–5.PubMedCrossRef Iravani MM, McCreary AC, Jenner P. Striatal plasticity in Parkinson’s disease and l-dopa-induced dyskinesia. Parkinsonism Relat Disord. 2012;18(Suppl. 1):S123–5.PubMedCrossRef
22.
go back to reference Sgambato-Faure V, Cenci MA. Glutamatergic mechanisms in the dyskinesia induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol. 2012;96(1):69–86.PubMedCrossRef Sgambato-Faure V, Cenci MA. Glutamatergic mechanisms in the dyskinesia induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol. 2012;96(1):69–86.PubMedCrossRef
23.
go back to reference Blandini F, Armentero MT. New pharmacological avenues for the treatment of l-dopa-induced dyskinesia in Parkinson’s disease: targeting glutamate and adenosine receptors. Expert Opin Investig Drugs. 2012;21(2):153–68.PubMedCrossRef Blandini F, Armentero MT. New pharmacological avenues for the treatment of l-dopa-induced dyskinesia in Parkinson’s disease: targeting glutamate and adenosine receptors. Expert Opin Investig Drugs. 2012;21(2):153–68.PubMedCrossRef
24.
go back to reference Dupre KB, Ostock CY, Eskow Juanarajs KL, et al. Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol. 2011;229(2):288–99.PubMedCrossRef Dupre KB, Ostock CY, Eskow Juanarajs KL, et al. Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol. 2011;229(2):288–99.PubMedCrossRef
25.
go back to reference Samadi P, Grégoire L, Morissette M, et al. mGluR5 metabotropic glutamate receptors and dyskinesia in MPTP monkeys. Neurobiol Aging. 2008;29(7):1040–51.PubMedCrossRef Samadi P, Grégoire L, Morissette M, et al. mGluR5 metabotropic glutamate receptors and dyskinesia in MPTP monkeys. Neurobiol Aging. 2008;29(7):1040–51.PubMedCrossRef
26.
go back to reference Outtara B, Grégoire L, Mirissette M, et al. Metabotropic glutamate receptor 5 in levodopa-induced motor complications. Neurobiol Aging. 2011;32(7):1286–95.CrossRef Outtara B, Grégoire L, Mirissette M, et al. Metabotropic glutamate receptor 5 in levodopa-induced motor complications. Neurobiol Aging. 2011;32(7):1286–95.CrossRef
27.
go back to reference Samadi P, Grégoire L, Morissette M, Calon F. Hadj Tahar A, Bélanger N, Dridi M, Bédard PJ, Di Paolo T. Basal ganglia group II metabotropic glutamate receptors specific binding in non-human primate model of l-dopa-induced dyskinesias. Neuropharmacology. 2008;54(2):258–68.PubMedCrossRef Samadi P, Grégoire L, Morissette M, Calon F. Hadj Tahar A, Bélanger N, Dridi M, Bédard PJ, Di Paolo T. Basal ganglia group II metabotropic glutamate receptors specific binding in non-human primate model of l-dopa-induced dyskinesias. Neuropharmacology. 2008;54(2):258–68.PubMedCrossRef
28.
go back to reference Samadi P, Rajput A, Calon F, Grégoire L, Hornykiewicz O, Rajput AH, Di Paolo T. Metabotropic glutamate receptor II in the brains of Parkinsonian patients. J Neuropathol Exp Neurol. 2009;68(4):374–82.PubMedCrossRef Samadi P, Rajput A, Calon F, Grégoire L, Hornykiewicz O, Rajput AH, Di Paolo T. Metabotropic glutamate receptor II in the brains of Parkinsonian patients. J Neuropathol Exp Neurol. 2009;68(4):374–82.PubMedCrossRef
29.
go back to reference Calon F, Rajput AH, Hornykiewicz O, et al. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis. 2003;14(3):404–16.PubMedCrossRef Calon F, Rajput AH, Hornykiewicz O, et al. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis. 2003;14(3):404–16.PubMedCrossRef
30.
go back to reference Hallett PJ, Dunah AW, Ravenscroft P, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology. 2005;48(4):503–16.PubMedCrossRef Hallett PJ, Dunah AW, Ravenscroft P, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology. 2005;48(4):503–16.PubMedCrossRef
31.
go back to reference Gardoni F, Sgobio C, Pendolino V, et al. Targeting NR2A-containing NMDA receptors reduces l-dopa-induced dyskinesia. Neurobiol Aging. 2012;33(9):2138–44.PubMedCrossRef Gardoni F, Sgobio C, Pendolino V, et al. Targeting NR2A-containing NMDA receptors reduces l-dopa-induced dyskinesia. Neurobiol Aging. 2012;33(9):2138–44.PubMedCrossRef
32.
go back to reference Calon F, Morissette M, Ghribi O, et al. Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(1):127–38.PubMedCrossRef Calon F, Morissette M, Ghribi O, et al. Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(1):127–38.PubMedCrossRef
33.
go back to reference Outtara B, Hoyer D, Grégoire L, et al. Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience. 2010;167(4):1160–7.CrossRef Outtara B, Hoyer D, Grégoire L, et al. Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias. Neuroscience. 2010;167(4):1160–7.CrossRef
34.
go back to reference Hurley MJ, Jackson MJ, Smith LA, et al. Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. Eur J Neurosci. 2005;21(12):3240–50.PubMedCrossRef Hurley MJ, Jackson MJ, Smith LA, et al. Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. Eur J Neurosci. 2005;21(12):3240–50.PubMedCrossRef
35.
go back to reference Ahmed I, Bose SK, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain. 2011;134(4):979–86.PubMedCrossRef Ahmed I, Bose SK, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain. 2011;134(4):979–86.PubMedCrossRef
36.
go back to reference Santini E, Valjent E, Usiello A, et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-dopa-induced dyskinesia. J Neurosci. 2007;27(26):6995–7005.PubMedCrossRef Santini E, Valjent E, Usiello A, et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-dopa-induced dyskinesia. J Neurosci. 2007;27(26):6995–7005.PubMedCrossRef
37.
go back to reference Ba M, Kong M, Yu G, et al. GluR1 phosphorylation and persistent expression of levodopa-induced motor response alterations in the hemi-parkinsonian rat. Neurochem Res. 2011;36(6):1135–44.PubMedCrossRef Ba M, Kong M, Yu G, et al. GluR1 phosphorylation and persistent expression of levodopa-induced motor response alterations in the hemi-parkinsonian rat. Neurochem Res. 2011;36(6):1135–44.PubMedCrossRef
38.
go back to reference Santini E, Sgamboto-Faure V, Li Q, et al. Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in l-dopa-induced dyskinesia. PLoS One. 2010;5(8):e12322.PubMedCrossRef Santini E, Sgamboto-Faure V, Li Q, et al. Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in l-dopa-induced dyskinesia. PLoS One. 2010;5(8):e12322.PubMedCrossRef
39.
go back to reference Wang JQ, Arora A, Yang L, et al. Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol. 2005;32(3):237–49.PubMedCrossRef Wang JQ, Arora A, Yang L, et al. Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol. 2005;32(3):237–49.PubMedCrossRef
40.
go back to reference Ba M, Kong M, Yang H, et al. Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa treated rats. Neurochem Res. 2006;31(11):1337–47.PubMedCrossRef Ba M, Kong M, Yang H, et al. Changes in subcellular distribution and phosphorylation of GluR1 in lesioned striatum of 6-hydroxydopamine-lesioned and l-dopa treated rats. Neurochem Res. 2006;31(11):1337–47.PubMedCrossRef
41.
go back to reference Silverdale MA, Kobylecki C, Hallett PJ, et al. Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse. 2010;64(2):177–80.PubMedCrossRef Silverdale MA, Kobylecki C, Hallett PJ, et al. Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse. 2010;64(2):177–80.PubMedCrossRef
42.
go back to reference Oh JD, Russell DS, Vaughan CL, et al. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and l-dopa administration. Brain Res. 1998;813(1):150–9.PubMedCrossRef Oh JD, Russell DS, Vaughan CL, et al. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and l-dopa administration. Brain Res. 1998;813(1):150–9.PubMedCrossRef
43.
go back to reference Gardoni F, Picconi B, Ghiglieri V, et al. A critical interaction between NR2B and MAGUK in l-dopa-induced dyskinesia. J Neurosci. 2006;26(11):2914–22.PubMedCrossRef Gardoni F, Picconi B, Ghiglieri V, et al. A critical interaction between NR2B and MAGUK in l-dopa-induced dyskinesia. J Neurosci. 2006;26(11):2914–22.PubMedCrossRef
44.
go back to reference Muñoz A, Li Q, Gardoni F, et al. Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of l-dopa-induced dyskinesia. Brain. 2008;131(12):3380–4.PubMedCrossRef Muñoz A, Li Q, Gardoni F, et al. Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of l-dopa-induced dyskinesia. Brain. 2008;131(12):3380–4.PubMedCrossRef
45.
go back to reference Picconi B, Centonze D, Håkansson K, et al. Loss of bidirectional striatal synaptic plasticity in l-dopa-induced dyskinesia. Nat Neurosci. 2003;6(5):501–6.PubMed Picconi B, Centonze D, Håkansson K, et al. Loss of bidirectional striatal synaptic plasticity in l-dopa-induced dyskinesia. Nat Neurosci. 2003;6(5):501–6.PubMed
46.
go back to reference Massey PV, Johnson BE, Moult PR, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci. 2004;24(36):7821–8.PubMedCrossRef Massey PV, Johnson BE, Moult PR, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci. 2004;24(36):7821–8.PubMedCrossRef
47.
go back to reference Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Mov Disord. 2007;22(Suppl. 17):S335–42.PubMedCrossRef Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Mov Disord. 2007;22(Suppl. 17):S335–42.PubMedCrossRef
48.
go back to reference Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26(6):1049–55.PubMedCrossRef Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26(6):1049–55.PubMedCrossRef
49.
go back to reference Blandini F. An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Funct Neurol. 2010;25(2):65–71.PubMed Blandini F. An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Funct Neurol. 2010;25(2):65–71.PubMed
50.
go back to reference Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch Eur J Physiol. 2010;460(2):525–42.CrossRef Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch Eur J Physiol. 2010;460(2):525–42.CrossRef
51.
go back to reference Bevan MD, Bolam JP, Crossman AR. Convergent synaptic input from the neostriatum and the subthalamus onto identified nigrothalamic neurons in the rat. Eur J Neurosci. 1994;6(3):320–34.PubMedCrossRef Bevan MD, Bolam JP, Crossman AR. Convergent synaptic input from the neostriatum and the subthalamus onto identified nigrothalamic neurons in the rat. Eur J Neurosci. 1994;6(3):320–34.PubMedCrossRef
52.
go back to reference Kornhuber J, Kim JS, Kornhuber ME, et al. The cortico-nigral projection: reduced glutamate content in the substantia nigra following frontal cortex ablation in the rat. Brain Res. 1984;322(1):124–6.PubMedCrossRef Kornhuber J, Kim JS, Kornhuber ME, et al. The cortico-nigral projection: reduced glutamate content in the substantia nigra following frontal cortex ablation in the rat. Brain Res. 1984;322(1):124–6.PubMedCrossRef
53.
go back to reference Helton TD, Otsuka T, Lee M-C, et al. Pruning and loss of excitatory synapses by the parkin ubiquitin ligase. Proc Natl Acad Sci USA. 2008;105(49):19492–7.PubMedCrossRef Helton TD, Otsuka T, Lee M-C, et al. Pruning and loss of excitatory synapses by the parkin ubiquitin ligase. Proc Natl Acad Sci USA. 2008;105(49):19492–7.PubMedCrossRef
54.
go back to reference Lücking CB, Dürr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med. 2000;342(21):1560–7.PubMedCrossRef Lücking CB, Dürr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med. 2000;342(21):1560–7.PubMedCrossRef
55.
go back to reference Abou-Sleiman PM, Healy DG, Wood NW. Causes of Parkinson’s disease: genetics of DJ-1. Cell Tissue Res. 2004;318(1):185–8.PubMedCrossRef Abou-Sleiman PM, Healy DG, Wood NW. Causes of Parkinson’s disease: genetics of DJ-1. Cell Tissue Res. 2004;318(1):185–8.PubMedCrossRef
56.
go back to reference Aleyasin H, Rousseaux MWC, Phillips M, et al. The Parkinson’s disease gene DJ-1 is also a key regulator of stroke-induced damage. Proc Natl Acad Sci USA. 2007;104(47):18748–53.PubMedCrossRef Aleyasin H, Rousseaux MWC, Phillips M, et al. The Parkinson’s disease gene DJ-1 is also a key regulator of stroke-induced damage. Proc Natl Acad Sci USA. 2007;104(47):18748–53.PubMedCrossRef
57.
58.
go back to reference Sawada H, Shimohama S, Tamura Y, et al. Methylphenylpyridium ion (MPP+) enhances glutamate-induced cytotoxicity against dopaminergic neurons in cultures rat mesencephalon. J Neurosci Res. 1996;43(1):55–62.PubMedCrossRef Sawada H, Shimohama S, Tamura Y, et al. Methylphenylpyridium ion (MPP+) enhances glutamate-induced cytotoxicity against dopaminergic neurons in cultures rat mesencephalon. J Neurosci Res. 1996;43(1):55–62.PubMedCrossRef
59.
go back to reference Hatcher JM, Pennell KD, Miller GW. Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol Sci. 2008;29(6):322–9.PubMedCrossRef Hatcher JM, Pennell KD, Miller GW. Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol Sci. 2008;29(6):322–9.PubMedCrossRef
60.
go back to reference Wu YN, Johnson SW. Rotenone reduces Mg2+-dependent block of NMDA currents in substantia nigra dopamine neurons. Neurotoxicology. 2009;30(2):320–5.PubMedCrossRef Wu YN, Johnson SW. Rotenone reduces Mg2+-dependent block of NMDA currents in substantia nigra dopamine neurons. Neurotoxicology. 2009;30(2):320–5.PubMedCrossRef
61.
go back to reference Shimizu K, Matsubara K, Ohtaki K, et al. Paraquat leads to dopaminergic neuronal vulnerability in organotypic midbrain cultures. Neurosci Res. 2003;46(4):523–32.PubMedCrossRef Shimizu K, Matsubara K, Ohtaki K, et al. Paraquat leads to dopaminergic neuronal vulnerability in organotypic midbrain cultures. Neurosci Res. 2003;46(4):523–32.PubMedCrossRef
62.
go back to reference Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15(4):961–73.PubMedCrossRef Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15(4):961–73.PubMedCrossRef
63.
go back to reference Tatton WG, Chalmers-Redman R, Brown D, et al. Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol. 2003;53(Suppl. 3):S61–70.PubMedCrossRef Tatton WG, Chalmers-Redman R, Brown D, et al. Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol. 2003;53(Suppl. 3):S61–70.PubMedCrossRef
64.
go back to reference Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol. 1992;32(6):804–12.PubMedCrossRef Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol. 1992;32(6):804–12.PubMedCrossRef
65.
go back to reference Chatha BT, Bernard V, Streit P, et al. Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience. 2000;101(4):1037–51.PubMedCrossRef Chatha BT, Bernard V, Streit P, et al. Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience. 2000;101(4):1037–51.PubMedCrossRef
66.
go back to reference Bernard V, Somogyi P, Bolam JP. Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J Neurosci. 1997;17(2):819–33.PubMed Bernard V, Somogyi P, Bolam JP. Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J Neurosci. 1997;17(2):819–33.PubMed
67.
go back to reference Klockgether T, Turski L, Honoré T, et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol. 1991;39(5):717–23.CrossRef Klockgether T, Turski L, Honoré T, et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol. 1991;39(5):717–23.CrossRef
68.
go back to reference Löschmann PA, Lange KW, Kunow M, et al. Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with l-dopa in models of Parkinson’s disease. J Neural Transm Park Dis Dement Sect. 1991;3(3):203–13.PubMedCrossRef Löschmann PA, Lange KW, Kunow M, et al. Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with l-dopa in models of Parkinson’s disease. J Neural Transm Park Dis Dement Sect. 1991;3(3):203–13.PubMedCrossRef
69.
go back to reference Luquin MR, Obeso JA, Laguna J, et al. The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. Eur J Pharmacol. 1993;235(2–3):297–300.PubMedCrossRef Luquin MR, Obeso JA, Laguna J, et al. The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. Eur J Pharmacol. 1993;235(2–3):297–300.PubMedCrossRef
70.
go back to reference Konitsiotis S, Blanchet PJ, Verhagen L, et al. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology. 2000;54(8):1589–95.PubMedCrossRef Konitsiotis S, Blanchet PJ, Verhagen L, et al. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology. 2000;54(8):1589–95.PubMedCrossRef
71.
go back to reference Silverdale MA, Nicholson SL, Crossman AR, et al. Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov Disord. 2005;20(4):403–9.PubMedCrossRef Silverdale MA, Nicholson SL, Crossman AR, et al. Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov Disord. 2005;20(4):403–9.PubMedCrossRef
72.
go back to reference Marin C, Jimenez A, Bonastre M, et al. LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopa-induced motor alterations in Parkinsonian rats. Synapse. 2001;42(1):40–7.PubMedCrossRef Marin C, Jimenez A, Bonastre M, et al. LY293558, an AMPA glutamate receptor antagonist, prevents and reverses levodopa-induced motor alterations in Parkinsonian rats. Synapse. 2001;42(1):40–7.PubMedCrossRef
73.
go back to reference Eggert K, Squillacote D, Barone P, et al. Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Mov Disord. 2010;25(7):896–905.PubMedCrossRef Eggert K, Squillacote D, Barone P, et al. Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Mov Disord. 2010;25(7):896–905.PubMedCrossRef
74.
go back to reference Lees A, Fahn S, Eggert KM, et al. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord. 2012;27(2):284–8.PubMedCrossRef Lees A, Fahn S, Eggert KM, et al. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Mov Disord. 2012;27(2):284–8.PubMedCrossRef
75.
go back to reference Kobylecki C, Cenci MA, Crossman AR, et al. Calcium-permeable AMPA receptors are involved in the induction and expression of l-dopa-induced dyskinesia in Parkinson’s disease. J Neurochem. 2010;114(2):499–511.PubMedCrossRef Kobylecki C, Cenci MA, Crossman AR, et al. Calcium-permeable AMPA receptors are involved in the induction and expression of l-dopa-induced dyskinesia in Parkinson’s disease. J Neurochem. 2010;114(2):499–511.PubMedCrossRef
76.
go back to reference Turski L, Bressler K, Rettig KJ, et al. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature. 1991;349(6308):414–8.PubMedCrossRef Turski L, Bressler K, Rettig KJ, et al. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature. 1991;349(6308):414–8.PubMedCrossRef
77.
go back to reference Murray TK, Whalley K, Robinson CS, et al. LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2003;306(2):752–62.PubMedCrossRef Murray TK, Whalley K, Robinson CS, et al. LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2003;306(2):752–62.PubMedCrossRef
78.
go back to reference O’Neill MJ, Murray TK, Whalley K, et al. Neurotrophic actions of the novel AMPA receptor potentiator, LY404187, in rodent models of Parkinson’s disease. Eur J Pharmacol. 2004;486(2):163–74.PubMedCrossRef O’Neill MJ, Murray TK, Whalley K, et al. Neurotrophic actions of the novel AMPA receptor potentiator, LY404187, in rodent models of Parkinson’s disease. Eur J Pharmacol. 2004;486(2):163–74.PubMedCrossRef
79.
go back to reference Muir KW, Grosset DG, Gamzu E, et al. Pharmacological effects of the non-competitive NMDA antagonist CNS 1102 in normal volunteers. Br J Clin Pharmacol. 1994;38(1):33–8.PubMedCrossRef Muir KW, Grosset DG, Gamzu E, et al. Pharmacological effects of the non-competitive NMDA antagonist CNS 1102 in normal volunteers. Br J Clin Pharmacol. 1994;38(1):33–8.PubMedCrossRef
80.
go back to reference Low SJ, Roland CL. Review of NMDA antagonist-induced neurotoxicity and implications for clinical development. Int J Clin Pharmacol Ther. 2004;42(1):1–14.PubMed Low SJ, Roland CL. Review of NMDA antagonist-induced neurotoxicity and implications for clinical development. Int J Clin Pharmacol Ther. 2004;42(1):1–14.PubMed
81.
go back to reference Carlsson M, Svensson A. The non-competitive NMDA antagonists MK-801 and PCP, as well as the competitive NMDA antagonist SDZEAA494 (D-CPPene), interact synergistically with clonidine to promote locomotion in monoamine-depleted mice. Life Sci. 1990;47(19):1729–36.PubMedCrossRef Carlsson M, Svensson A. The non-competitive NMDA antagonists MK-801 and PCP, as well as the competitive NMDA antagonist SDZEAA494 (D-CPPene), interact synergistically with clonidine to promote locomotion in monoamine-depleted mice. Life Sci. 1990;47(19):1729–36.PubMedCrossRef
82.
go back to reference Crossman AR, Peggs D, Boyce S, et al. Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey. Neuropharmacology. 1989;28(11):1271–3.PubMedCrossRef Crossman AR, Peggs D, Boyce S, et al. Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey. Neuropharmacology. 1989;28(11):1271–3.PubMedCrossRef
83.
go back to reference Papa SM, Chase TN. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol. 1996;39(5):574–8.PubMedCrossRef Papa SM, Chase TN. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol. 1996;39(5):574–8.PubMedCrossRef
84.
go back to reference Kelsey JE, Mague SD, Pijanowski RS, et al. NMDA receptor antagonists ameliorate the stepping deficits produce by unilateral medial forebrain bundle injections of 6-OHDA in rats. Psychopharmacology (Berl). 2004;175(2):179–88.CrossRef Kelsey JE, Mague SD, Pijanowski RS, et al. NMDA receptor antagonists ameliorate the stepping deficits produce by unilateral medial forebrain bundle injections of 6-OHDA in rats. Psychopharmacology (Berl). 2004;175(2):179–88.CrossRef
85.
go back to reference Kosinski CM, Standaert DG, Counihan TJ, et al. Expression of N-methyl-d-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol. 1998;390(1):63–74.PubMedCrossRef Kosinski CM, Standaert DG, Counihan TJ, et al. Expression of N-methyl-d-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J Comp Neurol. 1998;390(1):63–74.PubMedCrossRef
86.
go back to reference Blanchet PJ, Konitsiotis S, Whittemore ER, et al. Differing effects of N-methyl-d-aspartate receptor subtype selective antagonists on dyskinesia in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther. 1999;290(3):1034–40.PubMed Blanchet PJ, Konitsiotis S, Whittemore ER, et al. Differing effects of N-methyl-d-aspartate receptor subtype selective antagonists on dyskinesia in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther. 1999;290(3):1034–40.PubMed
87.
go back to reference Nash JE, Hill MP, Brotchie JM. Anti-parkinsonian actions of blockade of NR2B-containing NMDA receptors in the reserpine-treated rat. Exp Neurol. 1999;155(1):42–8.PubMedCrossRef Nash JE, Hill MP, Brotchie JM. Anti-parkinsonian actions of blockade of NR2B-containing NMDA receptors in the reserpine-treated rat. Exp Neurol. 1999;155(1):42–8.PubMedCrossRef
88.
go back to reference Steece-Collier K, Chambers LK, Jaw-Tsai SS, et al. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors. Exp Neurol. 2000;163(1):239–43.PubMedCrossRef Steece-Collier K, Chambers LK, Jaw-Tsai SS, et al. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors. Exp Neurol. 2000;163(1):239–43.PubMedCrossRef
89.
go back to reference Löschmann PA, De Groote C, Smith L, et al. Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol. 2004;187(1):86–93.PubMedCrossRef Löschmann PA, De Groote C, Smith L, et al. Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol. 2004;187(1):86–93.PubMedCrossRef
90.
go back to reference Rylander D, Recchia A, Mela F, et al. Pharmacological modulation of glutamate transmission in a rat model of l-dopa-induced dyskinesia: effects on motor behaviour and striatal nuclear signaling. J Pharmacol Exp Ther. 2009;330(1):227–35.PubMedCrossRef Rylander D, Recchia A, Mela F, et al. Pharmacological modulation of glutamate transmission in a rat model of l-dopa-induced dyskinesia: effects on motor behaviour and striatal nuclear signaling. J Pharmacol Exp Ther. 2009;330(1):227–35.PubMedCrossRef
91.
go back to reference Nash JE, Fox SH, Henry B, et al. Antiparkinsonian actions of ifenprodil in the MPTP-lesoned marmoset model of Parkinson’s disease. Exp Neurol. 2000;165(1):136–42.PubMedCrossRef Nash JE, Fox SH, Henry B, et al. Antiparkinsonian actions of ifenprodil in the MPTP-lesoned marmoset model of Parkinson’s disease. Exp Neurol. 2000;165(1):136–42.PubMedCrossRef
92.
go back to reference Nash JE, Ravenscroft P, McGuire S, et al. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates l-dopa-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of l-dopa in the MPTP-treated marmoset model of Parkinson’s disease. Exp Neurol. 2004;188(2):471–9.PubMedCrossRef Nash JE, Ravenscroft P, McGuire S, et al. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates l-dopa-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of l-dopa in the MPTP-treated marmoset model of Parkinson’s disease. Exp Neurol. 2004;188(2):471–9.PubMedCrossRef
93.
go back to reference Addy C, Assaid C, Hreniuk D, et al. Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J Clin Pharmacol. 2009;49(7):856–64.PubMedCrossRef Addy C, Assaid C, Hreniuk D, et al. Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J Clin Pharmacol. 2009;49(7):856–64.PubMedCrossRef
94.
go back to reference Fasano A, Ricciardi L, Pettorusso M, et al. Management of punding in Parkinson’s disease: an open-label prospective study. J Neurol. 2011;258(4):656–60.PubMedCrossRef Fasano A, Ricciardi L, Pettorusso M, et al. Management of punding in Parkinson’s disease: an open-label prospective study. J Neurol. 2011;258(4):656–60.PubMedCrossRef
95.
go back to reference Inzelberg R, Bonuccelli U, Schechtman E, et al. Association between amantadine and the onset of dementia in Parkinson’s disease. Mov Disord. 2006;21(9):1375–9.PubMedCrossRef Inzelberg R, Bonuccelli U, Schechtman E, et al. Association between amantadine and the onset of dementia in Parkinson’s disease. Mov Disord. 2006;21(9):1375–9.PubMedCrossRef
96.
go back to reference Emre M, Tsolaki M, Bonucccelli U, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomized, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(10):969–77.PubMedCrossRef Emre M, Tsolaki M, Bonucccelli U, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomized, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(10):969–77.PubMedCrossRef
97.
go back to reference Litvinenko IV, Odinak MM, Mogli’naya VI, et al. Use of memantine (akatinol) for the correction of cognitive impairments in Parkinson’s disease complicated by dementia. Neurosci Behav Physiol. 2010;40(2):149–55.PubMedCrossRef Litvinenko IV, Odinak MM, Mogli’naya VI, et al. Use of memantine (akatinol) for the correction of cognitive impairments in Parkinson’s disease complicated by dementia. Neurosci Behav Physiol. 2010;40(2):149–55.PubMedCrossRef
98.
go back to reference Metman VL, Del Dotto P, LePoole K, et al. Amantadine for levodopa-induced dyskinesia: a 1-year follow-up study. Arch Neurol. 1999;56(11):1383–6.PubMedCrossRef Metman VL, Del Dotto P, LePoole K, et al. Amantadine for levodopa-induced dyskinesia: a 1-year follow-up study. Arch Neurol. 1999;56(11):1383–6.PubMedCrossRef
99.
go back to reference Luginger E, Wenning GK, Bösch S, et al. Beneficial effects of amantadine on l-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000;15(5):873–8.PubMedCrossRef Luginger E, Wenning GK, Bösch S, et al. Beneficial effects of amantadine on l-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000;15(5):873–8.PubMedCrossRef
100.
go back to reference Wolf E, Seppi K, Katzenschlager R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord. 2010;25(10):1357–63.PubMedCrossRef Wolf E, Seppi K, Katzenschlager R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord. 2010;25(10):1357–63.PubMedCrossRef
101.
go back to reference Hanağasi HA, Kaptanoglu G, Sahin HA, et al. The use of NMDA antagonist memantine in drug-resistant dyskinesia resulting from l-dopa. Mov Disord. 2000;15(5):1016–7.PubMedCrossRef Hanağasi HA, Kaptanoglu G, Sahin HA, et al. The use of NMDA antagonist memantine in drug-resistant dyskinesia resulting from l-dopa. Mov Disord. 2000;15(5):1016–7.PubMedCrossRef
102.
go back to reference Varanese S, Howard J, Di Rocco A. NMDA antagonist memantine improves levodopa-induced dyskinesia and “on–off” phenomena in Parkinson’s disease. Mov Disord. 2010;24(4):508–10.CrossRef Varanese S, Howard J, Di Rocco A. NMDA antagonist memantine improves levodopa-induced dyskinesia and “on–off” phenomena in Parkinson’s disease. Mov Disord. 2010;24(4):508–10.CrossRef
103.
go back to reference Merello M, Nouzeilles MI, Cammarota A, et al. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol. 1999;22(5):273–6.PubMed Merello M, Nouzeilles MI, Cammarota A, et al. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol. 1999;22(5):273–6.PubMed
104.
go back to reference Engber TM, Papa SM, Boldry RC, et al. NMDA receptor blockade reverses motor response alterations induced by levodopa. Neuroreport. 1994;5(18):2586–8.PubMedCrossRef Engber TM, Papa SM, Boldry RC, et al. NMDA receptor blockade reverses motor response alterations induced by levodopa. Neuroreport. 1994;5(18):2586–8.PubMedCrossRef
105.
go back to reference Dupre KB, Eskow KL, Steiniger A, et al. Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on l-dopa-induced dyskinesia and rotational behaviours in the hemi-parkinsonian rat. Psychopharmacology. 2008;199(1):99–108.PubMedCrossRef Dupre KB, Eskow KL, Steiniger A, et al. Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on l-dopa-induced dyskinesia and rotational behaviours in the hemi-parkinsonian rat. Psychopharmacology. 2008;199(1):99–108.PubMedCrossRef
106.
go back to reference Paquette MA, Anderson AM, Lewis JR, et al. MK-801 inhibits l-dopa-induced abnormal involuntary movements only at doses that worsen parkinsonism. Neuropharmacology. 2010;58(7):1002–8.PubMedCrossRef Paquette MA, Anderson AM, Lewis JR, et al. MK-801 inhibits l-dopa-induced abnormal involuntary movements only at doses that worsen parkinsonism. Neuropharmacology. 2010;58(7):1002–8.PubMedCrossRef
107.
go back to reference Gomez-Mancilla B, Bédard PJ. Effect of nondopaminergic drugs on l-dopa-induced dyskinesia in MPTP-treated monkeys. Clin Neuropharmacol. 1993;16(5):418–27.PubMedCrossRef Gomez-Mancilla B, Bédard PJ. Effect of nondopaminergic drugs on l-dopa-induced dyskinesia in MPTP-treated monkeys. Clin Neuropharmacol. 1993;16(5):418–27.PubMedCrossRef
108.
go back to reference Wessell RH, Ahmed SM, Meniti FS, et al. NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology. 2004;47(2):184–94.PubMedCrossRef Wessell RH, Ahmed SM, Meniti FS, et al. NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology. 2004;47(2):184–94.PubMedCrossRef
109.
go back to reference Truong L, Allbutt HN, Coster MJ, et al. Behavioural effects of a selective NMDA NR1A/2B receptor antagonist in rats with unilateral 6-OHDA + parafasicular lesions. Brain Res Bull. 2009;78(2–3):91–6.PubMedCrossRef Truong L, Allbutt HN, Coster MJ, et al. Behavioural effects of a selective NMDA NR1A/2B receptor antagonist in rats with unilateral 6-OHDA + parafasicular lesions. Brain Res Bull. 2009;78(2–3):91–6.PubMedCrossRef
110.
go back to reference Warraich ST, Allbutt HN, Billing R, et al. Evaluation of behavioural effects of a selective NMDA NR1A/2B receptor antagonist in the unilateral 6-OHDA lesion rat model. Brain Res Bull. 2009;78(2–3):85–90.PubMedCrossRef Warraich ST, Allbutt HN, Billing R, et al. Evaluation of behavioural effects of a selective NMDA NR1A/2B receptor antagonist in the unilateral 6-OHDA lesion rat model. Brain Res Bull. 2009;78(2–3):85–90.PubMedCrossRef
111.
go back to reference Morissette M, Dridi M, Calon F, et al. Prevention of levodopa-induced dyskinesias by a selective NR1/NR2B N-methyl-d-aspartate receptor antagonist in parkinsonian monkeys: implication of preproenkephalin. Mov Disord. 2006;21(1):9–17.PubMedCrossRef Morissette M, Dridi M, Calon F, et al. Prevention of levodopa-induced dyskinesias by a selective NR1/NR2B N-methyl-d-aspartate receptor antagonist in parkinsonian monkeys: implication of preproenkephalin. Mov Disord. 2006;21(1):9–17.PubMedCrossRef
112.
go back to reference Tamim MK, Samadi P, Morissette M, et al. Effect of non-dopaminergic drug treatment on levodopa induced dyskinesia in MPTP monkeys: common implications of striatal peptides. Neuropharmacology. 2010;58(1):286–96.PubMedCrossRef Tamim MK, Samadi P, Morissette M, et al. Effect of non-dopaminergic drug treatment on levodopa induced dyskinesia in MPTP monkeys: common implications of striatal peptides. Neuropharmacology. 2010;58(1):286–96.PubMedCrossRef
113.
go back to reference Papa SM, Boldry RC, Enger TM, et al. Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade. Brain Res. 1995;701(1–2):13–8.PubMedCrossRef Papa SM, Boldry RC, Enger TM, et al. Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade. Brain Res. 1995;701(1–2):13–8.PubMedCrossRef
114.
go back to reference Nutt JG, Gunzler SA, Kirchnoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord. 2008;23(13):1860–6.PubMedCrossRef Nutt JG, Gunzler SA, Kirchnoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord. 2008;23(13):1860–6.PubMedCrossRef
115.
go back to reference Kanthasamy AG, Kanthasamy A, Matsumoto RR, et al. Neuroprotective effects of the strychnine-insensitive glycine site NMDA antagonist (R)-HA-966 in an experimental model of Parkinson’s disease. Brain Res. 1997;759(1):1–8.PubMedCrossRef Kanthasamy AG, Kanthasamy A, Matsumoto RR, et al. Neuroprotective effects of the strychnine-insensitive glycine site NMDA antagonist (R)-HA-966 in an experimental model of Parkinson’s disease. Brain Res. 1997;759(1):1–8.PubMedCrossRef
116.
go back to reference Brouillet E, Beal MF. NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. Neuroreport. 1993;4(4):387–90.PubMedCrossRef Brouillet E, Beal MF. NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. Neuroreport. 1993;4(4):387–90.PubMedCrossRef
117.
go back to reference Chan P, Di Monte DA, Langston JW, et al. (+)MK-801 does not prevent MPTP-induced loss of nigral neurons in mice. J Pharmacol Exp Ther. 1997;280(1):439–46.PubMed Chan P, Di Monte DA, Langston JW, et al. (+)MK-801 does not prevent MPTP-induced loss of nigral neurons in mice. J Pharmacol Exp Ther. 1997;280(1):439–46.PubMed
118.
go back to reference Sonsalla PK, Zeevalk GD, Manzino L, et al. MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4-phenylpyridinium in rats. J Neurochem. 1992;58(5):1979–82.PubMedCrossRef Sonsalla PK, Zeevalk GD, Manzino L, et al. MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4-phenylpyridinium in rats. J Neurochem. 1992;58(5):1979–82.PubMedCrossRef
119.
go back to reference Kupsch A, Löschmann PA, Suer H, et al. Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice. Brain Res. 1992;592(1–2):74–83.PubMedCrossRef Kupsch A, Löschmann PA, Suer H, et al. Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice. Brain Res. 1992;592(1–2):74–83.PubMedCrossRef
120.
go back to reference Zuddas A, Vaglini F, Fornai F, et al. Pharmacologic modulation of MPTP toxicity: MK-801: prevention of dopaminergic cell death in monkeys and mice. Ann N Y Acad Sci. 1992;648:268–71.PubMedCrossRef Zuddas A, Vaglini F, Fornai F, et al. Pharmacologic modulation of MPTP toxicity: MK-801: prevention of dopaminergic cell death in monkeys and mice. Ann N Y Acad Sci. 1992;648:268–71.PubMedCrossRef
121.
go back to reference Lange KW, Löschmann PA, Sofic E, et al. The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn Schmeidbergs Arch Pharmacol. 1993;348(6):586–92.CrossRef Lange KW, Löschmann PA, Sofic E, et al. The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn Schmeidbergs Arch Pharmacol. 1993;348(6):586–92.CrossRef
122.
go back to reference Blandini F, Nappi G, Greenamyre JT. Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson’s disease. Ann Neurol. 2001;49(4):525–9.PubMedCrossRef Blandini F, Nappi G, Greenamyre JT. Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson’s disease. Ann Neurol. 2001;49(4):525–9.PubMedCrossRef
123.
go back to reference Armentero M-T, Fancekku R, Nappi G, et al. Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson’s disease. Neurobiol Dis. 2006;22(1):1–9.PubMedCrossRef Armentero M-T, Fancekku R, Nappi G, et al. Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson’s disease. Neurobiol Dis. 2006;22(1):1–9.PubMedCrossRef
124.
go back to reference Lee MC, Ting KK, Adams S, et al. Characterisation of the expression of NMDA receptors in human astrocytes. PLoS One. 2010;5(11):e14123.PubMedCrossRef Lee MC, Ting KK, Adams S, et al. Characterisation of the expression of NMDA receptors in human astrocytes. PLoS One. 2010;5(11):e14123.PubMedCrossRef
125.
go back to reference Wu HM, Tzeng NS, Qian L, et al. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology. 2009;34(10):2344–57.PubMedCrossRef Wu HM, Tzeng NS, Qian L, et al. Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology. 2009;34(10):2344–57.PubMedCrossRef
126.
go back to reference Ossola B, Schendzielorz N, Chen SH, et al. Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia. Neuropharmacology. 2011;61(4):574–82.PubMedCrossRef Ossola B, Schendzielorz N, Chen SH, et al. Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia. Neuropharmacology. 2011;61(4):574–82.PubMedCrossRef
127.
go back to reference Leaver KR, Allbutt HN, Creber NJ, et al. Neuroprotective effects of a selective N-methyl-d-aspartate NR2B receptor antagonist in the 6-hydroxydopamine rat model of Parkinson’s disease. Clin Exp Pharmacol Physiol. 2008;35(11):1388–94.PubMedCrossRef Leaver KR, Allbutt HN, Creber NJ, et al. Neuroprotective effects of a selective N-methyl-d-aspartate NR2B receptor antagonist in the 6-hydroxydopamine rat model of Parkinson’s disease. Clin Exp Pharmacol Physiol. 2008;35(11):1388–94.PubMedCrossRef
128.
go back to reference Ng OT, Chen LW, Chan YS, et al. Small interfering RNA specific for N-methyl-d-aspartate receptor 2B offers neuroprotection to dopamine neurons through activation of MAP kinase. Neurosignals (Epub 2012 Feb 23). Ng OT, Chen LW, Chan YS, et al. Small interfering RNA specific for N-methyl-d-aspartate receptor 2B offers neuroprotection to dopamine neurons through activation of MAP kinase. Neurosignals (Epub 2012 Feb 23).
129.
go back to reference Conn PJ, Battaglia G, Marino MJ, et al. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci. 2005;6(10):787–98.PubMedCrossRef Conn PJ, Battaglia G, Marino MJ, et al. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci. 2005;6(10):787–98.PubMedCrossRef
130.
go back to reference Ossowska K, Konieczny J, Wolfarth S, et al. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology. 2001;41(4):413–20.PubMedCrossRef Ossowska K, Konieczny J, Wolfarth S, et al. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology. 2001;41(4):413–20.PubMedCrossRef
131.
go back to reference Breysse N, Baunez C, Spooren W, et al. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of Parkinson’s disease. J Neurosci. 2002;22(13):5669–78.PubMed Breysse N, Baunez C, Spooren W, et al. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of Parkinson’s disease. J Neurosci. 2002;22(13):5669–78.PubMed
132.
go back to reference Dekundy A, Pietraszek M, Schefer D, et al. Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res Bull. 2006;69(3):318–26.PubMedCrossRef Dekundy A, Pietraszek M, Schefer D, et al. Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res Bull. 2006;69(3):318–26.PubMedCrossRef
133.
go back to reference Ambrosi G, Arementero MT, Levandis G, et al. Effects of early and delayed treatment with an mGluR5 antagonist on motor impairment, nigrostriatal damage and neuroinflammation in a rodent model of Parkinson’s disease. Brain Res Bull. 2010;82(1–2):29–38.PubMedCrossRef Ambrosi G, Arementero MT, Levandis G, et al. Effects of early and delayed treatment with an mGluR5 antagonist on motor impairment, nigrostriatal damage and neuroinflammation in a rodent model of Parkinson’s disease. Brain Res Bull. 2010;82(1–2):29–38.PubMedCrossRef
134.
go back to reference Johnston TH, Fox SH, McIldowie MJ, et al. Reduction of l-dopa-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther. 2010;333(3):865–73.PubMedCrossRef Johnston TH, Fox SH, McIldowie MJ, et al. Reduction of l-dopa-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther. 2010;333(3):865–73.PubMedCrossRef
135.
go back to reference De Leonibus E, Managò F, Giordani F, et al. Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson’s disease. Neuropsychopharmacology. 2009;34(3):729–38.PubMedCrossRef De Leonibus E, Managò F, Giordani F, et al. Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson’s disease. Neuropsychopharmacology. 2009;34(3):729–38.PubMedCrossRef
136.
go back to reference Chen L, Liu J, Ali U, et al. Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist produces anxiolytic-like effects and reverses abnormal firing activity of projection neurons in the basolateral amygdala in rats with bilateral 6-OHDA lesions. Brain Res Bull. 2011;84(3):215–23.PubMedCrossRef Chen L, Liu J, Ali U, et al. Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist produces anxiolytic-like effects and reverses abnormal firing activity of projection neurons in the basolateral amygdala in rats with bilateral 6-OHDA lesions. Brain Res Bull. 2011;84(3):215–23.PubMedCrossRef
137.
go back to reference Hsieh MH, Ho SC, Yeh KY, et al. Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson’s disease rat model. Pharmacol Biochem Behav. 2012;102(1):64–71.PubMedCrossRef Hsieh MH, Ho SC, Yeh KY, et al. Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson’s disease rat model. Pharmacol Biochem Behav. 2012;102(1):64–71.PubMedCrossRef
138.
go back to reference Gravius A, Dekundy A, Nagel J, et al. Investigation on tolerance development to subchronic blockade of mGluR5 in models of learning, anxiety, and levodopa-induced dyskinesia in rats. J Neural Transm. 2008;115(12):1609–19.PubMedCrossRef Gravius A, Dekundy A, Nagel J, et al. Investigation on tolerance development to subchronic blockade of mGluR5 in models of learning, anxiety, and levodopa-induced dyskinesia in rats. J Neural Transm. 2008;115(12):1609–19.PubMedCrossRef
139.
go back to reference Mela F, Marti M, Dekundy A, et al. Antagonism of metabotropic glutamate receptor type 5 attenuates l-dopa-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem. 2007;101(2):483–97.PubMedCrossRef Mela F, Marti M, Dekundy A, et al. Antagonism of metabotropic glutamate receptor type 5 attenuates l-dopa-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem. 2007;101(2):483–97.PubMedCrossRef
140.
go back to reference Yamamoto N, Soghomonian JJ. Metabotropic glutamate mGluR5 receptor blockade opposes abnormal involuntary movement and the increases in glutamic acid decarboxylase mRNA levels in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience. 2009;163(4):1171–80.PubMedCrossRef Yamamoto N, Soghomonian JJ. Metabotropic glutamate mGluR5 receptor blockade opposes abnormal involuntary movement and the increases in glutamic acid decarboxylase mRNA levels in striatal neurons of 6-hydroxydopamine-lesioned rats. Neuroscience. 2009;163(4):1171–80.PubMedCrossRef
141.
go back to reference Levandis G, Bazzini E, Armentero MT, et al. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-dopa-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis. 2008;29(1):161–8.PubMedCrossRef Levandis G, Bazzini E, Armentero MT, et al. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-dopa-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis. 2008;29(1):161–8.PubMedCrossRef
142.
go back to reference Rylander D, Iderberg H, Li Q, et al. A mGluR5 antagonist under clinical development improves l-dopa-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis. 2010;39(3):352–61.PubMedCrossRef Rylander D, Iderberg H, Li Q, et al. A mGluR5 antagonist under clinical development improves l-dopa-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis. 2010;39(3):352–61.PubMedCrossRef
143.
go back to reference Morin N, Grégoire L, Gomez-Mancilla B, et al. Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology. 2010;58(7):981–6.PubMedCrossRef Morin N, Grégoire L, Gomez-Mancilla B, et al. Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology. 2010;58(7):981–6.PubMedCrossRef
144.
go back to reference Grégoire L, Morin N, Ouattara B, et al. The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor 5 antagonist. l-dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord. 2011;17(4):270–6.PubMedCrossRef Grégoire L, Morin N, Ouattara B, et al. The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor 5 antagonist. l-dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord. 2011;17(4):270–6.PubMedCrossRef
145.
go back to reference Berg D, Godau J, Trenkwalder C, et al. AFQ056 treatment of levodopa-induced dyskinesia: results of 2 randomized controlled trials. Mov Disord. 2011;26(7):1243–50.PubMedCrossRef Berg D, Godau J, Trenkwalder C, et al. AFQ056 treatment of levodopa-induced dyskinesia: results of 2 randomized controlled trials. Mov Disord. 2011;26(7):1243–50.PubMedCrossRef
147.
go back to reference Battaglia G, Busceti CL, Molinaro G, et al. Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci. 2004;24(4):828–35.PubMedCrossRef Battaglia G, Busceti CL, Molinaro G, et al. Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci. 2004;24(4):828–35.PubMedCrossRef
148.
go back to reference Vernon AC, Palmer S, Datla K, et al. Neuroprotective effects of metabotropic glutamate receptor ligands in a 6-hydroxydopamine rodent model of Parkinson’s disease. Eur J Neurosci. 2005;22(7):1799–806.PubMedCrossRef Vernon AC, Palmer S, Datla K, et al. Neuroprotective effects of metabotropic glutamate receptor ligands in a 6-hydroxydopamine rodent model of Parkinson’s disease. Eur J Neurosci. 2005;22(7):1799–806.PubMedCrossRef
149.
go back to reference Aguirre JA, Kehr J, Yoshitake T, et al. Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res. 2005;1033(2):216–20.PubMedCrossRef Aguirre JA, Kehr J, Yoshitake T, et al. Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res. 2005;1033(2):216–20.PubMedCrossRef
150.
go back to reference Masilamoni GJ, Bogenpohl JW, Alagille D, et al. Metabotropic glutamate receptor 5 antagonist protects domaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain. 2011;134(7):2057–73.PubMedCrossRef Masilamoni GJ, Bogenpohl JW, Alagille D, et al. Metabotropic glutamate receptor 5 antagonist protects domaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain. 2011;134(7):2057–73.PubMedCrossRef
151.
go back to reference Alam M, Danysz W, Schmidt WJ, et al. Effects of glutamate and alpha-2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats. Toxicol Appl Pharmacol. 2009;240(2):198–207.PubMedCrossRef Alam M, Danysz W, Schmidt WJ, et al. Effects of glutamate and alpha-2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats. Toxicol Appl Pharmacol. 2009;240(2):198–207.PubMedCrossRef
152.
go back to reference Black YD, Xiao D, Pellegrino D, et al. Protective effect of metabotropic glutamate mGluR5 receptor elimination in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett. 2010;486(3):161–5.PubMedCrossRef Black YD, Xiao D, Pellegrino D, et al. Protective effect of metabotropic glutamate mGluR5 receptor elimination in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett. 2010;486(3):161–5.PubMedCrossRef
153.
go back to reference Dawson L, Chadha A, Megalou M, et al. The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intracerebroventricular administration in the reserpine-treated rat. Br J Pharmacol. 2000;129(3):541–6.PubMedCrossRef Dawson L, Chadha A, Megalou M, et al. The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intracerebroventricular administration in the reserpine-treated rat. Br J Pharmacol. 2000;129(3):541–6.PubMedCrossRef
154.
go back to reference Murray TK, Messenger MJ, Ward MA, et al. Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacol Biochem Behav. 2002;73(2):455–66.PubMedCrossRef Murray TK, Messenger MJ, Ward MA, et al. Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacol Biochem Behav. 2002;73(2):455–66.PubMedCrossRef
155.
go back to reference Battaglia G, Busceti CL, Pontarelli F, et al. Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology. 2003;45(2):155–66.PubMedCrossRef Battaglia G, Busceti CL, Pontarelli F, et al. Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology. 2003;45(2):155–66.PubMedCrossRef
156.
go back to reference Matarredona ER, Santiago M, Venero JL, et al. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem. 2001;76(2):351–60.PubMedCrossRef Matarredona ER, Santiago M, Venero JL, et al. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem. 2001;76(2):351–60.PubMedCrossRef
157.
go back to reference Chan H, Paur H, Vernon AC, et al. Neuroprotection and functional recovery associated with decreased microglial activation following selective activation of mGluR2/3 receptors in a rodent model of Parkinson’s disease. Parkinsons Dis. 2010;2010. pii: 190450. Chan H, Paur H, Vernon AC, et al. Neuroprotection and functional recovery associated with decreased microglial activation following selective activation of mGluR2/3 receptors in a rodent model of Parkinson’s disease. Parkinsons Dis. 2010;2010. pii: 190450.
158.
go back to reference Corti C, Battaglia G, Molinaro G, et al. The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci. 2007;27(31):8297–308.PubMedCrossRef Corti C, Battaglia G, Molinaro G, et al. The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci. 2007;27(31):8297–308.PubMedCrossRef
159.
go back to reference Bruno V, Sureda FX, Storto M, et al. The neuroprotective activity of group II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J Neurosci. 1997;17(6):1891–7.PubMed Bruno V, Sureda FX, Storto M, et al. The neuroprotective activity of group II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J Neurosci. 1997;17(6):1891–7.PubMed
160.
go back to reference Ciccarelli R, Di Iorio P, Bruno V, et al. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia. 1999;27(3):275–81.PubMedCrossRef Ciccarelli R, Di Iorio P, Bruno V, et al. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia. 1999;27(3):275–81.PubMedCrossRef
161.
go back to reference Battaglia G, Molinaro G, Riozzi B, et al. Activation of mGlu3 receptors stimulates the production of GDNF in striatal neurons. PLoS ONE. 2009;4(8):e6591.PubMedCrossRef Battaglia G, Molinaro G, Riozzi B, et al. Activation of mGlu3 receptors stimulates the production of GDNF in striatal neurons. PLoS ONE. 2009;4(8):e6591.PubMedCrossRef
162.
go back to reference Di Liberto V, Bonomo A, Frinchi M, et al. Group II metabotropic glutamate receptor activation by agonist LY379268 treatment increases the expression of brain derived neurotrophic factor in the mouse brain. Neuroscience. 2010;165(3):863–73.PubMedCrossRef Di Liberto V, Bonomo A, Frinchi M, et al. Group II metabotropic glutamate receptor activation by agonist LY379268 treatment increases the expression of brain derived neurotrophic factor in the mouse brain. Neuroscience. 2010;165(3):863–73.PubMedCrossRef
163.
go back to reference Caraci F, Molinaro G, Battaglia G, et al. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultures neurons, whereas dual activation of mGlu2 and mGlu3 is neuroprotective. Mol Pharmacol. 2011;79(3):618–26.PubMedCrossRef Caraci F, Molinaro G, Battaglia G, et al. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultures neurons, whereas dual activation of mGlu2 and mGlu3 is neuroprotective. Mol Pharmacol. 2011;79(3):618–26.PubMedCrossRef
164.
go back to reference D’Alessandro PL, Corti C, Roth A, et al. The identification of structurally novel, selective, orally bioavailable positive modulators of mGluR2. Bioorg Med Chem Lett. 2010;20(2):759–62.PubMedCrossRef D’Alessandro PL, Corti C, Roth A, et al. The identification of structurally novel, selective, orally bioavailable positive modulators of mGluR2. Bioorg Med Chem Lett. 2010;20(2):759–62.PubMedCrossRef
165.
go back to reference Caraci F, Battaglia G, Sortino MA, et al. Metabotropic glutamate receptors in neurodegeneration/neuroprotection: still a hot topic? Neurochem Int. 2012;61(4):559565.CrossRef Caraci F, Battaglia G, Sortino MA, et al. Metabotropic glutamate receptors in neurodegeneration/neuroprotection: still a hot topic? Neurochem Int. 2012;61(4):559565.CrossRef
166.
go back to reference Duty S. Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson’s disease. Br J Pharmacol. 2010;161(2):271–87.PubMedCrossRef Duty S. Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson’s disease. Br J Pharmacol. 2010;161(2):271–87.PubMedCrossRef
167.
go back to reference MacInnes N, Messenger MJ, Duty S. Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine-treated rat. Br J Pharmacol. 2004;141(1):15–22.PubMedCrossRef MacInnes N, Messenger MJ, Duty S. Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine-treated rat. Br J Pharmacol. 2004;141(1):15–22.PubMedCrossRef
168.
go back to reference Konieczny J, Wardas J, Kuter K, et al. The influence of group III metabotropic glutamate receptor stimulation by (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid on the parkinsonian like akinesia and striatal proenkephalin and prodynorphin expression in rats. Neuroscience. 2007;145(2):611–20.PubMedCrossRef Konieczny J, Wardas J, Kuter K, et al. The influence of group III metabotropic glutamate receptor stimulation by (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid on the parkinsonian like akinesia and striatal proenkephalin and prodynorphin expression in rats. Neuroscience. 2007;145(2):611–20.PubMedCrossRef
169.
go back to reference Lopez S, Turle-Lorenzo N, Acher F, et al. Targeting group III metabotropic glutamate receptors produces complex behavioural effects in rodent models of Parkinson’s disease. J Neurosci. 2007;27(25):6701–11.PubMedCrossRef Lopez S, Turle-Lorenzo N, Acher F, et al. Targeting group III metabotropic glutamate receptors produces complex behavioural effects in rodent models of Parkinson’s disease. J Neurosci. 2007;27(25):6701–11.PubMedCrossRef
170.
go back to reference Cuomo D, Martella G, Barabino E, et al. Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J Neurochem. 2009;109(4):1096–105.PubMedCrossRef Cuomo D, Martella G, Barabino E, et al. Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J Neurochem. 2009;109(4):1096–105.PubMedCrossRef
171.
go back to reference Austin PJ, Betts MJ, Broadstock M, et al. Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson’s disease. Br J Pharmacol. 2010;160(7):1741–53.PubMedCrossRef Austin PJ, Betts MJ, Broadstock M, et al. Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson’s disease. Br J Pharmacol. 2010;160(7):1741–53.PubMedCrossRef
172.
go back to reference Valenti O, Marino MJ, Wittmann M, et al. Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci. 2003;23(18):7218–26.PubMed Valenti O, Marino MJ, Wittmann M, et al. Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci. 2003;23(18):7218–26.PubMed
173.
go back to reference Lopez S, Turle-Lorenzo N, Johnston TH, et al. Functional interaction between adenosine A2A and group III metabotropic glutamate receptors to reduce parkinsonian symptoms in rats. Neuropharmacology. 2008;55(4):483–90.PubMedCrossRef Lopez S, Turle-Lorenzo N, Johnston TH, et al. Functional interaction between adenosine A2A and group III metabotropic glutamate receptors to reduce parkinsonian symptoms in rats. Neuropharmacology. 2008;55(4):483–90.PubMedCrossRef
174.
go back to reference Beurrier C, Lopez S, Révy D, et al. Electrophysiological and behavioural evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J. 2009;23(10):3619–28.PubMedCrossRef Beurrier C, Lopez S, Révy D, et al. Electrophysiological and behavioural evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J. 2009;23(10):3619–28.PubMedCrossRef
175.
go back to reference Broadstock M, Ausin PJ, Betts MJ, et al. Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. Br J Pharmacol. 2012;165(4b):1034–45.PubMedCrossRef Broadstock M, Ausin PJ, Betts MJ, et al. Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. Br J Pharmacol. 2012;165(4b):1034–45.PubMedCrossRef
176.
go back to reference Marino MJ, Williams DL Jr, O’Brien JA, et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci USA. 2003;100(23):13668–73.PubMedCrossRef Marino MJ, Williams DL Jr, O’Brien JA, et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci USA. 2003;100(23):13668–73.PubMedCrossRef
177.
go back to reference Greco B, Lopez S, van der Putten H, et al. Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2010;332(3):1064–71.PubMedCrossRef Greco B, Lopez S, van der Putten H, et al. Metabotropic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2010;332(3):1064–71.PubMedCrossRef
178.
go back to reference Sukoff-Rizzo S, Leonard SK, Gilbert A, et al. The mGluR7 allosteric agonist AMN082 is a monoaminergic agent in disguise? J Pharmacol Exp Ther. 2011;338(1):345–52.PubMedCrossRef Sukoff-Rizzo S, Leonard SK, Gilbert A, et al. The mGluR7 allosteric agonist AMN082 is a monoaminergic agent in disguise? J Pharmacol Exp Ther. 2011;338(1):345–52.PubMedCrossRef
179.
go back to reference Jones CK, Engers DW, Thompson AD, et al. Discovery, synthesis and structure-activity relationship development of a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu(4)) with oral efficacy in an antiparkinsonian animal model. J Med Chem. 2011;54(21):7639–47.PubMedCrossRef Jones CK, Engers DW, Thompson AD, et al. Discovery, synthesis and structure-activity relationship development of a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu(4)) with oral efficacy in an antiparkinsonian animal model. J Med Chem. 2011;54(21):7639–47.PubMedCrossRef
180.
go back to reference Jones CK, Bubser M, Thompson AD, et al. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with l-dopa or an adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2012;340(2):404–21.PubMedCrossRef Jones CK, Bubser M, Thompson AD, et al. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with l-dopa or an adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2012;340(2):404–21.PubMedCrossRef
181.
go back to reference Bennouar KE, Uberti MA, Melon C, et al. Synergy between l-dopa and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology (Epub 2012 Apr 3). Bennouar KE, Uberti MA, Melon C, et al. Synergy between l-dopa and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology (Epub 2012 Apr 3).
182.
go back to reference Wierońska JM, Stachowicz K, Palucha-Ponciewiera A, et al. Metabotropic glutamate receptor 4 novel agonist LSP1-2111 with anxiolytic, but not antidepressant activity, mediated by serotonergic and GABAergic systems. Neuropharmacology. 2010;59(7–8):627–34.PubMedCrossRef Wierońska JM, Stachowicz K, Palucha-Ponciewiera A, et al. Metabotropic glutamate receptor 4 novel agonist LSP1-2111 with anxiolytic, but not antidepressant activity, mediated by serotonergic and GABAergic systems. Neuropharmacology. 2010;59(7–8):627–34.PubMedCrossRef
183.
go back to reference Wierońska JM, Stachowicz K, Acher F, et al. Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology (Berl). 2012;220(3):481–94.CrossRef Wierońska JM, Stachowicz K, Acher F, et al. Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology (Berl). 2012;220(3):481–94.CrossRef
184.
go back to reference Lopez S, Bonito-Oliva A, Pallottino S, et al. Activation of metabotropic glutamate 4 receptors decreases l-dopa-induced dyskinesia in a mouse model of Parkinson’s disease. J Parkinsons Dis. 2011;1(4):339–46. Lopez S, Bonito-Oliva A, Pallottino S, et al. Activation of metabotropic glutamate 4 receptors decreases l-dopa-induced dyskinesia in a mouse model of Parkinson’s disease. J Parkinsons Dis. 2011;1(4):339–46.
185.
go back to reference Betts MJ, O’Neill MJ, Duty S. Allosteric modulation of the group III mGlu receptor 4 provides functional neuroprotection in the 6-OHDA rat model of Parkinson’s disease. Br J Pharmacol. 2012;166(8):2317–30.PubMedCrossRef Betts MJ, O’Neill MJ, Duty S. Allosteric modulation of the group III mGlu receptor 4 provides functional neuroprotection in the 6-OHDA rat model of Parkinson’s disease. Br J Pharmacol. 2012;166(8):2317–30.PubMedCrossRef
186.
go back to reference Battaglia G, Busceti CL, Molinaro G, et al. Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci. 2006;26(27):7222–9.PubMedCrossRef Battaglia G, Busceti CL, Molinaro G, et al. Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci. 2006;26(27):7222–9.PubMedCrossRef
Metadata
Title
Targeting Glutamate Receptors to Tackle the Pathogenesis, Clinical Symptoms and Levodopa-Induced Dyskinesia Associated with Parkinson’s Disease
Author
Susan Duty
Publication date
01-12-2012
Publisher
Springer International Publishing AG
Published in
CNS Drugs / Issue 12/2012
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-012-0016-z

Other articles of this Issue 12/2012

CNS Drugs 12/2012 Go to the issue

Acknowledgement

Acknowledgments

Adis Drug Profile

Gabapentin Enacarbil

Adis Drug Profile

Perampanel