Skip to main content
Top
Published in: Clinical Pharmacokinetics 3/2024

Open Access 28-02-2024 | Vancomycin | Original Research Article

Bayesian Vancomycin Model Selection for Therapeutic Drug Monitoring in Neonates

Authors: Dua’a Alrahahleh, Yann Thoma, Ruth Van Daele, Thi Nguyen, Stephanie Halena, Melissa Luig, Sophie Stocker, Hannah Yejin Kim, Jan-Willem Alffenaar

Published in: Clinical Pharmacokinetics | Issue 3/2024

Login to get access

Abstract

Background and Objective

Pharmacokinetic models can inform drug dosing of vancomycin in neonates to optimize therapy. However, the model selected needs to describe the intended population to provide appropriate dose recommendations. Our study aims to identify the population pharmacokinetic (PopPK) model(s) with the best performance to predict vancomycin exposure in neonates in our hospital.

Methods

Relevant published PopPK models for vancomycin in neonates were selected based on demographics and vancomycin dosing strategy. The predictive performance of the models was evaluated in Tucuxi using a local cohort of 69 neonates. Mean absolute error (MAE), relative bias (rBias) and relative root mean square error (rRMSE) were used to quantify the accuracy and precision of the predictive performance of each model for three different approaches: a priori, a posteriori, and Bayesian forecasting for the next course of therapy based on the previous course predictions. A PopPK model was considered clinically acceptable if rBias was between ± 20 and 95% confidence intervals included zero.

Results

A total of 25 PopPK models were identified and nine were considered suitable for further evaluation. The model of De Cock et al. 2014 was the only clinically acceptable model based on a priori [MAE 0.35 mg/L, rBias 0.8 % (95% confidence interval (CI) − 7.5, 9.1%), and rRMSE 8.9%], a posteriori [MAE 0.037 mg/L, rBias − 0.23% (95% CI − 1.3, 0.88%), and rRMSE 6.02%] and Bayesian forecasting for the next courses [MAE 0.89 mg/L, rBias 5.45% (95% CI − 8.2, 19.1%), and rRMSE 38.3%) approaches.

Conclusions

The De Cock model was selected based on a comprehensive approach of model selection to individualize vancomycin dosing in our neonates.
Literature
1.
go back to reference Lietman PS, Schaad UB, McCracken GH Jr, Nelson JD. Clinical pharmacology and efficacy of vancomycin in pediatric patients. J Pediatr. 1980;96(1):119–26.CrossRef Lietman PS, Schaad UB, McCracken GH Jr, Nelson JD. Clinical pharmacology and efficacy of vancomycin in pediatric patients. J Pediatr. 1980;96(1):119–26.CrossRef
2.
go back to reference Salem F, Johnson TN, Hodgkinson AB, Ogungbenro K, Rostami-Hodjegan A. Does, “birth” as an event impact maturation trajectory of renal clearance via glomerular filtration? Reexamining data in preterm and full-term neonates by avoiding the creatinine bias. J Clin Pharmacol. 2021;61(2):159–71.PubMedCrossRef Salem F, Johnson TN, Hodgkinson AB, Ogungbenro K, Rostami-Hodjegan A. Does, “birth” as an event impact maturation trajectory of renal clearance via glomerular filtration? Reexamining data in preterm and full-term neonates by avoiding the creatinine bias. J Clin Pharmacol. 2021;61(2):159–71.PubMedCrossRef
3.
go back to reference Dua’A A, Xu S, Luig M, Kim HY, Alffenaar J-W. Dosing of vancomycin and target attainment in neonates: a systematic review. Int J Antimicrob Agents. 2022;59:106515.CrossRef Dua’A A, Xu S, Luig M, Kim HY, Alffenaar J-W. Dosing of vancomycin and target attainment in neonates: a systematic review. Int J Antimicrob Agents. 2022;59:106515.CrossRef
4.
go back to reference Wong S, Davis A, Selby PR, Khoo R, Gwilt I, Stocker SL, et al. Application of user-centered co-design principles to address barriers in therapeutic drug monitoring. Ther Drug Monit. 2023;45(3):368–75. Wong S, Davis A, Selby PR, Khoo R, Gwilt I, Stocker SL, et al. Application of user-centered co-design principles to address barriers in therapeutic drug monitoring. Ther Drug Monit. 2023;45(3):368–75.
5.
go back to reference Alrahahleh D, Xu S, Zhu Z, Toufaili H, Luig M, Kim HY, et al. An audit to evaluate vancomycin therapeutic drug monitoring in a neonatal intensive care unit. Ther Drug Monit. 2022;44(5):651–8. Alrahahleh D, Xu S, Zhu Z, Toufaili H, Luig M, Kim HY, et al. An audit to evaluate vancomycin therapeutic drug monitoring in a neonatal intensive care unit. Ther Drug Monit. 2022;44(5):651–8.
6.
go back to reference Nieuwlaat R, Connolly SJ, Mackay JA, Weise-Kelly L, Navarro T, Wilczynski NL, et al. Computerized clinical decision support systems for therapeutic drug monitoring and dosing: a decision-maker-researcher partnership systematic review. Implement Sci. 2011;6(1):1–14.CrossRef Nieuwlaat R, Connolly SJ, Mackay JA, Weise-Kelly L, Navarro T, Wilczynski NL, et al. Computerized clinical decision support systems for therapeutic drug monitoring and dosing: a decision-maker-researcher partnership systematic review. Implement Sci. 2011;6(1):1–14.CrossRef
7.
go back to reference Han J, Sauberan J, Tran MT, Adler-Shohet FC, Michalik DE, Tien TH, et al. Implementation of vancomycin therapeutic monitoring guidelines: focus on Bayesian estimation tools in neonatal and pediatric patients. Ther Drug Monit. 2022;44(2):241–52.PubMedCrossRef Han J, Sauberan J, Tran MT, Adler-Shohet FC, Michalik DE, Tien TH, et al. Implementation of vancomycin therapeutic monitoring guidelines: focus on Bayesian estimation tools in neonatal and pediatric patients. Ther Drug Monit. 2022;44(2):241–52.PubMedCrossRef
8.
go back to reference Burton ME, Ash CL, Hill DP Jr, Handy T, Shepherd MD, Vasko MR. A controlled trial of the cost benefit of computerized Bayesian aminoglycoside administration. Clin Pharmacol Ther. 1991;49(6):685–94.PubMedCrossRef Burton ME, Ash CL, Hill DP Jr, Handy T, Shepherd MD, Vasko MR. A controlled trial of the cost benefit of computerized Bayesian aminoglycoside administration. Clin Pharmacol Ther. 1991;49(6):685–94.PubMedCrossRef
9.
go back to reference Jarugula P, Akcan-Arikan A, Munoz-Rivas F, Moffett BS, Ivaturi V, Rios D. Optimizing vancomycin dosing and monitoring in neonates and infants using population pharmacokinetic modeling. Antimicrob Agents Chemother. 2022;66(4):e0189921.PubMedCrossRef Jarugula P, Akcan-Arikan A, Munoz-Rivas F, Moffett BS, Ivaturi V, Rios D. Optimizing vancomycin dosing and monitoring in neonates and infants using population pharmacokinetic modeling. Antimicrob Agents Chemother. 2022;66(4):e0189921.PubMedCrossRef
10.
go back to reference Aparicio PBM, Jimenez CMR, Saiz MDMG. Application of pharmacokinetic and pharmacodynamic principles (AUC/MIC) to individualize treatment with vancomycin in neonatal population. Basic Clin Pharmacol Toxicol. 2018;123(Supplement 4):33. Aparicio PBM, Jimenez CMR, Saiz MDMG. Application of pharmacokinetic and pharmacodynamic principles (AUC/MIC) to individualize treatment with vancomycin in neonatal population. Basic Clin Pharmacol Toxicol. 2018;123(Supplement 4):33.
11.
go back to reference Chen J, Huang X, Bu S, Chen X, Zhou J, Liu X, et al. The relationship between vancomycin AUC/MIC and trough concentration, age, dose, renal function in Chinese critically ill pediatric patients. Pharmacol Res Perspect. 2021;9(6):e00885.PubMedPubMedCentralCrossRef Chen J, Huang X, Bu S, Chen X, Zhou J, Liu X, et al. The relationship between vancomycin AUC/MIC and trough concentration, age, dose, renal function in Chinese critically ill pediatric patients. Pharmacol Res Perspect. 2021;9(6):e00885.PubMedPubMedCentralCrossRef
12.
go back to reference Le J, Bradley JS. Optimizing antibiotic drug therapy in pediatrics: current state and future needs. J Clin Pharmacol. 2018;58(Suppl 10):S108–22.PubMed Le J, Bradley JS. Optimizing antibiotic drug therapy in pediatrics: current state and future needs. J Clin Pharmacol. 2018;58(Suppl 10):S108–22.PubMed
13.
go back to reference Huang H, Liu Q, Zhang X, Xie H, Liu M, Chaphekar N, et al. External evaluation of population pharmacokinetic models of busulfan in chinese adult hematopoietic stem cell transplantation recipients. Front Pharmacol. 2022;13: 835037.PubMedPubMedCentralCrossRef Huang H, Liu Q, Zhang X, Xie H, Liu M, Chaphekar N, et al. External evaluation of population pharmacokinetic models of busulfan in chinese adult hematopoietic stem cell transplantation recipients. Front Pharmacol. 2022;13: 835037.PubMedPubMedCentralCrossRef
15.
go back to reference Dubovitskaya A, Buclin T, Schumacher M, Aberer K, Thoma Y. TUCUXI: an intelligent system for personalized medicine from individualization of treatments to research databases and back. In: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics; 2017. p. 223–32. Dubovitskaya A, Buclin T, Schumacher M, Aberer K, Thoma Y. TUCUXI: an intelligent system for personalized medicine from individualization of treatments to research databases and back. In: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics; 2017. p. 223–32.
16.
go back to reference Cunio C, Uster D, Carland J, Buscher H, Liu Z, Brett J, et al. Towards precision dosing of vancomycin in critically ill patients: an evaluation of the predictive performance of pharmacometric models in ICU patients. Clin Microbiol Infect. 2021;27(5):783.e7-783.e14.CrossRef Cunio C, Uster D, Carland J, Buscher H, Liu Z, Brett J, et al. Towards precision dosing of vancomycin in critically ill patients: an evaluation of the predictive performance of pharmacometric models in ICU patients. Clin Microbiol Infect. 2021;27(5):783.e7-783.e14.CrossRef
17.
go back to reference Narayan SW, Thoma Y, Drennan PG, Yejin Kim H, Alffenaar J-W, Van Hal S, et al. Predictive performance of Bayesian vancomycin monitoring in the critically ill. Critical Care Med. 2021;49(10):e952–60.CrossRef Narayan SW, Thoma Y, Drennan PG, Yejin Kim H, Alffenaar J-W, Van Hal S, et al. Predictive performance of Bayesian vancomycin monitoring in the critically ill. Critical Care Med. 2021;49(10):e952–60.CrossRef
18.
go back to reference Nix DE, Davis LE, Matthias KR. The relationship of vancomycin 24-hour AUC and trough concentration. Am J Health Syst Pharm. 2022;79(7):534–9.PubMedCrossRef Nix DE, Davis LE, Matthias KR. The relationship of vancomycin 24-hour AUC and trough concentration. Am J Health Syst Pharm. 2022;79(7):534–9.PubMedCrossRef
19.
go back to reference De Cock RFW, Allegaert K, Sherwin CMT, Nielsen EI, De Hoog M, Van Den Anker JN, et al. A Neonatal amikacin covariate model can be used to predict ontogeny of other drugs eliminated through glomerular filtration in neonates. Pharm Res. 2014;31(3):754–67.PubMedCrossRef De Cock RFW, Allegaert K, Sherwin CMT, Nielsen EI, De Hoog M, Van Den Anker JN, et al. A Neonatal amikacin covariate model can be used to predict ontogeny of other drugs eliminated through glomerular filtration in neonates. Pharm Res. 2014;31(3):754–67.PubMedCrossRef
20.
go back to reference Frymoyer A, Stockmann C, Hersh AL, Goswami S, Keizer RJ. Individualized empiric vancomycin dosing in neonates using a model-based approach. J Pediatric Infect Dis Soc. 2019;8(2):97–104.PubMedCrossRef Frymoyer A, Stockmann C, Hersh AL, Goswami S, Keizer RJ. Individualized empiric vancomycin dosing in neonates using a model-based approach. J Pediatric Infect Dis Soc. 2019;8(2):97–104.PubMedCrossRef
21.
22.
go back to reference Mulubwa M, Griesel HA, Mugabo P, Dippenaar R, van Wyk L. Assessment of Vancomycin pharmacokinetics and dose regimen optimisation in preterm neonates. Drugs R D. 2020;20(2):105–13.PubMedPubMedCentralCrossRef Mulubwa M, Griesel HA, Mugabo P, Dippenaar R, van Wyk L. Assessment of Vancomycin pharmacokinetics and dose regimen optimisation in preterm neonates. Drugs R D. 2020;20(2):105–13.PubMedPubMedCentralCrossRef
23.
go back to reference Kimura T, Sunakawa K, Matsuura N, Kubo H, Shimada S, Yago K. Population pharmacokinetics of arbekacin, vancomycin, and panipenem in neonates. Antimicrob Agents Chemother. 2004;48(4):1159–67.PubMedPubMedCentralCrossRef Kimura T, Sunakawa K, Matsuura N, Kubo H, Shimada S, Yago K. Population pharmacokinetics of arbekacin, vancomycin, and panipenem in neonates. Antimicrob Agents Chemother. 2004;48(4):1159–67.PubMedPubMedCentralCrossRef
24.
go back to reference Lee SM, Yang S, Kang S, Chang MJ. Population pharmacokinetics and dose optimization of vancomycin in neonates. Sci Rep. 2021;11(1):1–8. Lee SM, Yang S, Kang S, Chang MJ. Population pharmacokinetics and dose optimization of vancomycin in neonates. Sci Rep. 2021;11(1):1–8.
25.
go back to reference Lo YL, van Hasselt JG, Heng SC, Lim CT, Lee TC, Charles BG. Population pharmacokinetics of vancomycin in premature Malaysian neonates: identification of predictors for dosing determination. Antimicrob Agents Chemother. 2010;54(6):2626–32.PubMedPubMedCentralCrossRef Lo YL, van Hasselt JG, Heng SC, Lim CT, Lee TC, Charles BG. Population pharmacokinetics of vancomycin in premature Malaysian neonates: identification of predictors for dosing determination. Antimicrob Agents Chemother. 2010;54(6):2626–32.PubMedPubMedCentralCrossRef
26.
go back to reference Mehrotra N, Tang L, Phelps SJ, Meibohm B. Evaluation of vancomycin dosing regimens in preterm and term neonates using Monte Carlo simulations. Pharmacotherapy. 2012;32(5):408–19.PubMedCrossRef Mehrotra N, Tang L, Phelps SJ, Meibohm B. Evaluation of vancomycin dosing regimens in preterm and term neonates using Monte Carlo simulations. Pharmacotherapy. 2012;32(5):408–19.PubMedCrossRef
27.
go back to reference Dao K, Guidi M, André P, Giannoni E, Basterrechea S, Zhao W, et al. Optimisation of vancomycin exposure in neonates based on the best level of evidence. Pharmacol Res. 2020;154: 104278.PubMedCrossRef Dao K, Guidi M, André P, Giannoni E, Basterrechea S, Zhao W, et al. Optimisation of vancomycin exposure in neonates based on the best level of evidence. Pharmacol Res. 2020;154: 104278.PubMedCrossRef
28.
go back to reference Yasuhara M, Iga T, Zenda H, Okumura K, Oguma T, Yano Y, et al. Population pharmacokinetics of vancomycin in Japanese pediatric patients. Ther Drug Monit. 1998;20(6):612–8.PubMedCrossRef Yasuhara M, Iga T, Zenda H, Okumura K, Oguma T, Yano Y, et al. Population pharmacokinetics of vancomycin in Japanese pediatric patients. Ther Drug Monit. 1998;20(6):612–8.PubMedCrossRef
29.
go back to reference Capparelli EV, Lane JR, Romanowski GL, McFeely EJ, Murray W, Sousa P, et al. The influences of renal function and maturation on vancomycin elimination in newborns and infants. J Clin Pharmacol. 2001;41(9):927–34.PubMedCrossRef Capparelli EV, Lane JR, Romanowski GL, McFeely EJ, Murray W, Sousa P, et al. The influences of renal function and maturation on vancomycin elimination in newborns and infants. J Clin Pharmacol. 2001;41(9):927–34.PubMedCrossRef
30.
go back to reference Zhao W, Lopez E, Biran V, Durrmeyer X, Fakhoury M, Jacqz-Aigrain E. Vancomycin continuous infusion in neonates: dosing optimisation and therapeutic drug monitoring. Arch Dis Child. 2013;98(6):449–53.PubMedCrossRef Zhao W, Lopez E, Biran V, Durrmeyer X, Fakhoury M, Jacqz-Aigrain E. Vancomycin continuous infusion in neonates: dosing optimisation and therapeutic drug monitoring. Arch Dis Child. 2013;98(6):449–53.PubMedCrossRef
31.
go back to reference Oudin C, Vialet R, Boulamery A, Martin C, Simon N. Vancomycin prescription in neonates and young infants: toward a simplified dosage. Arch Dis Child Fetal Neonatal Ed. 2011;96(5):F365–70.PubMedCrossRef Oudin C, Vialet R, Boulamery A, Martin C, Simon N. Vancomycin prescription in neonates and young infants: toward a simplified dosage. Arch Dis Child Fetal Neonatal Ed. 2011;96(5):F365–70.PubMedCrossRef
32.
go back to reference Germovsek E, Osborne L, Gunaratnam F, Lounis SA, Busquets FB, Standing JF, et al. Development and external evaluation of a population pharmacokinetic model for continuous and intermittent administration of vancomycin in neonates and infants using prospectively collected data. J Antimicrob Chemother. 2019;74(4):1003–11.PubMedCrossRef Germovsek E, Osborne L, Gunaratnam F, Lounis SA, Busquets FB, Standing JF, et al. Development and external evaluation of a population pharmacokinetic model for continuous and intermittent administration of vancomycin in neonates and infants using prospectively collected data. J Antimicrob Chemother. 2019;74(4):1003–11.PubMedCrossRef
33.
go back to reference Asbury WH, Darsey EH, Rose WB, Murphy JE, Buffington DE, Capers CC. Vancomycin pharmacokinetics in neonates and infants: a retrospective evaluation. Ann Pharmacother. 1993;27(4):490–6.PubMedCrossRef Asbury WH, Darsey EH, Rose WB, Murphy JE, Buffington DE, Capers CC. Vancomycin pharmacokinetics in neonates and infants: a retrospective evaluation. Ann Pharmacother. 1993;27(4):490–6.PubMedCrossRef
34.
go back to reference Schaible DH, Rocci ML Jr, Alpert GA, Campos JM, Paul MH, Polin RA, et al. Vancomycin pharmacokinetics in infants: relationships to indices of maturation. Pediatr Infect Dis. 1986;5(3):304–8.PubMedCrossRef Schaible DH, Rocci ML Jr, Alpert GA, Campos JM, Paul MH, Polin RA, et al. Vancomycin pharmacokinetics in infants: relationships to indices of maturation. Pediatr Infect Dis. 1986;5(3):304–8.PubMedCrossRef
35.
go back to reference Seay RE, Brundage RC, Jensen PD, Schilling CG, Edgren BE. Population pharmacokinetics of vancomycin in neonates. Clin Pharmacol Ther. 1994;56(2):169–75.PubMedCrossRef Seay RE, Brundage RC, Jensen PD, Schilling CG, Edgren BE. Population pharmacokinetics of vancomycin in neonates. Clin Pharmacol Ther. 1994;56(2):169–75.PubMedCrossRef
36.
go back to reference Silva R, Reis E, Bispo MA, Almeida AM, Costa IM, Falcão F, et al. The kinetic profile of vancomycin in neonates. J Pharm Pharmacol. 1998;50(11):1255–60.PubMedCrossRef Silva R, Reis E, Bispo MA, Almeida AM, Costa IM, Falcão F, et al. The kinetic profile of vancomycin in neonates. J Pharm Pharmacol. 1998;50(11):1255–60.PubMedCrossRef
37.
go back to reference de Hoog M, Schoemaker RC, Mouton JW, van den Anker JN. Vancomycin population pharmacokinetics in neonates. Clin Pharmacol Ther. 2000;67(4):360–7.PubMedCrossRef de Hoog M, Schoemaker RC, Mouton JW, van den Anker JN. Vancomycin population pharmacokinetics in neonates. Clin Pharmacol Ther. 2000;67(4):360–7.PubMedCrossRef
38.
go back to reference Mulla H, Pooboni S. Population pharmacokinetics of vancomycin in patients receiving extracorporeal membrane oxygenation. Br J Clin Pharmacol. 2005;60(3):265–75.PubMedPubMedCentralCrossRef Mulla H, Pooboni S. Population pharmacokinetics of vancomycin in patients receiving extracorporeal membrane oxygenation. Br J Clin Pharmacol. 2005;60(3):265–75.PubMedPubMedCentralCrossRef
39.
go back to reference Anderson BJ, Allegaert K, Van den Anker JN, Cossey V, Holford NH. Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol. 2007;63(1):75–84.PubMedCrossRef Anderson BJ, Allegaert K, Van den Anker JN, Cossey V, Holford NH. Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol. 2007;63(1):75–84.PubMedCrossRef
40.
go back to reference Marques-Minana MR, Saadeddin A, Peris JE. Population pharmacokinetic analysis of vancomycin in neonates. A new proposal of initial dosage guideline. Br J Clin Pharmacol. 2010;70(5):713–20.PubMedPubMedCentralCrossRef Marques-Minana MR, Saadeddin A, Peris JE. Population pharmacokinetic analysis of vancomycin in neonates. A new proposal of initial dosage guideline. Br J Clin Pharmacol. 2010;70(5):713–20.PubMedPubMedCentralCrossRef
41.
go back to reference De Cock RF, Allegaert K, Schreuder MF, Sherwin CM, de Hoog M, van den Anker JN, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51:105–17.PubMedCrossRef De Cock RF, Allegaert K, Schreuder MF, Sherwin CM, de Hoog M, van den Anker JN, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51:105–17.PubMedCrossRef
42.
go back to reference Tayman C, Rayyan M, Allegaert K. Neonatal pharmacology: extensive interindividual variability despite limited size. J Pediatr Pharmacol Ther. 2011;16(3):170–84.PubMedPubMedCentral Tayman C, Rayyan M, Allegaert K. Neonatal pharmacology: extensive interindividual variability despite limited size. J Pediatr Pharmacol Ther. 2011;16(3):170–84.PubMedPubMedCentral
43.
go back to reference Wang J, Kumar SS, Sherwin CM, Ward R, Baer G, Burckart GJ, et al. Renal clearance in newborns and infants: predictive performance of population-based modeling for drug development. Clin Pharmacol Ther. 2019;105(6):1462–70.PubMedCrossRef Wang J, Kumar SS, Sherwin CM, Ward R, Baer G, Burckart GJ, et al. Renal clearance in newborns and infants: predictive performance of population-based modeling for drug development. Clin Pharmacol Ther. 2019;105(6):1462–70.PubMedCrossRef
44.
go back to reference Abduljalil K, Pan X, Pansari A, Jamei M, Johnson TN. Preterm physiologically based pharmacokinetic model. Part ii: applications of the model to predict drug pharmacokinetics in the preterm population. Clin Pharmacokinet. 2020;59(4):501–18.PubMedCrossRef Abduljalil K, Pan X, Pansari A, Jamei M, Johnson TN. Preterm physiologically based pharmacokinetic model. Part ii: applications of the model to predict drug pharmacokinetics in the preterm population. Clin Pharmacokinet. 2020;59(4):501–18.PubMedCrossRef
45.
go back to reference Allegaert K. The extent of reduction in vancomycin clearance after ibuprofen or indomethacin differs, and is another covariate for targeted dosing. J Neonatal Perinatal Med. 2019;12(3):358. Allegaert K. The extent of reduction in vancomycin clearance after ibuprofen or indomethacin differs, and is another covariate for targeted dosing. J Neonatal Perinatal Med. 2019;12(3):358.
46.
go back to reference Ramamoorthy A, Kim HH, Shah-Williams E, Zhang L. Racial and ethnic differences in drug disposition and response: review of new molecular entities approved between 2014 and 2019. J Clin Pharmacol. 2022;62(4):486–93.PubMedCrossRef Ramamoorthy A, Kim HH, Shah-Williams E, Zhang L. Racial and ethnic differences in drug disposition and response: review of new molecular entities approved between 2014 and 2019. J Clin Pharmacol. 2022;62(4):486–93.PubMedCrossRef
47.
go back to reference Sitaruno S, Santimaleeworagun W, Pattharachayakul S, DeBacker KC, Vattanavanit V, Binyala W, et al. Comparison of race-based and non-race-based equations for kidney function estimation in critically ill thai patients for vancomycin dosing. J Clin Pharmacol. 2022;62(10):1215–26.PubMedPubMedCentralCrossRef Sitaruno S, Santimaleeworagun W, Pattharachayakul S, DeBacker KC, Vattanavanit V, Binyala W, et al. Comparison of race-based and non-race-based equations for kidney function estimation in critically ill thai patients for vancomycin dosing. J Clin Pharmacol. 2022;62(10):1215–26.PubMedPubMedCentralCrossRef
48.
go back to reference Li Z, Jiao Z. Population pharmacokinetics of vancomycin in Chinese ICU neonates: initial dosage recommendations. Arch Dis Childh. 2019;104(6):e42.CrossRef Li Z, Jiao Z. Population pharmacokinetics of vancomycin in Chinese ICU neonates: initial dosage recommendations. Arch Dis Childh. 2019;104(6):e42.CrossRef
50.
go back to reference Frymoyer A, Hersh AL, El-Komy MH, Gaskari S, Su F, Drover DR, et al. Association between vancomycin trough concentration and area under the concentration-time curve in neonates. Antimicrob Agents Chemother. 2014;58(11):6454–61.PubMedPubMedCentralCrossRef Frymoyer A, Hersh AL, El-Komy MH, Gaskari S, Su F, Drover DR, et al. Association between vancomycin trough concentration and area under the concentration-time curve in neonates. Antimicrob Agents Chemother. 2014;58(11):6454–61.PubMedPubMedCentralCrossRef
51.
go back to reference Tseng S-H, Lim CP, Chen Q, Tang CC, Kong ST, Ho PC-L. Evaluating the relationship between vancomycin trough concentration and 24-hour area under the concentration-time curve in neonates. Antimicrob Agents Chemother. 2018;62(4):e01647-e1717.PubMedPubMedCentralCrossRef Tseng S-H, Lim CP, Chen Q, Tang CC, Kong ST, Ho PC-L. Evaluating the relationship between vancomycin trough concentration and 24-hour area under the concentration-time curve in neonates. Antimicrob Agents Chemother. 2018;62(4):e01647-e1717.PubMedPubMedCentralCrossRef
52.
go back to reference Stockmann C, Hersh AL, Roberts JK, Bhongsatiern J, Korgenski EK, Spigarelli MG, et al. Predictive performance of a vancomycin population pharmacokinetic model in neonates. Infect Dis Ther. 2015;4(2):187–98.PubMedPubMedCentralCrossRef Stockmann C, Hersh AL, Roberts JK, Bhongsatiern J, Korgenski EK, Spigarelli MG, et al. Predictive performance of a vancomycin population pharmacokinetic model in neonates. Infect Dis Ther. 2015;4(2):187–98.PubMedPubMedCentralCrossRef
53.
go back to reference Colin PJ, Allegaert K, Thomson AH, Touw DJ, Dolton M, de Hoog M, et al. Vancomycin pharmacokinetics throughout life: results from a pooled population analysis and evaluation of current dosing recommendations. Clin Pharmacokinet. 2019;58:767–80.PubMedCrossRef Colin PJ, Allegaert K, Thomson AH, Touw DJ, Dolton M, de Hoog M, et al. Vancomycin pharmacokinetics throughout life: results from a pooled population analysis and evaluation of current dosing recommendations. Clin Pharmacokinet. 2019;58:767–80.PubMedCrossRef
Metadata
Title
Bayesian Vancomycin Model Selection for Therapeutic Drug Monitoring in Neonates
Authors
Dua’a Alrahahleh
Yann Thoma
Ruth Van Daele
Thi Nguyen
Stephanie Halena
Melissa Luig
Sophie Stocker
Hannah Yejin Kim
Jan-Willem Alffenaar
Publication date
28-02-2024
Publisher
Springer International Publishing
Keyword
Vancomycin
Published in
Clinical Pharmacokinetics / Issue 3/2024
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-024-01353-8

Other articles of this Issue 3/2024

Clinical Pharmacokinetics 3/2024 Go to the issue