Skip to main content
Top
Published in: Clinical Pharmacokinetics 1/2018

01-01-2018 | Original Research Article

Clinical Pharmacokinetics and Mass Balance of Veliparib in Combination with Temozolomide in Subjects with Nonhematologic Malignancies

Authors: Silpa Nuthalapati, Wijith Munasinghe, Vincent Giranda, Hao Xiong

Published in: Clinical Pharmacokinetics | Issue 1/2018

Login to get access

Abstract

Background and Objectives

Veliparib is an orally active potent poly(ADP-ribose) polymerase (PARP) inhibitor currently in phase III clinical trials in solid tumors. This phase I study evaluated the pharmacokinetics and mass balance of veliparib administered alone and in combination with temozolomide, and assessed any potential pharmacokinetic drug–drug interaction between veliparib and temozolomide.

Methods

This was an open-label, dose-escalation study of veliparib in combination with temozolomide in 42 subjects with nonhematologic malignancies. Veliparib was administered orally at doses ranging from 10 to 80 mg twice daily on days 1–7, and temozolomide was administered orally at 150–200 mg/m2 once daily on days 1–5 of each 28-day cycle. The pharmacokinetics of veliparib, its M8 metabolite, and temozolomide, as well as urinary excretion of unchanged veliparib and its M8 metabolite, were determined.

Results

Mean veliparib maximum observed plasma concentration (C max) and area under the plasma concentration–time curve for the first 6 h postdose (AUC6) values increased dose proportionally in the veliparib 10–80 mg twice-daily dose range. The urinary recovery of veliparib dose as the unchanged parent compound alone and together with the M8 metabolite was 73 ± 18 and 90 ± 22%, respectively, over a 12-h dosing interval on day 6 of Cycle 1. Veliparib and temozolomide pharmacokinetic exposures were not affected when administered together.

Conclusions

Veliparib is a Biopharmaceutical Classification System (BCS) Class 1 compound, with no less than 90% of the dose absorbed and an oral bioavailability of at least 73%. Veliparib is primarily eliminated by renal excretion. Veliparib exhibited linear pharmacokinetics in the 10–80 mg twice-daily dose range. No pharmacokinetic interaction was observed when veliparib and temozolomide were administered together.
Clinical Trial Registration Number: NCT00526617.
Literature
1.
go back to reference de Murcia G, Ménissier-de Murcia J, Schreiber V. Poly(ADP-ribose) polymerase: molecular biological aspects. BioEssays. 1991;13:455–62.CrossRefPubMed de Murcia G, Ménissier-de Murcia J, Schreiber V. Poly(ADP-ribose) polymerase: molecular biological aspects. BioEssays. 1991;13:455–62.CrossRefPubMed
2.
go back to reference D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999;342(Pt 2):249–68.CrossRefPubMedPubMedCentral D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999;342(Pt 2):249–68.CrossRefPubMedPubMedCentral
3.
go back to reference Schreiber V, Amé J-C, Dollé P, Schultz I, Rinaldi B, Fraulob V, et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem. 2002;277:23028–36.CrossRefPubMed Schreiber V, Amé J-C, Dollé P, Schultz I, Rinaldi B, Fraulob V, et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem. 2002;277:23028–36.CrossRefPubMed
5.
go back to reference Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12:587–98.CrossRefPubMed Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12:587–98.CrossRefPubMed
6.
go back to reference Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13:2728–37.CrossRefPubMed Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13:2728–37.CrossRefPubMed
7.
go back to reference Murai J, Huang SN, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72:5588–99.CrossRefPubMedPubMedCentral Murai J, Huang SN, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72:5588–99.CrossRefPubMedPubMedCentral
8.
go back to reference Hopkins TA, Shi Y, Rodriguez LE, Solomon LR, Donawho CK, DiGiammarino EL, et al. Mechanistic dissection of PARP1 trapping and the impact on in vivo tolerability and efficacy of PARP inhibitors. Mol Cancer Res. 2015;13:1465–77.CrossRefPubMed Hopkins TA, Shi Y, Rodriguez LE, Solomon LR, Donawho CK, DiGiammarino EL, et al. Mechanistic dissection of PARP1 trapping and the impact on in vivo tolerability and efficacy of PARP inhibitors. Mol Cancer Res. 2015;13:1465–77.CrossRefPubMed
9.
go back to reference Owonikoko TK, Zhang G, Deng X, Rossi MR, Switchenko JM, Doho GH, et al. Poly (ADP) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer. Cancer Med. 2014;3:1579–94.CrossRefPubMedPubMedCentral Owonikoko TK, Zhang G, Deng X, Rossi MR, Switchenko JM, Doho GH, et al. Poly (ADP) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer. Cancer Med. 2014;3:1579–94.CrossRefPubMedPubMedCentral
10.
go back to reference Goodman SN, Zahurak ML, Piantadosi S. Some practical improvements in the continual reassessment method for phase I studies. Stat Med. 1995;14:1149–61.CrossRefPubMed Goodman SN, Zahurak ML, Piantadosi S. Some practical improvements in the continual reassessment method for phase I studies. Stat Med. 1995;14:1149–61.CrossRefPubMed
11.
go back to reference Piantadosi S, Fisher JD, Grossman S. Practical implementation of a modified continual reassessment method for dose-finding trials. Cancer Chemother Pharmacol. 1998;41:429–36.CrossRefPubMed Piantadosi S, Fisher JD, Grossman S. Practical implementation of a modified continual reassessment method for dose-finding trials. Cancer Chemother Pharmacol. 1998;41:429–36.CrossRefPubMed
12.
go back to reference Mostafa NM, Chiu Y-L, Rosen LS, Bessudo A, Kovacs X, Giranda VL. A phase 1 study to evaluate effect of food on veliparib pharmacokinetics and relative bioavailability in subjects with solid tumors. Cancer Chemother Pharmacol. 2014;74:583–91.CrossRefPubMed Mostafa NM, Chiu Y-L, Rosen LS, Bessudo A, Kovacs X, Giranda VL. A phase 1 study to evaluate effect of food on veliparib pharmacokinetics and relative bioavailability in subjects with solid tumors. Cancer Chemother Pharmacol. 2014;74:583–91.CrossRefPubMed
13.
go back to reference Temodar [package insert]. Kenilworth, NJ: Schering Corporation; 2005. Temodar [package insert]. Kenilworth, NJ: Schering Corporation; 2005.
14.
go back to reference Parise RA, Shawaqfeh M, Egorin MJ, Beumer JH. Liquid chromatography-mass spectrometric assay for the quantitation in human plasma of ABT-888, an orally available, small molecule inhibitor of poly(ADP-ribose) polymerase. J Chromatogr B. 2008;872:141–7.CrossRef Parise RA, Shawaqfeh M, Egorin MJ, Beumer JH. Liquid chromatography-mass spectrometric assay for the quantitation in human plasma of ABT-888, an orally available, small molecule inhibitor of poly(ADP-ribose) polymerase. J Chromatogr B. 2008;872:141–7.CrossRef
15.
go back to reference Penning TD, Zhu G-D, Gandhi VB, Gong J, Liu X, Shi Y, et al. Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2009;52:514–23.CrossRefPubMed Penning TD, Zhu G-D, Gandhi VB, Gong J, Liu X, Shi Y, et al. Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2009;52:514–23.CrossRefPubMed
16.
go back to reference Li X, Delzer J, Voorman R, de Morais SM, Lao Y. Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of poly(ADP-ribose) polymerase. Drug Metab Dispos. 2011;39:1161–9.CrossRefPubMed Li X, Delzer J, Voorman R, de Morais SM, Lao Y. Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of poly(ADP-ribose) polymerase. Drug Metab Dispos. 2011;39:1161–9.CrossRefPubMed
17.
go back to reference Kikuchi R, Lao Y, Bow DAJ, Chiou WJ, Andracki ME, Carr RA, et al. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci. 2013;102:4426–32.CrossRefPubMed Kikuchi R, Lao Y, Bow DAJ, Chiou WJ, Andracki ME, Carr RA, et al. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci. 2013;102:4426–32.CrossRefPubMed
18.
go back to reference Li J, Kim S, Sha X, Wiegand R, Wu J, LoRusso P. Complex disease-, gene-, and drug-drug interactions: impacts of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin Cancer Res. 2014;20:3931–44.CrossRefPubMedPubMedCentral Li J, Kim S, Sha X, Wiegand R, Wu J, LoRusso P. Complex disease-, gene-, and drug-drug interactions: impacts of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin Cancer Res. 2014;20:3931–44.CrossRefPubMedPubMedCentral
19.
go back to reference Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, Sartorius SE, et al. Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res. 1999;5:309–17.PubMed Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, Sartorius SE, et al. Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res. 1999;5:309–17.PubMed
20.
go back to reference LoRusso PM, Li J, Burger A, Heilbrun LK, Sausville EA, Boerner SA, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of the poly(ADP-ribose) polymerase (PARP) inhibitor veliparib (ABT-888) in combination with irinotecan in patients with advanced solid tumors. Clin Cancer Res. 2016;22:3227–37.CrossRefPubMedPubMedCentral LoRusso PM, Li J, Burger A, Heilbrun LK, Sausville EA, Boerner SA, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of the poly(ADP-ribose) polymerase (PARP) inhibitor veliparib (ABT-888) in combination with irinotecan in patients with advanced solid tumors. Clin Cancer Res. 2016;22:3227–37.CrossRefPubMedPubMedCentral
21.
go back to reference Mizugaki H, Yamamoto N, Nokihara H, Fujiwara Y, Horinouchi H, Kanda S, et al. A phase 1 study evaluating the pharmacokinetics and preliminary efficacy of veliparib (ABT-888) in combination with carboplatin/paclitaxel in Japanese subjects with non-small cell lung cancer (NSCLC). Cancer Chemother Pharmacol. 2015;76:1063–72.CrossRefPubMedPubMedCentral Mizugaki H, Yamamoto N, Nokihara H, Fujiwara Y, Horinouchi H, Kanda S, et al. A phase 1 study evaluating the pharmacokinetics and preliminary efficacy of veliparib (ABT-888) in combination with carboplatin/paclitaxel in Japanese subjects with non-small cell lung cancer (NSCLC). Cancer Chemother Pharmacol. 2015;76:1063–72.CrossRefPubMedPubMedCentral
22.
go back to reference Lynparza(R) [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2014. Lynparza(R) [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2014.
23.
go back to reference Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, et al. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res. 2013;19:5003–15.CrossRefPubMed Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, et al. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res. 2013;19:5003–15.CrossRefPubMed
24.
go back to reference Zhang Z-Y, Wang X, Lu S, Wang J, Agarwal S, Martell R, et al. Biotransformation and disposition of niraparib, an investigational, selective human PARP-1 and PARP-2 antagonist, in vitro. Drug Metab Rev. 2016;48(52):P53. Zhang Z-Y, Wang X, Lu S, Wang J, Agarwal S, Martell R, et al. Biotransformation and disposition of niraparib, an investigational, selective human PARP-1 and PARP-2 antagonist, in vitro. Drug Metab Rev. 2016;48(52):P53.
Metadata
Title
Clinical Pharmacokinetics and Mass Balance of Veliparib in Combination with Temozolomide in Subjects with Nonhematologic Malignancies
Authors
Silpa Nuthalapati
Wijith Munasinghe
Vincent Giranda
Hao Xiong
Publication date
01-01-2018
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 1/2018
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-017-0547-z

Other articles of this Issue 1/2018

Clinical Pharmacokinetics 1/2018 Go to the issue