Skip to main content
Top
Published in: Clinical Pharmacokinetics 4/2013

01-04-2013 | Review Article

Pharmacodynamic, Pharmacokinetic and Pharmacogenetic Aspects of Drugs Used in the Treatment of Alzheimer’s Disease

Authors: Muriel Noetzli, Chin B. Eap

Published in: Clinical Pharmacokinetics | Issue 4/2013

Login to get access

Abstract

With the aging population and its rapidly increasing prevalence, dementia has become an important public health concern in developed and developing countries. To date, the pharmacological treatment is symptomatic and based on the observed neurotransmitter disturbances. The four most commonly used drugs are donepezil, galantamine, rivastigmine and memantine. Donepezil, galantamine and rivastigmine are acetylcholinesterase inhibitors with different pharmacodynamic and pharmacokinetic profiles. Donepezil inhibits selectively the acetylcholinesterase and has a long elimination half-life (t½) of 70 h. Galantamine is also a selective acetylcholinesterase inhibitor, but also modulates presynaptic nicotinic receptors. It has a t½ of 6–8 h. Donepezil and galantamine are mainly metabolised by cytochrome P450 (CYP) 2D6 and CYP3A4 in the liver. Rivastigmine is a so-called ‘pseudo-irreversible’ inhibitor of acetylcholinesterase and butyrylcholinesterase. The t½ of the drug is very short (1–2 h), but the duration of action is longer as the enzymes are blocked for around 8.5 and 3.5 h, respectively. Rivastigmine is metabolised by esterases in liver and intestine. Memantine is a non-competitive low-affinity antagonist of the NMDA receptor with a t½ of 70 h. Its major route of elimination is unchanged via the kidneys. Addressing the issue of inter-patient variability in treatment response might be of special importance for the vulnerable population taking anti-dementia drugs. Pharmacogenetic considerations might help to avoid multiple medication changes due to non-response and/or adverse events. Some pharmacogenetic studies conducted on donepezil and galantamine reported an influence of the CYP2D6 genotype on the pharmacokinetics of the drugs and/or on the response to treatment. Moreover, polymorphisms in genes of the cholinergic markers acetylcholinesterase, butyrylcholinesterase, choline acetyltransferase and paraoxonase were found to be associated with better clinical response to acetylcholinesterase inhibitors. However, confirmation studies in larger populations are necessary to establish evidence of which subgroups of patients will most likely benefit from anti-dementia drugs. The aim of this review is to summarize the pharmacodynamics and pharmacokinetics of the four commonly used anti-dementia drugs and to give an overview on the current knowledge of pharmacogenetics in this field.
Literature
1.
go back to reference Qaseem A, Snow V, Cross JT Jr, et al. Current pharmacologic treatment of dementia: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2008;148(5):370–8.PubMedCrossRef Qaseem A, Snow V, Cross JT Jr, et al. Current pharmacologic treatment of dementia: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2008;148(5):370–8.PubMedCrossRef
2.
go back to reference Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7.PubMedCrossRef Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7.PubMedCrossRef
3.
go back to reference Qiu C, De Ronchi D, Fratiglioni L. The epidemiology of the dementias: an update. Curr Opin Psychiatry. 2007;20(4):380–5.PubMedCrossRef Qiu C, De Ronchi D, Fratiglioni L. The epidemiology of the dementias: an update. Curr Opin Psychiatry. 2007;20(4):380–5.PubMedCrossRef
4.
go back to reference Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7(3):137–52.PubMedCrossRef Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7(3):137–52.PubMedCrossRef
5.
6.
go back to reference Francis PT, Ramirez MJ, Lai MK. Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology. 2010;59(4–5):221–9.PubMedCrossRef Francis PT, Ramirez MJ, Lai MK. Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology. 2010;59(4–5):221–9.PubMedCrossRef
7.
go back to reference Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003;306(3):821–7.PubMedCrossRef Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003;306(3):821–7.PubMedCrossRef
8.
go back to reference Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm. 2006;113(11):1625–44.PubMedCrossRef Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm. 2006;113(11):1625–44.PubMedCrossRef
9.
go back to reference Riederer P, Hoyer S. From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm. 2006;113(11):1671–7.PubMedCrossRef Riederer P, Hoyer S. From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm. 2006;113(11):1671–7.PubMedCrossRef
11.
go back to reference Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333–41.PubMedCrossRef Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333–41.PubMedCrossRef
12.
go back to reference Obulesu M, Somashekhar R, Venu R. Genetics of Alzheimer’s disease: an insight into presenilins and apolipoprotein e instigated neurodegeneration. Int J Neurosci. 2011;121(5):229–36.PubMedCrossRef Obulesu M, Somashekhar R, Venu R. Genetics of Alzheimer’s disease: an insight into presenilins and apolipoprotein e instigated neurodegeneration. Int J Neurosci. 2011;121(5):229–36.PubMedCrossRef
13.
14.
go back to reference Sleegers K, Lambert JC, Bertram L, et al. The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet. 2010;26(2):84–93.PubMedCrossRef Sleegers K, Lambert JC, Bertram L, et al. The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet. 2010;26(2):84–93.PubMedCrossRef
15.
go back to reference Bettens K, Sleegers K, Van Broeckhoven C. Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet. 2010;19(R1):R4–11.PubMedCrossRef Bettens K, Sleegers K, Van Broeckhoven C. Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet. 2010;19(R1):R4–11.PubMedCrossRef
19.
go back to reference Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002;41(10):719–39.PubMedCrossRef Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002;41(10):719–39.PubMedCrossRef
20.
go back to reference McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006; (2):CD003154. McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006; (2):CD003154.
21.
go back to reference Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148(5):379–97.PubMedCrossRef Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148(5):379–97.PubMedCrossRef
22.
go back to reference Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006; (1):CD005593. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006; (1):CD005593.
23.
go back to reference Raschetti R, Maggini M, Sorrentino GC, et al. A cohort study of effectiveness of acetylcholinesterase inhibitors in Alzheimer’s disease. Eur J Clin Pharmacol. 2005;61(5–6):361–8.PubMedCrossRef Raschetti R, Maggini M, Sorrentino GC, et al. A cohort study of effectiveness of acetylcholinesterase inhibitors in Alzheimer’s disease. Eur J Clin Pharmacol. 2005;61(5–6):361–8.PubMedCrossRef
24.
go back to reference Mega MS, Masterman DM, O’Connor SM, et al. The spectrum of behavioral responses to cholinesterase inhibitor therapy in Alzheimer disease. Arch Neurol. 1999;56(11):1388–93.PubMedCrossRef Mega MS, Masterman DM, O’Connor SM, et al. The spectrum of behavioral responses to cholinesterase inhibitor therapy in Alzheimer disease. Arch Neurol. 1999;56(11):1388–93.PubMedCrossRef
25.
go back to reference Lanctot KL, Herrmann N, Yau KK, et al. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ. 2003;169(6):557–64.PubMed Lanctot KL, Herrmann N, Yau KK, et al. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ. 2003;169(6):557–64.PubMed
26.
go back to reference Clerici F, Vanacore N, Elia A, et al. Memantine in moderately-severe-to-severe Alzheimer’s disease: a postmarketing surveillance study. Drugs Aging. 2009;26(4):321–32.PubMedCrossRef Clerici F, Vanacore N, Elia A, et al. Memantine in moderately-severe-to-severe Alzheimer’s disease: a postmarketing surveillance study. Drugs Aging. 2009;26(4):321–32.PubMedCrossRef
27.
go back to reference Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893–903.PubMedCrossRef Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893–903.PubMedCrossRef
28.
go back to reference Van Marum RJ. Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2009;5:237–47.PubMedCrossRef Van Marum RJ. Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2009;5:237–47.PubMedCrossRef
29.
30.
go back to reference Cacabelos R, Llovo R, Fraile C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res. 2007;4(4):479–500.PubMedCrossRef Cacabelos R, Llovo R, Fraile C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res. 2007;4(4):479–500.PubMedCrossRef
31.
go back to reference Giacobini E. Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of Alzheimer’s disease? Drugs Aging. 2001;18(12):891–8.PubMedCrossRef Giacobini E. Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of Alzheimer’s disease? Drugs Aging. 2001;18(12):891–8.PubMedCrossRef
32.
go back to reference Wilkinson DG, Francis PT, Schwam E, et al. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging. 2004;21(7):453–78.PubMedCrossRef Wilkinson DG, Francis PT, Schwam E, et al. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging. 2004;21(7):453–78.PubMedCrossRef
33.
go back to reference Weinstock M. Selectivity of cholinesterase inhibition: clinical implications for the treatment of Alzheimer’s disease. CNS Drugs. 1999;12(4):307–23.CrossRef Weinstock M. Selectivity of cholinesterase inhibition: clinical implications for the treatment of Alzheimer’s disease. CNS Drugs. 1999;12(4):307–23.CrossRef
34.
go back to reference Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9(1):101–24.PubMedCrossRef Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9(1):101–24.PubMedCrossRef
35.
go back to reference Fang L, Pan Y, Muzyka JL, et al. Active site gating and substrate specificity of butyrylcholinesterase and acetylcholinesterase: insights from molecular dynamics simulations. J Phys Chem B. 2011;115(27):8797–805.PubMedCrossRef Fang L, Pan Y, Muzyka JL, et al. Active site gating and substrate specificity of butyrylcholinesterase and acetylcholinesterase: insights from molecular dynamics simulations. J Phys Chem B. 2011;115(27):8797–805.PubMedCrossRef
36.
go back to reference Kosasa T, Kuriya Y, Matsui K, et al. Inhibitory effects of donepezil hydrochloride (E2020) on cholinesterase activity in brain and peripheral tissues of young and aged rats. Eur J Pharmacol. 1999;386(1):7–13.PubMedCrossRef Kosasa T, Kuriya Y, Matsui K, et al. Inhibitory effects of donepezil hydrochloride (E2020) on cholinesterase activity in brain and peripheral tissues of young and aged rats. Eur J Pharmacol. 1999;386(1):7–13.PubMedCrossRef
37.
go back to reference Villalobos A, Blake JF, Biggers CK, et al. Novel benzisoxazole derivatives as potent and selective inhibitors of acetylcholinesterase. J Med Chem. 1994;37(17):2721–34.PubMedCrossRef Villalobos A, Blake JF, Biggers CK, et al. Novel benzisoxazole derivatives as potent and selective inhibitors of acetylcholinesterase. J Med Chem. 1994;37(17):2721–34.PubMedCrossRef
38.
39.
go back to reference Thomsen T, Kewitz H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci. 1990;46(21):1553–8.PubMedCrossRef Thomsen T, Kewitz H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci. 1990;46(21):1553–8.PubMedCrossRef
40.
go back to reference Scott LJ, Goa KL. Galantamine: a review of its use in Alzheimer’s disease. Drugs. 2000;60(5):1095–122.PubMedCrossRef Scott LJ, Goa KL. Galantamine: a review of its use in Alzheimer’s disease. Drugs. 2000;60(5):1095–122.PubMedCrossRef
41.
go back to reference Maelicke A, Schrattenholz A, Samochocki M, et al. Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Behav Brain Res. 2000;113(1–2):199–206.PubMedCrossRef Maelicke A, Schrattenholz A, Samochocki M, et al. Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Behav Brain Res. 2000;113(1–2):199–206.PubMedCrossRef
42.
go back to reference Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther. 1998;20(4):634–47.PubMedCrossRef Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther. 1998;20(4):634–47.PubMedCrossRef
43.
go back to reference Kennedy JS, Polinsky RJ, Johnson B, et al. Preferential cerebrospinal fluid acetylcholinesterase inhibition by rivastigmine in humans. J Clin Psychopharmacol. 1999;19(6):513–21.PubMedCrossRef Kennedy JS, Polinsky RJ, Johnson B, et al. Preferential cerebrospinal fluid acetylcholinesterase inhibition by rivastigmine in humans. J Clin Psychopharmacol. 1999;19(6):513–21.PubMedCrossRef
44.
go back to reference Hossain M, Jhee SS, Shiovitz T, et al. Estimation of the absolute bioavailability of rivastigmine in patients with mild to moderate dementia of the Alzheimer’s type. Clin Pharmacokinet. 2002;41(3):225–34.PubMedCrossRef Hossain M, Jhee SS, Shiovitz T, et al. Estimation of the absolute bioavailability of rivastigmine in patients with mild to moderate dementia of the Alzheimer’s type. Clin Pharmacokinet. 2002;41(3):225–34.PubMedCrossRef
45.
go back to reference Jann MW. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacotherapy. 2000;20(1):1–12.PubMedCrossRef Jann MW. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacotherapy. 2000;20(1):1–12.PubMedCrossRef
46.
go back to reference Enz A, Amstutz R, Boddeke H, et al. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer’s disease. Prog Brain Res. 1993;98:431–8.PubMedCrossRef Enz A, Amstutz R, Boddeke H, et al. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer’s disease. Prog Brain Res. 1993;98:431–8.PubMedCrossRef
47.
go back to reference Enz A, Boddeke H, Gray J, et al. Pharmacologic and clinicopharmacologic properties of SDZ ENA 713, a centrally selective acetylcholinesterase inhibitor. Ann N Y Acad Sci. 1991;640:272–5.PubMed Enz A, Boddeke H, Gray J, et al. Pharmacologic and clinicopharmacologic properties of SDZ ENA 713, a centrally selective acetylcholinesterase inhibitor. Ann N Y Acad Sci. 1991;640:272–5.PubMed
50.
go back to reference Lenzken SC, Lanni C, Govoni S, et al. Nicotinic component of galantamine in the regulation of amyloid precursor protein processing. Chem Biol Interact. 2007;165(2):138–45.PubMedCrossRef Lenzken SC, Lanni C, Govoni S, et al. Nicotinic component of galantamine in the regulation of amyloid precursor protein processing. Chem Biol Interact. 2007;165(2):138–45.PubMedCrossRef
51.
go back to reference Pakaski M, Kalman J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochem Int. 2008;53(5):103–11.PubMedCrossRef Pakaski M, Kalman J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochem Int. 2008;53(5):103–11.PubMedCrossRef
52.
go back to reference Zimmermann M, Gardoni F, Marcello E, et al. Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem. 2004;90(6):1489–99.PubMedCrossRef Zimmermann M, Gardoni F, Marcello E, et al. Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem. 2004;90(6):1489–99.PubMedCrossRef
53.
go back to reference Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res. 2003;28(3–4):515–22.PubMedCrossRef Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res. 2003;28(3–4):515–22.PubMedCrossRef
54.
go back to reference Parsons CG, Stoffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system: too little activation is bad, too much is even worse. Neuropharmacology. 2007;53(6):699–723.PubMedCrossRef Parsons CG, Stoffler A, Danysz W. Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system: too little activation is bad, too much is even worse. Neuropharmacology. 2007;53(6):699–723.PubMedCrossRef
55.
go back to reference Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer’s disease and other neurodegenerative disorders: memantine, a new hope. Pharmacol Res. 2005;51(1):1–17.PubMedCrossRef Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer’s disease and other neurodegenerative disorders: memantine, a new hope. Pharmacol Res. 2005;51(1):1–17.PubMedCrossRef
56.
go back to reference Danysz W, Parsons CG. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence. Int J Geriatr Psychiatry. 2003;18(Suppl 1):S23–32.PubMedCrossRef Danysz W, Parsons CG. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence. Int J Geriatr Psychiatry. 2003;18(Suppl 1):S23–32.PubMedCrossRef
57.
go back to reference Lipton SA. Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci. 2007;8(10):803–8.PubMedCrossRef Lipton SA. Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci. 2007;8(10):803–8.PubMedCrossRef
58.
go back to reference Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291(3):317–24.PubMedCrossRef Tariot PN, Farlow MR, Grossberg GT, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291(3):317–24.PubMedCrossRef
59.
go back to reference Dantoine T, Auriacombe S, Sarazin M, et al. Rivastigmine monotherapy and combination therapy with memantine in patients with moderately severe Alzheimer’s disease who failed to benefit from previous cholinesterase inhibitor treatment. Int J Clin Pract. 2006;60(1):110–8.PubMedCrossRef Dantoine T, Auriacombe S, Sarazin M, et al. Rivastigmine monotherapy and combination therapy with memantine in patients with moderately severe Alzheimer’s disease who failed to benefit from previous cholinesterase inhibitor treatment. Int J Clin Pract. 2006;60(1):110–8.PubMedCrossRef
60.
go back to reference Atri A, Shaughnessy LW, Locascio JJ, et al. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis Assoc Disord. 2008;22(3):209–21.PubMedCrossRef Atri A, Shaughnessy LW, Locascio JJ, et al. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis Assoc Disord. 2008;22(3):209–21.PubMedCrossRef
61.
go back to reference Lopez OL, Becker JT, Wahed AS, et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80(6):600–7.PubMedCrossRef Lopez OL, Becker JT, Wahed AS, et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80(6):600–7.PubMedCrossRef
62.
go back to reference Farlow MR, Alva G, Meng X, et al. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: a post hoc analysis. Curr Med Res Opin. 2010;26(2):263–9.PubMedCrossRef Farlow MR, Alva G, Meng X, et al. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: a post hoc analysis. Curr Med Res Opin. 2010;26(2):263–9.PubMedCrossRef
63.
go back to reference Schneider LS. Discontinuing donepezil or starting memantine for Alzheimer’s disease. N Engl J Med. 2012;366(10):957–9.PubMedCrossRef Schneider LS. Discontinuing donepezil or starting memantine for Alzheimer’s disease. N Engl J Med. 2012;366(10):957–9.PubMedCrossRef
64.
go back to reference Shintani EY, Uchida KM. Donepezil: an anticholinesterase inhibitor for Alzheimer’s disease. Am J Health Syst Pharm. 1997;54(24):2805–10.PubMed Shintani EY, Uchida KM. Donepezil: an anticholinesterase inhibitor for Alzheimer’s disease. Am J Health Syst Pharm. 1997;54(24):2805–10.PubMed
65.
go back to reference Mihara M, Ohnishi A, Tomono Y, et al. Pharmacokinetics of E2020, a new compound for Alzheimer’s disease, in healthy male volunteers. Int J Clin Pharmacol Ther Toxicol. 1993;31(5):223–9.PubMed Mihara M, Ohnishi A, Tomono Y, et al. Pharmacokinetics of E2020, a new compound for Alzheimer’s disease, in healthy male volunteers. Int J Clin Pharmacol Ther Toxicol. 1993;31(5):223–9.PubMed
67.
go back to reference Rogers SL, Cooper NM, Sukovaty R, et al. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following multiple oral doses. Br J Clin Pharmacol. 1998;46(Suppl. 1):7–12.PubMed Rogers SL, Cooper NM, Sukovaty R, et al. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following multiple oral doses. Br J Clin Pharmacol. 1998;46(Suppl. 1):7–12.PubMed
68.
go back to reference Tiseo PJ, Rogers SL, Friedhoff LT. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br J Clin Pharmacol. 1998;46(Suppl 1):13–8.PubMed Tiseo PJ, Rogers SL, Friedhoff LT. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br J Clin Pharmacol. 1998;46(Suppl 1):13–8.PubMed
69.
go back to reference Ohnishi A, Mihara M, Kamakura H, et al. Comparison of the pharmacokinetics of E2020, a new compound for Alzheimer’s disease, in healthy young and elderly subjects. J Clin Pharmacol. 1993;33(11):1086–91.PubMedCrossRef Ohnishi A, Mihara M, Kamakura H, et al. Comparison of the pharmacokinetics of E2020, a new compound for Alzheimer’s disease, in healthy young and elderly subjects. J Clin Pharmacol. 1993;33(11):1086–91.PubMedCrossRef
70.
go back to reference Tiseo PJ, Perdomo CA, Friedhoff LT. Metabolism and elimination of 14C-donepezil in healthy volunteers: a single-dose study. Br J Clin Pharmacol. 1998;46(Suppl 1):19–24.PubMed Tiseo PJ, Perdomo CA, Friedhoff LT. Metabolism and elimination of 14C-donepezil in healthy volunteers: a single-dose study. Br J Clin Pharmacol. 1998;46(Suppl 1):19–24.PubMed
71.
go back to reference Matsui K, Taniguchi S, Yoshimura T. Correlation of the intrinsic clearance of donepezil (Aricept) between in vivo and in vitro studies in rat, dog and human. Xenobiotica. 1999;29(11):1059–72.PubMedCrossRef Matsui K, Taniguchi S, Yoshimura T. Correlation of the intrinsic clearance of donepezil (Aricept) between in vivo and in vitro studies in rat, dog and human. Xenobiotica. 1999;29(11):1059–72.PubMedCrossRef
72.
go back to reference Matsui K, Mishima M, Nagai Y, et al. Absorption, distribution, metabolism, and excretion of donepezil (Aricept) after a single oral administration to Rat. Drug Metab Dispos. 1999;27(12):1406–14.PubMed Matsui K, Mishima M, Nagai Y, et al. Absorption, distribution, metabolism, and excretion of donepezil (Aricept) after a single oral administration to Rat. Drug Metab Dispos. 1999;27(12):1406–14.PubMed
73.
go back to reference Tiseo PJ, Perdomo CA, Friedhoff LT. Concurrent administration of donepezil HCl and ketoconazole: assessment of pharmacokinetic changes following single and multiple doses. Br J Clin Pharmacol. 1998;46(Suppl 1):30–4.PubMed Tiseo PJ, Perdomo CA, Friedhoff LT. Concurrent administration of donepezil HCl and ketoconazole: assessment of pharmacokinetic changes following single and multiple doses. Br J Clin Pharmacol. 1998;46(Suppl 1):30–4.PubMed
74.
go back to reference Tiseo PJ, Perdomo CA, Friedhoff LT. Concurrent administration of donepezil HCl and cimetidine: assessment of pharmacokinetic changes following single and multiple doses. Br J Clin Pharmacol. 1998;46(Suppl 1):25–9.PubMed Tiseo PJ, Perdomo CA, Friedhoff LT. Concurrent administration of donepezil HCl and cimetidine: assessment of pharmacokinetic changes following single and multiple doses. Br J Clin Pharmacol. 1998;46(Suppl 1):25–9.PubMed
75.
go back to reference Nagy CF, Kumar D, Cullen EI, et al. Steady-state pharmacokinetics and safety of donepezil HCl in subjects with moderately impaired renal function. Br J Clin Pharmacol. 2004;58(Suppl 1):18–24.PubMedCrossRef Nagy CF, Kumar D, Cullen EI, et al. Steady-state pharmacokinetics and safety of donepezil HCl in subjects with moderately impaired renal function. Br J Clin Pharmacol. 2004;58(Suppl 1):18–24.PubMedCrossRef
76.
go back to reference Tiseo PJ, Foley K, Friedhoff LT. An evaluation of the pharmacokinetics of donepezil HCl in patients with moderately to severely impaired renal function. Br J Clin Pharmacol. 1998;46(Suppl 1):56–60.PubMed Tiseo PJ, Foley K, Friedhoff LT. An evaluation of the pharmacokinetics of donepezil HCl in patients with moderately to severely impaired renal function. Br J Clin Pharmacol. 1998;46(Suppl 1):56–60.PubMed
77.
go back to reference Reyes JF, Vargas R, Kumar D, et al. Steady-state pharmacokinetics, pharmacodynamics and tolerability of donepezil hydrochloride in hepatically impaired patients. Br J Clin Pharmacol. 2004;58(Suppl 1):9–17.PubMedCrossRef Reyes JF, Vargas R, Kumar D, et al. Steady-state pharmacokinetics, pharmacodynamics and tolerability of donepezil hydrochloride in hepatically impaired patients. Br J Clin Pharmacol. 2004;58(Suppl 1):9–17.PubMedCrossRef
78.
go back to reference Bickel U, Thomsen T, Weber W, et al. Pharmacokinetics of galanthamine in humans and corresponding cholinesterase inhibition. Clin Pharmacol Ther. 1991;50(4):420–8.PubMedCrossRef Bickel U, Thomsen T, Weber W, et al. Pharmacokinetics of galanthamine in humans and corresponding cholinesterase inhibition. Clin Pharmacol Ther. 1991;50(4):420–8.PubMedCrossRef
79.
go back to reference Jones RW, Cooper DM, Haworth J, et al. The effect of food on the absorption of galanthamine in healthy elderly volunteers. Br J Clin Pharmacol. 1996;42:671P–2P. Jones RW, Cooper DM, Haworth J, et al. The effect of food on the absorption of galanthamine in healthy elderly volunteers. Br J Clin Pharmacol. 1996;42:671P–2P.
80.
go back to reference Zhao Q, Janssens L, Verhaeghe T, et al. Pharmacokinetics of extended-release and immediate-release formulations of galantamine at steady state in healthy volunteers. Curr Med Res Opin. 2005;21(10):1547–54.PubMedCrossRef Zhao Q, Janssens L, Verhaeghe T, et al. Pharmacokinetics of extended-release and immediate-release formulations of galantamine at steady state in healthy volunteers. Curr Med Res Opin. 2005;21(10):1547–54.PubMedCrossRef
81.
go back to reference Zhao Q, Brett M, Van ON, et al. Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J Clin Pharmacol. 2002;42(9):1002–10.PubMed Zhao Q, Brett M, Van ON, et al. Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J Clin Pharmacol. 2002;42(9):1002–10.PubMed
82.
go back to reference Zhao Q, Iyer GR, Verhaeghe T, et al. Pharmacokinetics and safety of galantamine in subjects with hepatic impairment and healthy volunteers. J Clin Pharmacol. 2002;42:428–36.PubMed Zhao Q, Iyer GR, Verhaeghe T, et al. Pharmacokinetics and safety of galantamine in subjects with hepatic impairment and healthy volunteers. J Clin Pharmacol. 2002;42:428–36.PubMed
83.
go back to reference Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab Dispos. 2002;30(5):553–63.PubMedCrossRef Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab Dispos. 2002;30(5):553–63.PubMedCrossRef
84.
go back to reference Bachus R, Bickel U, Thomsen T, et al. The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics. 1999;9:661–8.PubMedCrossRef Bachus R, Bickel U, Thomsen T, et al. The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics. 1999;9:661–8.PubMedCrossRef
86.
go back to reference Piotrovsky V, Van Peer A, Van Osselaer N, et al. Galantamine population pharmacokinetics in patients with Alzheimer’s disease: modeling and simulations. J Clin Pharmacol. 2003;43(5):514–23.PubMed Piotrovsky V, Van Peer A, Van Osselaer N, et al. Galantamine population pharmacokinetics in patients with Alzheimer’s disease: modeling and simulations. J Clin Pharmacol. 2003;43(5):514–23.PubMed
87.
go back to reference Lefevre G, Sedek G, Jhee SS, et al. Pharmacokinetics and pharmacodynamics of the novel daily rivastigmine transdermal patch compared with twice-daily capsules in Alzheimer’s disease patients. Clin Pharmacol Ther. 2008;83(1):106–14.PubMedCrossRef Lefevre G, Sedek G, Jhee SS, et al. Pharmacokinetics and pharmacodynamics of the novel daily rivastigmine transdermal patch compared with twice-daily capsules in Alzheimer’s disease patients. Clin Pharmacol Ther. 2008;83(1):106–14.PubMedCrossRef
88.
go back to reference Cutler NR, Polinsky RJ, Sramek JJ, et al. Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. Acta Neurol Scand. 1998;97(4):244–50.PubMedCrossRef Cutler NR, Polinsky RJ, Sramek JJ, et al. Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. Acta Neurol Scand. 1998;97(4):244–50.PubMedCrossRef
89.
go back to reference Gobburu JV, Tammara V, Lesko L, et al. Pharmacokinetic-pharmacodynamic modeling of rivastigmine, a cholinesterase inhibitor, in patients with Alzheimer’s disease. J Clin Pharmacol. 2001;41(10):1082–90.PubMedCrossRef Gobburu JV, Tammara V, Lesko L, et al. Pharmacokinetic-pharmacodynamic modeling of rivastigmine, a cholinesterase inhibitor, in patients with Alzheimer’s disease. J Clin Pharmacol. 2001;41(10):1082–90.PubMedCrossRef
90.
go back to reference Spencer CM, Noble S. Rivastigmine: a review of its use in Alzheimer’s disease. Drugs Aging. 1998;13(5):391–411.PubMedCrossRef Spencer CM, Noble S. Rivastigmine: a review of its use in Alzheimer’s disease. Drugs Aging. 1998;13(5):391–411.PubMedCrossRef
91.
go back to reference Mercier F, Lefevre G, Huang HL, et al. Rivastigmine exposure provided by a transdermal patch versus capsules. Curr Med Res Opin. 2007;23(12):3199–204.PubMedCrossRef Mercier F, Lefevre G, Huang HL, et al. Rivastigmine exposure provided by a transdermal patch versus capsules. Curr Med Res Opin. 2007;23(12):3199–204.PubMedCrossRef
92.
go back to reference Cummings J, Lefevre G, Small G, et al. Pharmacokinetic rationale for the rivastigmine patch. Neurology. 2007;69(4 Suppl 1):S10–3.PubMedCrossRef Cummings J, Lefevre G, Small G, et al. Pharmacokinetic rationale for the rivastigmine patch. Neurology. 2007;69(4 Suppl 1):S10–3.PubMedCrossRef
93.
go back to reference Lefevre G, Buche M, Sedek G, et al. Similar rivastigmine pharmacokinetics and pharmacodynamics in Japanese and white healthy participants following the application of novel rivastigmine patch. J Clin Pharmacol. 2009;49(4):430–43.PubMedCrossRef Lefevre G, Buche M, Sedek G, et al. Similar rivastigmine pharmacokinetics and pharmacodynamics in Japanese and white healthy participants following the application of novel rivastigmine patch. J Clin Pharmacol. 2009;49(4):430–43.PubMedCrossRef
94.
go back to reference Schran HF. The effects of renal and hepatic impairment on the disposition of the acetylcholinesterase inhibitor SDZ ENA 713. Pharm Res. 1996; 13(PPDM 8143):S428. Schran HF. The effects of renal and hepatic impairment on the disposition of the acetylcholinesterase inhibitor SDZ ENA 713. Pharm Res. 1996; 13(PPDM 8143):S428.
96.
go back to reference Periclou A, Ventura D, Rao N, et al. Pharmacokinetic study of memantine in healthy and renally impaired subjects. Clin Pharmacol Ther. 2006;79(1):134–43.PubMedCrossRef Periclou A, Ventura D, Rao N, et al. Pharmacokinetic study of memantine in healthy and renally impaired subjects. Clin Pharmacol Ther. 2006;79(1):134–43.PubMedCrossRef
97.
go back to reference Liu MY, Meng SN, Wu HZ, et al. Pharmacokinetics of single-dose and multiple-dose memantine in healthy chinese volunteers using an analytic method of liquid chromatography-tandem mass spectrometry. Clin Ther. 2008;30(4):641–53.PubMedCrossRef Liu MY, Meng SN, Wu HZ, et al. Pharmacokinetics of single-dose and multiple-dose memantine in healthy chinese volunteers using an analytic method of liquid chromatography-tandem mass spectrometry. Clin Ther. 2008;30(4):641–53.PubMedCrossRef
98.
go back to reference Mobius HJ, Stoffler A, Graham SM. Memantine hydrochloride: pharmacological and clinical profile. Drugs Today (Barc). 2004;40(8):685–95.CrossRef Mobius HJ, Stoffler A, Graham SM. Memantine hydrochloride: pharmacological and clinical profile. Drugs Today (Barc). 2004;40(8):685–95.CrossRef
99.
go back to reference Kornhuber J, Kennepohl EM, Bleich S, et al. Memantine pharmacotherapy: a naturalistic study using a population pharmacokinetic approach. Clin Pharmacokinet. 2007;46(7):599–612.PubMedCrossRef Kornhuber J, Kennepohl EM, Bleich S, et al. Memantine pharmacotherapy: a naturalistic study using a population pharmacokinetic approach. Clin Pharmacokinet. 2007;46(7):599–612.PubMedCrossRef
101.
go back to reference Micuda S, Mundlova L, Anzenbacherova E, et al. Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol. 2004;60(8):583–9.PubMedCrossRef Micuda S, Mundlova L, Anzenbacherova E, et al. Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol. 2004;60(8):583–9.PubMedCrossRef
102.
go back to reference Busch AE, Karbach U, Miska D, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998;54(2):342–52.PubMed Busch AE, Karbach U, Miska D, et al. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998;54(2):342–52.PubMed
103.
go back to reference Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol. 2011;7(2):159–74.PubMedCrossRef Ciarimboli G. Role of organic cation transporters in drug-induced toxicity. Expert Opin Drug Metab Toxicol. 2011;7(2):159–74.PubMedCrossRef
104.
go back to reference Freudenthaler S, Meineke I, Schreeb KH, et al. Influence of urine pH and urinary flow on the renal excretion of memantine. Br J Clin Pharmacol. 1998;46(6):541–6.PubMedCrossRef Freudenthaler S, Meineke I, Schreeb KH, et al. Influence of urine pH and urinary flow on the renal excretion of memantine. Br J Clin Pharmacol. 1998;46(6):541–6.PubMedCrossRef
105.
go back to reference Rao N, Chou T, Ventura D, et al. Investigation of the pharmacokinetic and pharmacodynamic interactions between memantine and glyburide/metformin in healthy young subjects: a single-center, multiple-dose, open-label study. Clin Ther. 2005;27(10):1596–606.PubMedCrossRef Rao N, Chou T, Ventura D, et al. Investigation of the pharmacokinetic and pharmacodynamic interactions between memantine and glyburide/metformin in healthy young subjects: a single-center, multiple-dose, open-label study. Clin Ther. 2005;27(10):1596–606.PubMedCrossRef
107.
go back to reference Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.PubMedCrossRef Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.PubMedCrossRef
108.
go back to reference Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet. 2009;48(11):689–723.PubMedCrossRef Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet. 2009;48(11):689–723.PubMedCrossRef
109.
go back to reference Varsaldi F, Miglio G, Scordo MG, et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur J Clin Pharmacol. 2006;62(9):721–6.PubMedCrossRef Varsaldi F, Miglio G, Scordo MG, et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur J Clin Pharmacol. 2006;62(9):721–6.PubMedCrossRef
110.
go back to reference Pilotto A, Franceschi M, D’Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology. 2009;73(10):761–7.PubMedCrossRef Pilotto A, Franceschi M, D’Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology. 2009;73(10):761–7.PubMedCrossRef
111.
go back to reference Seripa D, Bizzarro A, Pilotto A, et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer’s disease. Pharmacogenet Genomics. 2011;21(4):225–30.PubMed Seripa D, Bizzarro A, Pilotto A, et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer’s disease. Pharmacogenet Genomics. 2011;21(4):225–30.PubMed
112.
go back to reference Chianella C, Gragnaniello D, Maisano Delser P. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur J Clin Pharmacol. 2011;67(11):1147–57.PubMedCrossRef Chianella C, Gragnaniello D, Maisano Delser P. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur J Clin Pharmacol. 2011;67(11):1147–57.PubMedCrossRef
113.
go back to reference Noetzli M, Guidi M, Ebbing K, et al. Relationship of CYP2D6, CYP3A, POR and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit (in press). Noetzli M, Guidi M, Ebbing K, et al. Relationship of CYP2D6, CYP3A, POR and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit (in press).
114.
go back to reference Dobrinas M, Eap CB. Cytochrome P4503A pharmacogenetics. HIV PGX. 2007;2(2):1–5. Dobrinas M, Eap CB. Cytochrome P4503A pharmacogenetics. HIV PGX. 2007;2(2):1–5.
115.
go back to reference Siccardi M, D’Avolio A, Baietto L, et al. Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C–>T) with reduced concentrations of unboosted atazanavir. Clin Infect Dis. 2008;47:1222–5.PubMedCrossRef Siccardi M, D’Avolio A, Baietto L, et al. Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C–>T) with reduced concentrations of unboosted atazanavir. Clin Infect Dis. 2008;47:1222–5.PubMedCrossRef
116.
go back to reference Oneda B, Crettol S, Jaquenoud Sirot E. The P450 oxidoreductase is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogen Genomics. 2009;19(11):877–83.CrossRef Oneda B, Crettol S, Jaquenoud Sirot E. The P450 oxidoreductase is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogen Genomics. 2009;19(11):877–83.CrossRef
117.
go back to reference Oleson L, von Moltke LL, Greenblatt DJ, et al. Identification of polymorphisms in the 3’-untranslated region of the human pregnane X receptor (PXR) gene associated with variability in cytochrome P450 3A (CYP3A) metabolism. Xenobiotica. 2010;40(2):146–62.PubMedCrossRef Oleson L, von Moltke LL, Greenblatt DJ, et al. Identification of polymorphisms in the 3’-untranslated region of the human pregnane X receptor (PXR) gene associated with variability in cytochrome P450 3A (CYP3A) metabolism. Xenobiotica. 2010;40(2):146–62.PubMedCrossRef
118.
go back to reference Magliulo L, Dahl ML, Lombardi G, et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol. 2011;67(1):47–54.PubMedCrossRef Magliulo L, Dahl ML, Lombardi G, et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol. 2011;67(1):47–54.PubMedCrossRef
119.
go back to reference Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–61.PubMedCrossRef Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–61.PubMedCrossRef
120.
go back to reference Scacchi R, Gambina G, Moretto G, et al. Variability of AChE, BChE, and ChAT genes in the late-onset form of Alzheimer’s disease and relationships with response to treatment with Donepezil and Rivastigmine. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(4):502–7.PubMedCrossRef Scacchi R, Gambina G, Moretto G, et al. Variability of AChE, BChE, and ChAT genes in the late-onset form of Alzheimer’s disease and relationships with response to treatment with Donepezil and Rivastigmine. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(4):502–7.PubMedCrossRef
121.
go back to reference Blesa R, Bullock R, He Y, et al. Effect of butyrylcholinesterase genotype on the response to rivastigmine or donepezil in younger patients with Alzheimer’s disease. Pharmacogenet Genomics. 2006;16(11):771–4.PubMedCrossRef Blesa R, Bullock R, He Y, et al. Effect of butyrylcholinesterase genotype on the response to rivastigmine or donepezil in younger patients with Alzheimer’s disease. Pharmacogenet Genomics. 2006;16(11):771–4.PubMedCrossRef
122.
go back to reference Harold D, Macgregor S, Patterson CE, et al. A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacogenet Genomics. 2006;16(2):75–7.PubMedCrossRef Harold D, Macgregor S, Patterson CE, et al. A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacogenet Genomics. 2006;16(2):75–7.PubMedCrossRef
123.
go back to reference Pola R, Flex A, Ciaburri M, et al. Responsiveness to cholinesterase inhibitors in Alzheimer’s disease: a possible role for the 192 Q/R polymorphism of the PON-1 gene. Neurosci Lett. 2005;382(3):338–41.PubMedCrossRef Pola R, Flex A, Ciaburri M, et al. Responsiveness to cholinesterase inhibitors in Alzheimer’s disease: a possible role for the 192 Q/R polymorphism of the PON-1 gene. Neurosci Lett. 2005;382(3):338–41.PubMedCrossRef
124.
go back to reference Klimkowicz-Mrowiec A, Marona M, Spisak K, et al. Paraoxonase 1 gene polymorphisms do not influence the response to treatment in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2011;32(1):26–31.PubMedCrossRef Klimkowicz-Mrowiec A, Marona M, Spisak K, et al. Paraoxonase 1 gene polymorphisms do not influence the response to treatment in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2011;32(1):26–31.PubMedCrossRef
125.
go back to reference Weiner DM, Goodman MW, Colpitts TM, et al. Functional screening of drug target genes: m1 muscarinic acetylcholine receptor phenotypes in degenerative dementias. Am J Pharmacogenomics. 2004;4(2):119–28.PubMedCrossRef Weiner DM, Goodman MW, Colpitts TM, et al. Functional screening of drug target genes: m1 muscarinic acetylcholine receptor phenotypes in degenerative dementias. Am J Pharmacogenomics. 2004;4(2):119–28.PubMedCrossRef
126.
go back to reference Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10(3):241–52.PubMedCrossRef Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10(3):241–52.PubMedCrossRef
127.
go back to reference Poirier J, Delisle MC, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA. 1995;92(26):12260–4.PubMedCrossRef Poirier J, Delisle MC, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA. 1995;92(26):12260–4.PubMedCrossRef
128.
go back to reference Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 2001;57(3):489–95.PubMedCrossRef Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 2001;57(3):489–95.PubMedCrossRef
129.
go back to reference Rigaud AS, Traykov L, Latour F, et al. Presence or absence of at least one epsilon 4 allele and gender are not predictive for the response to donepezil treatment in Alzheimer’s disease. Pharmacogenetics. 2002;12(5):415–20.PubMedCrossRef Rigaud AS, Traykov L, Latour F, et al. Presence or absence of at least one epsilon 4 allele and gender are not predictive for the response to donepezil treatment in Alzheimer’s disease. Pharmacogenetics. 2002;12(5):415–20.PubMedCrossRef
130.
go back to reference Greenberg SM, Tennis MK, Brown LB, et al. Donepezil therapy in clinical practice: a randomized crossover study. Arch Neurol. 2000;57(1):94–9.PubMedCrossRef Greenberg SM, Tennis MK, Brown LB, et al. Donepezil therapy in clinical practice: a randomized crossover study. Arch Neurol. 2000;57(1):94–9.PubMedCrossRef
131.
go back to reference Kanaya K, Abe S, Sakai M, et al. Changes in cognitive functions of patients with dementia of the Alzheimer type following long-term administration of donepezil hydrochloride: relating to changes attributable to differences in apolipoprotein E phenotype. Geriatr Gerontol Int. 2010;10(1):25–31.PubMedCrossRef Kanaya K, Abe S, Sakai M, et al. Changes in cognitive functions of patients with dementia of the Alzheimer type following long-term administration of donepezil hydrochloride: relating to changes attributable to differences in apolipoprotein E phenotype. Geriatr Gerontol Int. 2010;10(1):25–31.PubMedCrossRef
132.
go back to reference Bizzarro A, Marra C, Acciarri A, et al. Apolipoprotein E epsilon4 allele differentiates the clinical response to donepezil in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;20(4):254–61.PubMedCrossRef Bizzarro A, Marra C, Acciarri A, et al. Apolipoprotein E epsilon4 allele differentiates the clinical response to donepezil in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;20(4):254–61.PubMedCrossRef
133.
go back to reference Aerssens J, Raeymaekers P, Lilienfeld S, et al. APOE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2001;12(2):69–77.PubMedCrossRef Aerssens J, Raeymaekers P, Lilienfeld S, et al. APOE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2001;12(2):69–77.PubMedCrossRef
134.
go back to reference Suh GH, Jung HY, Lee CU, et al. Effect of the apolipoprotein E epsilon4 allele on the efficacy and tolerability of galantamine in the treatment of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2006;21(1):33–9.PubMedCrossRef Suh GH, Jung HY, Lee CU, et al. Effect of the apolipoprotein E epsilon4 allele on the efficacy and tolerability of galantamine in the treatment of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2006;21(1):33–9.PubMedCrossRef
135.
go back to reference Raskind MA, Peskind ER, Wessel T, et al. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology. 2000;54(12):2261–8.PubMedCrossRef Raskind MA, Peskind ER, Wessel T, et al. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology. 2000;54(12):2261–8.PubMedCrossRef
136.
go back to reference Blesa R, Aguilar M, Casanova JP, et al. Relationship between the efficacy of rivastigmine and apolipoprotein E (epsilon4) in patients with mild to moderately severe Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20(4):248–54.PubMedCrossRef Blesa R, Aguilar M, Casanova JP, et al. Relationship between the efficacy of rivastigmine and apolipoprotein E (epsilon4) in patients with mild to moderately severe Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20(4):248–54.PubMedCrossRef
137.
go back to reference Farlow M, Lane R, Kudaravalli S, et al. Differential qualitative responses to rivastigmine in APOE epsilon 4 carriers and noncarriers. Pharmacogenomics J. 2004;4(5):332–5.PubMedCrossRef Farlow M, Lane R, Kudaravalli S, et al. Differential qualitative responses to rivastigmine in APOE epsilon 4 carriers and noncarriers. Pharmacogenomics J. 2004;4(5):332–5.PubMedCrossRef
138.
go back to reference Noetzli M, Guidi M, Ebbing K, et al. Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin Pharmacokinet (in press). doi:10.1007/s40262-013-0032-2. Noetzli M, Guidi M, Ebbing K, et al. Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin Pharmacokinet (in press). doi:10.​1007/​s40262-013-0032-2.
139.
go back to reference Zhao Q, Tang XC. Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol. 2002;455(2–3):101–7.PubMedCrossRef Zhao Q, Tang XC. Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol. 2002;455(2–3):101–7.PubMedCrossRef
140.
go back to reference Yao C, Raoufinia A, Gold M, et al. Steady-state pharmacokinetics of galantamine are not affected by addition of memantine in healthy subjects. J Clin Pharmacol. 2005;45(5):519–28.PubMedCrossRef Yao C, Raoufinia A, Gold M, et al. Steady-state pharmacokinetics of galantamine are not affected by addition of memantine in healthy subjects. J Clin Pharmacol. 2005;45(5):519–28.PubMedCrossRef
Metadata
Title
Pharmacodynamic, Pharmacokinetic and Pharmacogenetic Aspects of Drugs Used in the Treatment of Alzheimer’s Disease
Authors
Muriel Noetzli
Chin B. Eap
Publication date
01-04-2013
Publisher
Springer International Publishing AG
Published in
Clinical Pharmacokinetics / Issue 4/2013
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-013-0038-9

Other articles of this Issue 4/2013

Clinical Pharmacokinetics 4/2013 Go to the issue