Skip to main content
Top
Published in: Current Obesity Reports 1/2013

01-03-2013 | Etiology of Obesity (JA Martinez, Section Editor)

Multifactorial Influences of Childhood Obesity

Authors: Yeow Nyin Ang, Bee Suan Wee, Bee Koon Poh, Mohd Noor Ismail

Published in: Current Obesity Reports | Issue 1/2013

Login to get access

Abstract

Obesity is the result of complex interactions of multiple factors that have gradually led to enduring changes in lifestyles, and thus, creating a global epidemic of major health concerns. The roles of genetics and the environment are vital and need to be explored to further our understanding of the etiology of childhood obesity. This review critically looked at published reports over the past decade on factors that are unmodifiable, such as genetics, ethnic differences, gestational weight and intrauterine conditions; as well as modifiable factors, such as socioeconomic status, diet, physical activity, sleep, and parental determinants. With the worldwide increase in prevalence of pediatric obesity over the past several decades, it is imperative that we understand the root causes of obesity in order to arrest the rising trend through better prevention and intervention strategies.
Literature
1.
go back to reference Helba M, Binkovitz LA. Pediatric body composition analysis with dual energy X-ray absorptiometry. Pediatr Radiol. 2009;39(7):647–56.PubMedCrossRef Helba M, Binkovitz LA. Pediatric body composition analysis with dual energy X-ray absorptiometry. Pediatr Radiol. 2009;39(7):647–56.PubMedCrossRef
3.
go back to reference Gahagan S. Child and adolescent obesity. Current Problems in Pediatric and Adolescent Health Care. 2004;34:6–43.PubMedCrossRef Gahagan S. Child and adolescent obesity. Current Problems in Pediatric and Adolescent Health Care. 2004;34:6–43.PubMedCrossRef
4.
go back to reference Quah YV, Poh BK, Ismail MN. Metabolic syndrome based on IDF criteria in a sample of normal weight and obese school children. Malaysian J Nutr. 2010;16(2):207–17. Quah YV, Poh BK, Ismail MN. Metabolic syndrome based on IDF criteria in a sample of normal weight and obese school children. Malaysian J Nutr. 2010;16(2):207–17.
5.
go back to reference Wee BS, Poh BK, Bulgiba A, et al. Risk of metabolic syndrome among children living in metropolitan Kuala Lumpur: a case control study. BMC Publ Health. 2011;11:333.CrossRef Wee BS, Poh BK, Bulgiba A, et al. Risk of metabolic syndrome among children living in metropolitan Kuala Lumpur: a case control study. BMC Publ Health. 2011;11:333.CrossRef
7.
go back to reference Wang Y, Lobstein T. World wide trend in childhood overweight and obesity. Int J Pediatr Obes. 2006;1:11–25.PubMedCrossRef Wang Y, Lobstein T. World wide trend in childhood overweight and obesity. Int J Pediatr Obes. 2006;1:11–25.PubMedCrossRef
8.
go back to reference Budd GM, Hayman LL, Faan RN. Childhood obesity, determinants, prevention and treatment. J Cardiovas Nurs. 2006;21(6):437–41. Budd GM, Hayman LL, Faan RN. Childhood obesity, determinants, prevention and treatment. J Cardiovas Nurs. 2006;21(6):437–41.
9.
go back to reference Anderson PM, Butcher KF, Levine PB. Economic perspectives on childhood obesity. Econ Perspectives. 2003;27(3):30–48. Anderson PM, Butcher KF, Levine PB. Economic perspectives on childhood obesity. Econ Perspectives. 2003;27(3):30–48.
10.
go back to reference Mountjoy K. Functions for pro-opiomelanocortin-derived peptides in obesity and diabetes. Biochem J. 2010;428:305–24.PubMedCrossRef Mountjoy K. Functions for pro-opiomelanocortin-derived peptides in obesity and diabetes. Biochem J. 2010;428:305–24.PubMedCrossRef
11.
go back to reference Martinelli CE, Keogh JM, Greenfield JR, et al. Obesity due to melanocortin 4 receptor (MC4R) deficiency is associated with increased linear growth and final height, fasting hyperinsulinemia, and incompletely suppressed growth hormone secretion. J Clin Endocrinol Metab. 2011;96(1):E181–8.PubMedCrossRef Martinelli CE, Keogh JM, Greenfield JR, et al. Obesity due to melanocortin 4 receptor (MC4R) deficiency is associated with increased linear growth and final height, fasting hyperinsulinemia, and incompletely suppressed growth hormone secretion. J Clin Endocrinol Metab. 2011;96(1):E181–8.PubMedCrossRef
12.
go back to reference Hsuchou H, Kastin AJ, Wu X, et al. Corticotropin-releasing hormone receptor-1 in cerebral microvessels changes during development and influences urocortin transport across the blood-brain barrier. Endocrinology. 2010;151(3):1221–7.PubMedCrossRef Hsuchou H, Kastin AJ, Wu X, et al. Corticotropin-releasing hormone receptor-1 in cerebral microvessels changes during development and influences urocortin transport across the blood-brain barrier. Endocrinology. 2010;151(3):1221–7.PubMedCrossRef
13.
go back to reference Leshan RL, Opland DM, Louis GW, et al. Ventral tegmental area leptin receptor neurons specifically project to and regulate cocaine-and amphetamine-regulated transcript neurons of the extended central amygdala. J Neurosci. 2010;30(16):5713–23.PubMedCrossRef Leshan RL, Opland DM, Louis GW, et al. Ventral tegmental area leptin receptor neurons specifically project to and regulate cocaine-and amphetamine-regulated transcript neurons of the extended central amygdala. J Neurosci. 2010;30(16):5713–23.PubMedCrossRef
14.
go back to reference Davis JF, Choi DL, Schurdak JD, et al. Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiat. 2011;69(7):668–74.PubMedCrossRef Davis JF, Choi DL, Schurdak JD, et al. Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiat. 2011;69(7):668–74.PubMedCrossRef
15.
go back to reference Byerly MS, Simon J, Lebihan-Duval E, et al. Effects of BDNF, T3, and corticosterone on expression of the hypothalamic obesity gene network in vivo and in vitro. Am J Physiol-Reg, I. 2009;296(4):R1180–9. Byerly MS, Simon J, Lebihan-Duval E, et al. Effects of BDNF, T3, and corticosterone on expression of the hypothalamic obesity gene network in vivo and in vitro. Am J Physiol-Reg, I. 2009;296(4):R1180–9.
16.
go back to reference Tolson KP, Gemelli T, Gautron L, et al. Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. J Neurosci. 2010;30(10):3803–12.PubMedCrossRef Tolson KP, Gemelli T, Gautron L, et al. Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. J Neurosci. 2010;30(10):3803–12.PubMedCrossRef
17.
go back to reference Farooqi IS. Genetic, molecular and physiological insights into human obesity. Eur J Clin Invest. 2011;41(4):451–5.PubMedCrossRef Farooqi IS. Genetic, molecular and physiological insights into human obesity. Eur J Clin Invest. 2011;41(4):451–5.PubMedCrossRef
18.
go back to reference Rankinen T, Bray MS, Hagberg JM, et al. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exercise. 2006;38(11):1863–88.CrossRef Rankinen T, Bray MS, Hagberg JM, et al. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exercise. 2006;38(11):1863–88.CrossRef
19.
go back to reference Saunders CL, Chiodini BD, Sham P, et al. Meta-Analysis of Genome-wide Linkage Studies in BMI and Obesity. Obesity. 2012;15(9):2263–75.CrossRef Saunders CL, Chiodini BD, Sham P, et al. Meta-Analysis of Genome-wide Linkage Studies in BMI and Obesity. Obesity. 2012;15(9):2263–75.CrossRef
20.
go back to reference •• Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48. This paper continued to identify the BMI-associated loci, which consisted of 14 known loci from previous GWA studies with additional 18 loci from large Europe children. The authors were also examined the association of the BMI loci with metabolic traits and the possible function in body weight regulation.PubMedCrossRef •• Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48. This paper continued to identify the BMI-associated loci, which consisted of 14 known loci from previous GWA studies with additional 18 loci from large Europe children. The authors were also examined the association of the BMI loci with metabolic traits and the possible function in body weight regulation.PubMedCrossRef
21.
go back to reference Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.PubMedCrossRef Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.PubMedCrossRef
22.
go back to reference Wardle J, Carnell S, Haworth CM, et al. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;93(9):3640–3.PubMedCrossRef Wardle J, Carnell S, Haworth CM, et al. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;93(9):3640–3.PubMedCrossRef
23.
go back to reference Speakman JR. A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis. Cell Metabolism. 2007;6(1):5–12.PubMedCrossRef Speakman JR. A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis. Cell Metabolism. 2007;6(1):5–12.PubMedCrossRef
24.
go back to reference Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44(5):526–31.PubMedCrossRef Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44(5):526–31.PubMedCrossRef
25.
go back to reference Scherag A, Dina C, Hinney A, et al. Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and German study groups. PLoS Genet. 2010;6(4):e1000916.PubMedCrossRef Scherag A, Dina C, Hinney A, et al. Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and German study groups. PLoS Genet. 2010;6(4):e1000916.PubMedCrossRef
26.
go back to reference Fernandez JR, Klimentidis YC, Dulin-Keita A, Casazza K. Genetic influences in childhood obesity: recent progress and recommendations for experimental designs. Int J Obes. 2012;36:479–84.CrossRef Fernandez JR, Klimentidis YC, Dulin-Keita A, Casazza K. Genetic influences in childhood obesity: recent progress and recommendations for experimental designs. Int J Obes. 2012;36:479–84.CrossRef
27.
go back to reference Faith MS, Pietrobelli A, Heo M, et al. A twin study of self-regulatory eating in early childhood: estimates of genetic and environement influences, and measurement considerations. Int J Obes. 2012;36:931–7.CrossRef Faith MS, Pietrobelli A, Heo M, et al. A twin study of self-regulatory eating in early childhood: estimates of genetic and environement influences, and measurement considerations. Int J Obes. 2012;36:931–7.CrossRef
28.
go back to reference Agfhani A, Goran MI. Racial differerences in the associatin of subcutaneous and visceral fat on bone mineral content in prepubertal children. Calcif Tissue Int. 2006;79:383–8.CrossRef Agfhani A, Goran MI. Racial differerences in the associatin of subcutaneous and visceral fat on bone mineral content in prepubertal children. Calcif Tissue Int. 2006;79:383–8.CrossRef
29.
go back to reference Lee S, Kuk JL, Hannon TS, Arslaian SA. Race and gender differences in the relationships between anthropometrics and abdominal fat in youth. Obesity. 2008;16:1066–71.PubMedCrossRef Lee S, Kuk JL, Hannon TS, Arslaian SA. Race and gender differences in the relationships between anthropometrics and abdominal fat in youth. Obesity. 2008;16:1066–71.PubMedCrossRef
30.
go back to reference Liu A, Byrne NM, Kagawa M, et al. Ethnic differences in body fat distribution among Asian pre-pubertal children: a cross-sectional multicenter study. BMC Publ Health. 2011;11:500.CrossRef Liu A, Byrne NM, Kagawa M, et al. Ethnic differences in body fat distribution among Asian pre-pubertal children: a cross-sectional multicenter study. BMC Publ Health. 2011;11:500.CrossRef
31.
go back to reference Silventoinen K, Rokholm B, Kaprio J, Sørensen TIA. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int J Obes. 2010;34:29–40.CrossRef Silventoinen K, Rokholm B, Kaprio J, Sørensen TIA. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int J Obes. 2010;34:29–40.CrossRef
32.
33.
go back to reference Burrage LC, McCandless SE. Genetics of childhood obesity. US Pediatrics Rev. 2007;1:60–3. Burrage LC, McCandless SE. Genetics of childhood obesity. US Pediatrics Rev. 2007;1:60–3.
34.
go back to reference Bauer F, Elbers CC, Adan RA, et al. Obesity genes identified in genome-wide association studies are associated with adiposity measures and potentially with nutrient-specific food preference. Am J Clin Nutr. 2009;90(4):951–9.PubMedCrossRef Bauer F, Elbers CC, Adan RA, et al. Obesity genes identified in genome-wide association studies are associated with adiposity measures and potentially with nutrient-specific food preference. Am J Clin Nutr. 2009;90(4):951–9.PubMedCrossRef
35.
go back to reference Phillips CM, Kesse-Guyot E, McManus R, et al. High Dietary Saturated Fat Intake Accentuates Obesity Risk Associated with the Fat Mass and Obesity–Associated Gene in Adults. J Nutr. 2012;142(5):824–31.PubMedCrossRef Phillips CM, Kesse-Guyot E, McManus R, et al. High Dietary Saturated Fat Intake Accentuates Obesity Risk Associated with the Fat Mass and Obesity–Associated Gene in Adults. J Nutr. 2012;142(5):824–31.PubMedCrossRef
36.
go back to reference Bouchard C. Childhood obesity: are genetic differences involved? Am J Clin Nutr. 2009;85(5):1494s–501.CrossRef Bouchard C. Childhood obesity: are genetic differences involved? Am J Clin Nutr. 2009;85(5):1494s–501.CrossRef
37.
go back to reference Di Castelnuovo A, Quacquaruccio G, Donati MB, et al. Spousal concordance for major coronary risk factors: a systematic review and meta-analysis. Am J Epidemiol. 2009;169(1):1–8.PubMedCrossRef Di Castelnuovo A, Quacquaruccio G, Donati MB, et al. Spousal concordance for major coronary risk factors: a systematic review and meta-analysis. Am J Epidemiol. 2009;169(1):1–8.PubMedCrossRef
38.
go back to reference Power C, Pouliou T, Li L, et al. Parental and offspring adiposity associations: insights from the 1958 British birth cohort. Annal Hum Biol. 2011;38(4):390–9.CrossRef Power C, Pouliou T, Li L, et al. Parental and offspring adiposity associations: insights from the 1958 British birth cohort. Annal Hum Biol. 2011;38(4):390–9.CrossRef
39.
go back to reference Jeffery RW, Rick AM. Cross-Sectional and Longitudinal Associations between Body Mass Index and Marriage-Related Factors. Obesity Res. 2012;10(8):809–15.CrossRef Jeffery RW, Rick AM. Cross-Sectional and Longitudinal Associations between Body Mass Index and Marriage-Related Factors. Obesity Res. 2012;10(8):809–15.CrossRef
40.
go back to reference Ochoa MC, Azcona C, Moreno-Aliaga MJ, et al. Influence of parental body mass index on offspring body mass index in a Spanish population. Revista Espanola de Obesidad. 2009;7(6):395–401. Ochoa MC, Azcona C, Moreno-Aliaga MJ, et al. Influence of parental body mass index on offspring body mass index in a Spanish population. Revista Espanola de Obesidad. 2009;7(6):395–401.
41.
go back to reference Wang Y, Beydoun MA. The obesity epidemic in the United States–gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev. 2007;29:6–28.PubMedCrossRef Wang Y, Beydoun MA. The obesity epidemic in the United States–gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev. 2007;29:6–28.PubMedCrossRef
42.
go back to reference Misra A, Khurana L. Obesity-related non-communicable diseases: South Asians vs White Caucasians. Int JObes. 2010;35(2):167–87. Misra A, Khurana L. Obesity-related non-communicable diseases: South Asians vs White Caucasians. Int JObes. 2010;35(2):167–87.
43.
go back to reference Lakshmi S, Metcalf B, Joglekar C, et al. Differences in body composition and metabolic status between white UK and Asian Indian children (EarlyBird 24 and the Pune Maternal Nutrition Study). Ped Obes. 2012;7:347–54.CrossRef Lakshmi S, Metcalf B, Joglekar C, et al. Differences in body composition and metabolic status between white UK and Asian Indian children (EarlyBird 24 and the Pune Maternal Nutrition Study). Ped Obes. 2012;7:347–54.CrossRef
44.
go back to reference • Casazza KL, Hanks J, Beasley TM, et al. Beyond thriftiness: independent and interactive effects of genetic and dietary factors on variations in fat deposition and distribution across populations. Am J Phys Anthropol. 2011;145(2):181–91. This paper described the interactive contribution of genetic and diet in body fat storage of children from different population. For instance, adiposity measures were associated with European, particularly boys compare to African and girls at their counterparts.PubMedCrossRef • Casazza KL, Hanks J, Beasley TM, et al. Beyond thriftiness: independent and interactive effects of genetic and dietary factors on variations in fat deposition and distribution across populations. Am J Phys Anthropol. 2011;145(2):181–91. This paper described the interactive contribution of genetic and diet in body fat storage of children from different population. For instance, adiposity measures were associated with European, particularly boys compare to African and girls at their counterparts.PubMedCrossRef
45.
go back to reference Liu A, Byrne NM, Kagawa M, et al. Ethnic differences in the relationship between body mass index and percentage body fat among Asian children from different background. Brit J Nutr. 2011;106:1390–7.PubMedCrossRef Liu A, Byrne NM, Kagawa M, et al. Ethnic differences in the relationship between body mass index and percentage body fat among Asian children from different background. Brit J Nutr. 2011;106:1390–7.PubMedCrossRef
46.
go back to reference Morimoto Y, Maskarinec G, Conroy SM, et al. Asian ethnicity is associated with a higher trunk/peripheral fat ratio in women and adolescent girls. J Epidemiol. 2012;22(2):130–5.PubMedCrossRef Morimoto Y, Maskarinec G, Conroy SM, et al. Asian ethnicity is associated with a higher trunk/peripheral fat ratio in women and adolescent girls. J Epidemiol. 2012;22(2):130–5.PubMedCrossRef
47.
go back to reference Stanfield KM, Wells JC, Fewtrell MS, et al. Differences in body composition between infants of South Asian and European ancestry: the London Mother and Baby Study. Int J Epidemiol. 2012;41(5):1409–18.PubMedCrossRef Stanfield KM, Wells JC, Fewtrell MS, et al. Differences in body composition between infants of South Asian and European ancestry: the London Mother and Baby Study. Int J Epidemiol. 2012;41(5):1409–18.PubMedCrossRef
48.
go back to reference Reilly JJ, Armstrong J, Dorosty AR, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330(7504):1357.PubMedCrossRef Reilly JJ, Armstrong J, Dorosty AR, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330(7504):1357.PubMedCrossRef
49.
go back to reference Taveras EM, Gillman MW, Kleinman K, et al. Racial/ethnic differences in early-life risk factors for childhood obesity. Pediatrics. 2010;125(4):686–95.PubMedCrossRef Taveras EM, Gillman MW, Kleinman K, et al. Racial/ethnic differences in early-life risk factors for childhood obesity. Pediatrics. 2010;125(4):686–95.PubMedCrossRef
50.
go back to reference Caprio S, Daniels SR, Drewnowski A, et al. Influence of race, ethnicity, and culture on childhood obesity: implications for prevention and treatment. Diabetes Care. 2008;31(11):2211–21.PubMedCrossRef Caprio S, Daniels SR, Drewnowski A, et al. Influence of race, ethnicity, and culture on childhood obesity: implications for prevention and treatment. Diabetes Care. 2008;31(11):2211–21.PubMedCrossRef
51.
go back to reference Cuypers K, Ridder KD, Kvaløy K, et al. Leisure time activities I adolescence in the presence of susceptibility genes for obesity: risk or resilience against overweight in adulthood? The HUNT study. BMC Publ Health. 2012;12:820.CrossRef Cuypers K, Ridder KD, Kvaløy K, et al. Leisure time activities I adolescence in the presence of susceptibility genes for obesity: risk or resilience against overweight in adulthood? The HUNT study. BMC Publ Health. 2012;12:820.CrossRef
52.
go back to reference Cossrow N, Falkner B. Race/ethnic issues in obesity and obesity-related comorbidities. J Clin Endocrinol Metab. 2004;89(6):2590–4.PubMedCrossRef Cossrow N, Falkner B. Race/ethnic issues in obesity and obesity-related comorbidities. J Clin Endocrinol Metab. 2004;89(6):2590–4.PubMedCrossRef
53.
go back to reference Huang RC, Burke V, Newnham J, et al. Perinatal and childhood origins of cardiovascular disease. Int J Obes. 2006;31(2):236–44.CrossRef Huang RC, Burke V, Newnham J, et al. Perinatal and childhood origins of cardiovascular disease. Int J Obes. 2006;31(2):236–44.CrossRef
54.
go back to reference Gluckman PD, Hanson MA, Hanson CX, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. New England J Med. 2008;359(1):61–73.CrossRef Gluckman PD, Hanson MA, Hanson CX, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. New England J Med. 2008;359(1):61–73.CrossRef
55.
go back to reference Shankar K, Harrell A, Liu X, et al. Maternal obesity at conception programs obesity in the offspring. Am J Physiol-Reg I. 2008;294(2):R528–38. Shankar K, Harrell A, Liu X, et al. Maternal obesity at conception programs obesity in the offspring. Am J Physiol-Reg I. 2008;294(2):R528–38.
56.
go back to reference • Ferraro ZM, Barrowman N, Prud'homme D, et al. Excessive gestational weight gain predicts large for gestational age neonates independent of maternal body mass index. J Maternal-Fetal Neonatal Med. 2012;25(5):538–42. This paper found out that higher pre-pregnancy BMI and gestational weight gain was associated with increased rate of large-for-gestational-age birth weight after controlling for maternal and gestational age, pre-pregnancy weight, parity and smoking.CrossRef • Ferraro ZM, Barrowman N, Prud'homme D, et al. Excessive gestational weight gain predicts large for gestational age neonates independent of maternal body mass index. J Maternal-Fetal Neonatal Med. 2012;25(5):538–42. This paper found out that higher pre-pregnancy BMI and gestational weight gain was associated with increased rate of large-for-gestational-age birth weight after controlling for maternal and gestational age, pre-pregnancy weight, parity and smoking.CrossRef
57.
go back to reference Yu ZB, Han SP, Zhu GZ, et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obesity Rev. 2011;12(7):525–42.CrossRef Yu ZB, Han SP, Zhu GZ, et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obesity Rev. 2011;12(7):525–42.CrossRef
58.
go back to reference Stuebe AM, Forman MR, Michels KB. Maternal-recalled gestational weight gain, pre-pregnancy body mass index, and obesity in the daughter. International J Obes. 2009;33(7):743–52.CrossRef Stuebe AM, Forman MR, Michels KB. Maternal-recalled gestational weight gain, pre-pregnancy body mass index, and obesity in the daughter. International J Obes. 2009;33(7):743–52.CrossRef
59.
go back to reference Catalano PM, Farrell K, Thomas A, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr. 2009;90(5):1303–13.PubMedCrossRef Catalano PM, Farrell K, Thomas A, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr. 2009;90(5):1303–13.PubMedCrossRef
60.
go back to reference O’Brien TE, Ray JG, Chan WS. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology. 2003;14(3):368–74.PubMedCrossRef O’Brien TE, Ray JG, Chan WS. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology. 2003;14(3):368–74.PubMedCrossRef
61.
go back to reference Langer O, Yogev Y, Xenakis EMJ, Brustman L. Overweight and obese in gestational diabetes: The impact on pregnancy outcome. Am J Obstet Gynecol. 2005;192(6):1768–76.PubMedCrossRef Langer O, Yogev Y, Xenakis EMJ, Brustman L. Overweight and obese in gestational diabetes: The impact on pregnancy outcome. Am J Obstet Gynecol. 2005;192(6):1768–76.PubMedCrossRef
62.
go back to reference Hull HR, Thornton JC, Ji Y, et al.: Higher infant body fat with excessive gestational weight gain in overweight women. Am J Obstet Gynecol. 2011;205(3):211 e1-7. Hull HR, Thornton JC, Ji Y, et al.: Higher infant body fat with excessive gestational weight gain in overweight women. Am J Obstet Gynecol. 2011;205(3):211 e1-7.
63.
go back to reference Schack-Nielsen L, Michaelsen KF, Gamborg M, et al. Gestational weight gain in relation to offspring body mass index and obesity from infancy through adulthood. Int J Obes. 2010;34(1):67–74.CrossRef Schack-Nielsen L, Michaelsen KF, Gamborg M, et al. Gestational weight gain in relation to offspring body mass index and obesity from infancy through adulthood. Int J Obes. 2010;34(1):67–74.CrossRef
64.
go back to reference Ludwig DS, Currie J. The association between pregnancy weight gain and birthweight: a within-family comparison. Lancet. 2010;376(9745):984–90.PubMedCrossRef Ludwig DS, Currie J. The association between pregnancy weight gain and birthweight: a within-family comparison. Lancet. 2010;376(9745):984–90.PubMedCrossRef
65.
go back to reference Adamo KB, Ferraro ZM, Brett KE. Can we modify the intrauterine environment to halt the intergenerational cycle of obesity? Int J Environ Res Public Health. 2012;9(4):1263–307.PubMedCrossRef Adamo KB, Ferraro ZM, Brett KE. Can we modify the intrauterine environment to halt the intergenerational cycle of obesity? Int J Environ Res Public Health. 2012;9(4):1263–307.PubMedCrossRef
66.
go back to reference McMillen IC, Rattanatray L, Duffield JA, et al.: The early origins of later obesity: pathways and mechanisms. Adv Exp Med Biol. 2009;71-81. McMillen IC, Rattanatray L, Duffield JA, et al.: The early origins of later obesity: pathways and mechanisms. Adv Exp Med Biol. 2009;71-81.
67.
go back to reference Levin BE. Epigenetic influences on food intake and physical activity level: review of animal studies. Obesity. 2008;16 Suppl 3:S51–4.PubMedCrossRef Levin BE. Epigenetic influences on food intake and physical activity level: review of animal studies. Obesity. 2008;16 Suppl 3:S51–4.PubMedCrossRef
68.
go back to reference Bayol SA, Farrington SJ, Stickland NCA. Maternal 'junk food' diet in pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater propensity for obesity in rat offspring. Brit J Nutr. 2007;98(4):843–51.PubMedCrossRef Bayol SA, Farrington SJ, Stickland NCA. Maternal 'junk food' diet in pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater propensity for obesity in rat offspring. Brit J Nutr. 2007;98(4):843–51.PubMedCrossRef
69.
go back to reference Bayol SA, Simbi BH, Bertrand JA, Stickland NC. Offspring from mothers fed a 'junk food' diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol. 2008;586(13):3219–30.PubMedCrossRef Bayol SA, Simbi BH, Bertrand JA, Stickland NC. Offspring from mothers fed a 'junk food' diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol. 2008;586(13):3219–30.PubMedCrossRef
70.
go back to reference Schaefer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008;31(9):1858–63.PubMedCrossRef Schaefer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008;31(9):1858–63.PubMedCrossRef
71.
go back to reference • Catalano PM, Hauguel-De Mouzon S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol. 2011;204(6):479–87. This review article gave an understanding of the metabolic environment of obese diabetic women and lipid metabolism affecting fetal adiposity through perinatal metabolic programming since these issues relates to the increasing trends of obesity.PubMedCrossRef • Catalano PM, Hauguel-De Mouzon S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol. 2011;204(6):479–87. This review article gave an understanding of the metabolic environment of obese diabetic women and lipid metabolism affecting fetal adiposity through perinatal metabolic programming since these issues relates to the increasing trends of obesity.PubMedCrossRef
72.
go back to reference Moraeus L, Lissner L, Yngve A, et al. Multi-level influences on childhood obesity in Sweden: societal factors, parental determinants and child’s lifestyle. Int J Obes. 2012;36(7):969–76.CrossRef Moraeus L, Lissner L, Yngve A, et al. Multi-level influences on childhood obesity in Sweden: societal factors, parental determinants and child’s lifestyle. Int J Obes. 2012;36(7):969–76.CrossRef
73.
go back to reference Dollman J, Norton K, Norton L. Evidence for secular trends in children’s physical activity behaviour. Br J Sports Med. 2005;39:892–7.PubMedCrossRef Dollman J, Norton K, Norton L. Evidence for secular trends in children’s physical activity behaviour. Br J Sports Med. 2005;39:892–7.PubMedCrossRef
74.
go back to reference Han JC, Lowlor DA, Kimm SYS. Childhood obesity-2010: progress and challenges. Lancet. 2010;375(9727):1737–48.PubMedCrossRef Han JC, Lowlor DA, Kimm SYS. Childhood obesity-2010: progress and challenges. Lancet. 2010;375(9727):1737–48.PubMedCrossRef
75.
go back to reference Chhatwal J, Verma M, Riar SK. Obesity among pre-adolescent and adolescents of a developing country (India). Asia Pacific J Clin Nutr. 2004;13(3):231. Chhatwal J, Verma M, Riar SK. Obesity among pre-adolescent and adolescents of a developing country (India). Asia Pacific J Clin Nutr. 2004;13(3):231.
76.
go back to reference Manios Y, Panagiotakos DB, Pitsavos CE, et al. Implication of socio-economic status on the prevalence of overweight and obesity in Greek adults: the ATTICA study. Health policy (Amsterdam, Netherlands). 2005;74(2):224.CrossRef Manios Y, Panagiotakos DB, Pitsavos CE, et al. Implication of socio-economic status on the prevalence of overweight and obesity in Greek adults: the ATTICA study. Health policy (Amsterdam, Netherlands). 2005;74(2):224.CrossRef
77.
go back to reference Wells JCK, Marphatia AA, Cole TJ, McCoy D. Associations of economic and gender inequality with global obesity prevalence: understanding the female excess. Social Sci Med. 2012;75:482–90.CrossRef Wells JCK, Marphatia AA, Cole TJ, McCoy D. Associations of economic and gender inequality with global obesity prevalence: understanding the female excess. Social Sci Med. 2012;75:482–90.CrossRef
78.
go back to reference •• Wang Y, Lim H. The global childhood obesity epidemic and the association between socio-economic status and childhood obesity. Int Rev Psych. 2012;24(3):176–88. This paper not only gave an overview of current prevalence of childhood obesity and its association with socio-economic status, but also foreseen the time trends of childhood obesity.CrossRef •• Wang Y, Lim H. The global childhood obesity epidemic and the association between socio-economic status and childhood obesity. Int Rev Psych. 2012;24(3):176–88. This paper not only gave an overview of current prevalence of childhood obesity and its association with socio-economic status, but also foreseen the time trends of childhood obesity.CrossRef
79.
go back to reference Chia Y. Dollars and pounds: the impact of family income on childhood weight. Appl Econ. 2012;45(14):1931–41.CrossRef Chia Y. Dollars and pounds: the impact of family income on childhood weight. Appl Econ. 2012;45(14):1931–41.CrossRef
80.
go back to reference Arenz S, Ruckerl R, Koletzko B, von Kries R. Breast-feeding and childhood obesity–a systematic review. Int J Obes. 2004;28(10):1247–56.CrossRef Arenz S, Ruckerl R, Koletzko B, von Kries R. Breast-feeding and childhood obesity–a systematic review. Int J Obes. 2004;28(10):1247–56.CrossRef
81.
go back to reference Owen CG, Martin RM, Whincup PH, et al. Effect of Infant Feeding on the Risk of Obesity Across the Life Course: A Quantitative Review of Published Evidence. Pediatrics. 2005;115(5):1367–77.PubMedCrossRef Owen CG, Martin RM, Whincup PH, et al. Effect of Infant Feeding on the Risk of Obesity Across the Life Course: A Quantitative Review of Published Evidence. Pediatrics. 2005;115(5):1367–77.PubMedCrossRef
82.
go back to reference Savino F, Nanni G, Maccario S, et al. Breast-fed infants have higher leptin values than formula-fed infants in the first four months of life. J Pedia Endocrinology and Metabol. 2004;17(11):1527–32. Savino F, Nanni G, Maccario S, et al. Breast-fed infants have higher leptin values than formula-fed infants in the first four months of life. J Pedia Endocrinology and Metabol. 2004;17(11):1527–32.
83.
go back to reference Disantis KI, Collins BN, Fisher JO, Davey A. Do infants fed directly from the breast have improved appetite regulation and slower growth during early childhood compared with infants fed from a bottle? Int J Behav Nutr Phy. 2011;8:89.CrossRef Disantis KI, Collins BN, Fisher JO, Davey A. Do infants fed directly from the breast have improved appetite regulation and slower growth during early childhood compared with infants fed from a bottle? Int J Behav Nutr Phy. 2011;8:89.CrossRef
84.
go back to reference Crume TL, Ogden L, Maligie M, et al. Long-term impact of neonatal breastfeeding on childhood adiposity and fat distribution among children exposed to diabetes in utero. Diabetes Care. 2011;34(3):641–5.PubMedCrossRef Crume TL, Ogden L, Maligie M, et al. Long-term impact of neonatal breastfeeding on childhood adiposity and fat distribution among children exposed to diabetes in utero. Diabetes Care. 2011;34(3):641–5.PubMedCrossRef
85.
go back to reference Pérez-Escamilla R, Obbagy JE, Altman JM, et al. Dietary energy density and body weight in adults and children: a systematic review. J Acad Nutr Dietetic. 2012;112(15):671–84.CrossRef Pérez-Escamilla R, Obbagy JE, Altman JM, et al. Dietary energy density and body weight in adults and children: a systematic review. J Acad Nutr Dietetic. 2012;112(15):671–84.CrossRef
86.
go back to reference Fulkerson JA, Neumark-Sztainer D, Hannan PJ, Story M. Family meal frequency and weight status among adolescents: cross-sectional and 5-year longitudinal associations. Obesity. 2008;16(11):2529–34.PubMedCrossRef Fulkerson JA, Neumark-Sztainer D, Hannan PJ, Story M. Family meal frequency and weight status among adolescents: cross-sectional and 5-year longitudinal associations. Obesity. 2008;16(11):2529–34.PubMedCrossRef
87.
go back to reference Rosenheck R. Fast food consumption and increased caloric intake: a systematic review of a trajectory towards weight gain and obesity risk. Obesity Rev. 2008;9(6):535–47.CrossRef Rosenheck R. Fast food consumption and increased caloric intake: a systematic review of a trajectory towards weight gain and obesity risk. Obesity Rev. 2008;9(6):535–47.CrossRef
88.
go back to reference Astbury NM, Taylor MA, Macdonald IA. Breakfast consumption affects appetite, energy intake, and the metabolic and endocrine responses to foods consumed later in the day in male habitual breakfast eaters. J Nutr. 2011;141(7):1381–9.PubMedCrossRef Astbury NM, Taylor MA, Macdonald IA. Breakfast consumption affects appetite, energy intake, and the metabolic and endocrine responses to foods consumed later in the day in male habitual breakfast eaters. J Nutr. 2011;141(7):1381–9.PubMedCrossRef
89.
go back to reference Eloranta A, Lindi V, Schwab U, et al. Dietary factors associated with overweight and body adiposity in Finnish children aged 6–8 years: the PANIC Study. Int J Obes. 2012;36(7):950–5.CrossRef Eloranta A, Lindi V, Schwab U, et al. Dietary factors associated with overweight and body adiposity in Finnish children aged 6–8 years: the PANIC Study. Int J Obes. 2012;36(7):950–5.CrossRef
90.
go back to reference Antonogeorgos G, Panagiotakos D, Papadimitriou A, et al. Breakfast consumption and meal frequency interaction with childhood obesity. Ped Obes. 2012;1:65–72.CrossRef Antonogeorgos G, Panagiotakos D, Papadimitriou A, et al. Breakfast consumption and meal frequency interaction with childhood obesity. Ped Obes. 2012;1:65–72.CrossRef
91.
go back to reference • Kral TV, Whiteford LM, Heo M, Faith MS. Effects of eating breakfast compared with skipping breakfast on ratings of appetite and intake at subsequent meals in 8- to 10-y-old children. Am J Clin Nutr. 2011;93(2):284–91. This study gave an insight that over-compensation for the missing calories from skipping breakfast by eating more among children despite differences in subjective feelings of hunger and appetite.PubMedCrossRef • Kral TV, Whiteford LM, Heo M, Faith MS. Effects of eating breakfast compared with skipping breakfast on ratings of appetite and intake at subsequent meals in 8- to 10-y-old children. Am J Clin Nutr. 2011;93(2):284–91. This study gave an insight that over-compensation for the missing calories from skipping breakfast by eating more among children despite differences in subjective feelings of hunger and appetite.PubMedCrossRef
92.
go back to reference Kral TVE, Allison DB, Birch LL, et al. Caloric compensation and eating in the absence of hunger in 5-to 12-y-old weight-discordant siblings. Am J Clin Nutr. 2012;96(3):574–83.PubMedCrossRef Kral TVE, Allison DB, Birch LL, et al. Caloric compensation and eating in the absence of hunger in 5-to 12-y-old weight-discordant siblings. Am J Clin Nutr. 2012;96(3):574–83.PubMedCrossRef
93.
go back to reference Vasquez F, Salazar G, Andrade M, et al. Energy balance and physical activity in obese children attending day-care centres. Eur J Clin Nutr. 2006;60(9):1115–21.PubMedCrossRef Vasquez F, Salazar G, Andrade M, et al. Energy balance and physical activity in obese children attending day-care centres. Eur J Clin Nutr. 2006;60(9):1115–21.PubMedCrossRef
94.
go back to reference van der Horst K, Oenema A, Ferreira I, et al. A systematic review of environmental correlates of obesity-related dietary behaviors in youth. Health Edu Res. 2007;22(2):203–26.CrossRef van der Horst K, Oenema A, Ferreira I, et al. A systematic review of environmental correlates of obesity-related dietary behaviors in youth. Health Edu Res. 2007;22(2):203–26.CrossRef
95.
go back to reference Gillis LJ, Bar-Or O. Food away from home, sugar-sweetened drink consumption and juvenile obesity. J Am Coll Nutr. 2003;22(6):539–45.PubMed Gillis LJ, Bar-Or O. Food away from home, sugar-sweetened drink consumption and juvenile obesity. J Am Coll Nutr. 2003;22(6):539–45.PubMed
96.
go back to reference Amin TT, Al-Sultan AI, Ali A. Overweight and obesity and their relation to dietary habits and socio-demographic characteristics among male primary school children in Al-Hassa, Kingdom of Saudi Arabia. Eur J Nutr. 2008;47(6):310–8.PubMedCrossRef Amin TT, Al-Sultan AI, Ali A. Overweight and obesity and their relation to dietary habits and socio-demographic characteristics among male primary school children in Al-Hassa, Kingdom of Saudi Arabia. Eur J Nutr. 2008;47(6):310–8.PubMedCrossRef
97.
go back to reference Neumark-Sztainer D, Story M, Hannan PJ, Croll J. Overweight status and eating patterns among adolescents: where do youths stand in comparison with the healthy people 2010 objectives? Am J Public Health. 2002;92(5):844–51.PubMedCrossRef Neumark-Sztainer D, Story M, Hannan PJ, Croll J. Overweight status and eating patterns among adolescents: where do youths stand in comparison with the healthy people 2010 objectives? Am J Public Health. 2002;92(5):844–51.PubMedCrossRef
98.
go back to reference McGinnis JM, Gootman JA & Kraak VI: Food marketing to children and youth: threat or opportunity? United States of America: National Academic Press; 2006. McGinnis JM, Gootman JA & Kraak VI: Food marketing to children and youth: threat or opportunity? United States of America: National Academic Press; 2006.
99.
go back to reference Harris JL, Pomeranz JL, Lobstein T, Brownell KD. A crisis in the marketplace: how food marketing contributes to childhood obesity and what can be done. Ann Rev Public Health. 2009;30:211–25.CrossRef Harris JL, Pomeranz JL, Lobstein T, Brownell KD. A crisis in the marketplace: how food marketing contributes to childhood obesity and what can be done. Ann Rev Public Health. 2009;30:211–25.CrossRef
100.
go back to reference WHO: A framework for implementing the set of recommendations on the marketing of foods and non-alcoholic beverages to children. Geneva, Switzerland. 2012. WHO: A framework for implementing the set of recommendations on the marketing of foods and non-alcoholic beverages to children. Geneva, Switzerland. 2012.
101.
102.
go back to reference Earthman C, Beckman L, Masodkar K, Sibley S. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes. 2011;36(3):387–96.CrossRef Earthman C, Beckman L, Masodkar K, Sibley S. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes. 2011;36(3):387–96.CrossRef
103.
go back to reference Bammann K, Sioen I, Huybrechts I, et al. The IDEFICS validation study on field methods for assessing physical activity and body composition in children: design and data collection. Int J Obes. 2011;35:S79–87.CrossRef Bammann K, Sioen I, Huybrechts I, et al. The IDEFICS validation study on field methods for assessing physical activity and body composition in children: design and data collection. Int J Obes. 2011;35:S79–87.CrossRef
104.
go back to reference Lazaar N, Aucouturier J, Ratel S, et al. Effect of physical activity intervention on body composition in young children: influence of body mass index status and gender. Acta Paediatrica. 2007;96(9):1321–5.CrossRef Lazaar N, Aucouturier J, Ratel S, et al. Effect of physical activity intervention on body composition in young children: influence of body mass index status and gender. Acta Paediatrica. 2007;96(9):1321–5.CrossRef
105.
go back to reference Dulloo AG. Energy balance and body weight homeostasis. In: Kopelman PG, Caterson ID, Dietz WH, editors. Clinical Obesity in Adults and Children. Third Edition. Oxford: Blackwell; 2010. p. 67–81. Dulloo AG. Energy balance and body weight homeostasis. In: Kopelman PG, Caterson ID, Dietz WH, editors. Clinical Obesity in Adults and Children. Third Edition. Oxford: Blackwell; 2010. p. 67–81.
106.
go back to reference Pate RR, Freedson PS, Sallis JP, et al. Compliance with physical activity guidelines: Prevalence in a population of children and youth. Ann Epidemiol. 2002;12(5):303–8.PubMedCrossRef Pate RR, Freedson PS, Sallis JP, et al. Compliance with physical activity guidelines: Prevalence in a population of children and youth. Ann Epidemiol. 2002;12(5):303–8.PubMedCrossRef
108.
go back to reference Merchant AT, Dehghan M, Behnke-Cook D, Anand SS. Diet, physical activity and adiposity in children in poor and rich neighbourhoods: a cross sectional comparison. Nutr J. 2007;6(1):1.PubMedCrossRef Merchant AT, Dehghan M, Behnke-Cook D, Anand SS. Diet, physical activity and adiposity in children in poor and rich neighbourhoods: a cross sectional comparison. Nutr J. 2007;6(1):1.PubMedCrossRef
109.
go back to reference Patrick K, Norman GJ, Calfas KJ, et al. Diet, physical activity and sedentary behaviors as risk factors for overweight in adolescence. Arch Ped Ado Med. 2004;158(4):385.CrossRef Patrick K, Norman GJ, Calfas KJ, et al. Diet, physical activity and sedentary behaviors as risk factors for overweight in adolescence. Arch Ped Ado Med. 2004;158(4):385.CrossRef
110.
go back to reference Ortega FB, Ruiz JR, Sjöström M. Physical activity, overweight and central adiposity in Swedish children and adolescents: the European Youth Heart Study. Int J Behav Nutr Phy Act. 2007;4(1):61.CrossRef Ortega FB, Ruiz JR, Sjöström M. Physical activity, overweight and central adiposity in Swedish children and adolescents: the European Youth Heart Study. Int J Behav Nutr Phy Act. 2007;4(1):61.CrossRef
111.
go back to reference Te Velde S, Van Nassau F, Uijtdewilligen L, et al. Energy balance-related behaviours associated with overweight and obesity in preschool children: a systematic review of prospective studies. Obes Rev. 2012;13:56–74.CrossRef Te Velde S, Van Nassau F, Uijtdewilligen L, et al. Energy balance-related behaviours associated with overweight and obesity in preschool children: a systematic review of prospective studies. Obes Rev. 2012;13:56–74.CrossRef
112.
go back to reference Jimenez-Pavon D, Kelly J, Reilly JJ. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: Systematic review. Int J Ped Obes. 2010;5(1):3–18.CrossRef Jimenez-Pavon D, Kelly J, Reilly JJ. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: Systematic review. Int J Ped Obes. 2010;5(1):3–18.CrossRef
113.
go back to reference Özmert EN, Özdemir R, Pektas A, et al. Effect of activity and television viewing on BMI z-score in early adolescents in Turkey. World J Pediatr. 2011;7(1):37–40.PubMedCrossRef Özmert EN, Özdemir R, Pektas A, et al. Effect of activity and television viewing on BMI z-score in early adolescents in Turkey. World J Pediatr. 2011;7(1):37–40.PubMedCrossRef
114.
go back to reference Temple JL, Giacomelli AM, Kent KM, Roemmich JN, Epstein LH. Television watching increases motivated responding for food and energy intake in children. Am J Clin Nutr. 2007;85(2):355–61.PubMed Temple JL, Giacomelli AM, Kent KM, Roemmich JN, Epstein LH. Television watching increases motivated responding for food and energy intake in children. Am J Clin Nutr. 2007;85(2):355–61.PubMed
115.
go back to reference Carlson JA, Crespo NC, Sallis JF, et al. Dietary-Related and Physical Activity-Related Predictors of Obesity in Children: A 2-Year Prospective Study. Childhood Obesity (Formerly Obesity and Weight Management). 2012;8(2):110–5. Carlson JA, Crespo NC, Sallis JF, et al. Dietary-Related and Physical Activity-Related Predictors of Obesity in Children: A 2-Year Prospective Study. Childhood Obesity (Formerly Obesity and Weight Management). 2012;8(2):110–5.
116.
go back to reference Metcalf BS, Hosking J, Jeffery AN, et al. Fatness leads to inactivity, but inactivity does not lead to fatness: a longitudinal study in children (EarlyBird 45). Arch Dis Child. 2011;96:942–7.PubMedCrossRef Metcalf BS, Hosking J, Jeffery AN, et al. Fatness leads to inactivity, but inactivity does not lead to fatness: a longitudinal study in children (EarlyBird 45). Arch Dis Child. 2011;96:942–7.PubMedCrossRef
117.
go back to reference Reilly JJ, Kelly L, Montgomery C, et al. Physical activity to prevent obesity in young children: cluster randomised controlled trial. BMJ. 2006;333:1041–3.PubMedCrossRef Reilly JJ, Kelly L, Montgomery C, et al. Physical activity to prevent obesity in young children: cluster randomised controlled trial. BMJ. 2006;333:1041–3.PubMedCrossRef
118.
go back to reference • Jiang F, Zhu S, Yan C, et al. Sleep and obesity in preschool children. J Ped. 2009;154(6):814–8. Caregivers who slept less and mothers with higher education related to short sleep duration of pre-school children, especially decreased bedtime sleep hours at night. Children who slept less than <9.4 hours per night were more likely to be obese than who slept ≥11 hours (odds ratio [OR], 4.76; 95% CI, 1.28-17.69; P<0.05; OR, 3.42; 95% CI, 1.12-10.46; P<0.05).CrossRef • Jiang F, Zhu S, Yan C, et al. Sleep and obesity in preschool children. J Ped. 2009;154(6):814–8. Caregivers who slept less and mothers with higher education related to short sleep duration of pre-school children, especially decreased bedtime sleep hours at night. Children who slept less than <9.4 hours per night were more likely to be obese than who slept ≥11 hours (odds ratio [OR], 4.76; 95% CI, 1.28-17.69; P<0.05; OR, 3.42; 95% CI, 1.12-10.46; P<0.05).CrossRef
119.
go back to reference Al Mamun A, Lawlor DA, Cramb S, et al. Do childhood sleeping problems predict obesity in young adulthood? Evidence from a prospective birth cohort study. Am J Epidemiol. 2007;166(12):1368–73.PubMedCrossRef Al Mamun A, Lawlor DA, Cramb S, et al. Do childhood sleeping problems predict obesity in young adulthood? Evidence from a prospective birth cohort study. Am J Epidemiol. 2007;166(12):1368–73.PubMedCrossRef
120.
go back to reference Cappuccio FP, Taggart FM, Kandala NB, Currie A. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619.PubMed Cappuccio FP, Taggart FM, Kandala NB, Currie A. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619.PubMed
121.
go back to reference Marshall NS, Glozier N, Grunstein RR. Is sleep duration related to obesity? A critical review of the epidemiological evidence. Sleep Med Rev. 2008;12(4):289–98.PubMedCrossRef Marshall NS, Glozier N, Grunstein RR. Is sleep duration related to obesity? A critical review of the epidemiological evidence. Sleep Med Rev. 2008;12(4):289–98.PubMedCrossRef
122.
go back to reference Horne J. Short sleep is a questionable risk factor for obesity and related disorders: statistical versus clinical significance. Biol Psychol. 2008;77(3):266–76.PubMedCrossRef Horne J. Short sleep is a questionable risk factor for obesity and related disorders: statistical versus clinical significance. Biol Psychol. 2008;77(3):266–76.PubMedCrossRef
123.
go back to reference Taheri S. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. Arch Dis Child. 2006;91(11):881–4.PubMedCrossRef Taheri S. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. Arch Dis Child. 2006;91(11):881–4.PubMedCrossRef
124.
go back to reference Eisenmann JC. Insight into the causes of the recent secular trend in pediatric obesity: Common sense does not always prevail for complex, multi-factorial phenotypes. Prevent Med. 2006;42(5):329–35.CrossRef Eisenmann JC. Insight into the causes of the recent secular trend in pediatric obesity: Common sense does not always prevail for complex, multi-factorial phenotypes. Prevent Med. 2006;42(5):329–35.CrossRef
125.
go back to reference Chen X, Beydoun MA, Wang Y. Is sleep duration associated with childhood obesity? A systematic review and meta-analysis. Obesity. 2008;16(2):265–74.PubMedCrossRef Chen X, Beydoun MA, Wang Y. Is sleep duration associated with childhood obesity? A systematic review and meta-analysis. Obesity. 2008;16(2):265–74.PubMedCrossRef
126.
go back to reference Canapari CA, Hoppin AG, Kinane TB, et al. Relationship between sleep apnea, fat distribution, and insulin resistance in obese children. Journal of clinical sleep medicine: JCSM. 2011;7(3):268–73.PubMed Canapari CA, Hoppin AG, Kinane TB, et al. Relationship between sleep apnea, fat distribution, and insulin resistance in obese children. Journal of clinical sleep medicine: JCSM. 2011;7(3):268–73.PubMed
127.
go back to reference Arens R, Sin S, Nandalike K, et al. Upper airway structure and body fat composition in obese children with obstructive sleep apnea syndrome. Am J Resp Critical Care Med. 2011;183(6):782–7.CrossRef Arens R, Sin S, Nandalike K, et al. Upper airway structure and body fat composition in obese children with obstructive sleep apnea syndrome. Am J Resp Critical Care Med. 2011;183(6):782–7.CrossRef
128.
go back to reference • Carter PJ, Taylor BJ, Williams SM, Taylor RW. Longitudinal analysis of sleep in relation to BMI and body fat in children: the FLAME study. BMJ. 2011;342:d2712–2. This paper showed that the pre-school children who sleep less gain significantly more fat mass overtime even after adjustment for multiple determinants of body composition during growth. Each additional hour of sleep reduced the adjusted fat mass index by 0.48 (0.10 to 0.86) for the change from age 3 to 7.PubMedCrossRef • Carter PJ, Taylor BJ, Williams SM, Taylor RW. Longitudinal analysis of sleep in relation to BMI and body fat in children: the FLAME study. BMJ. 2011;342:d2712–2. This paper showed that the pre-school children who sleep less gain significantly more fat mass overtime even after adjustment for multiple determinants of body composition during growth. Each additional hour of sleep reduced the adjusted fat mass index by 0.48 (0.10 to 0.86) for the change from age 3 to 7.PubMedCrossRef
129.
go back to reference Bayer O, Rosario AS, Wabitsch M, Von Kries R. Sleep duration and obesity in children: is the association dependent on age and choice of the outcome parameter? Sleep. 2009;32(9):1183.PubMed Bayer O, Rosario AS, Wabitsch M, Von Kries R. Sleep duration and obesity in children: is the association dependent on age and choice of the outcome parameter? Sleep. 2009;32(9):1183.PubMed
130.
go back to reference Nielsen LS, Danielsen KV, Sørensen TIA. Short sleep duration as a possible case of obesity: critical analysis of the epidemiological evidence. Obes Rev. 2011;12(2):78–92.PubMedCrossRef Nielsen LS, Danielsen KV, Sørensen TIA. Short sleep duration as a possible case of obesity: critical analysis of the epidemiological evidence. Obes Rev. 2011;12(2):78–92.PubMedCrossRef
131.
go back to reference Matricciani L, Olds T, Williams M. A review of evidence for the claim that children are sleeping less than in the past. Sleep. 2011;34(5):651.PubMed Matricciani L, Olds T, Williams M. A review of evidence for the claim that children are sleeping less than in the past. Sleep. 2011;34(5):651.PubMed
132.
go back to reference Morrissey TW, Dunifon RE, Kalil A. Maternal employment, work schedules, ad children’s body mass index. Child Dev. 2011;82:66–81.PubMedCrossRef Morrissey TW, Dunifon RE, Kalil A. Maternal employment, work schedules, ad children’s body mass index. Child Dev. 2011;82:66–81.PubMedCrossRef
133.
go back to reference Li L, Law C, Conte RL, Power C. Intergenerational influences on childhood body mass index: the effect of parental body mass index trajectories. Am J Clin Nutr. 2009;89(2):551–7.PubMedCrossRef Li L, Law C, Conte RL, Power C. Intergenerational influences on childhood body mass index: the effect of parental body mass index trajectories. Am J Clin Nutr. 2009;89(2):551–7.PubMedCrossRef
134.
go back to reference Oken E, Levitan E, Gillman M. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes. 2007;32(2):201–10.CrossRef Oken E, Levitan E, Gillman M. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes. 2007;32(2):201–10.CrossRef
135.
go back to reference Ong KKL, Preece MA, Emmett PM, Emmett ML, Dunger DB. Size at birth and early childhood growth in relation to maternal smoking, parity and infant breast-feeding: longitudinal birth cohort study and analysis. Ped Res. 2002;52(6):863–7.CrossRef Ong KKL, Preece MA, Emmett PM, Emmett ML, Dunger DB. Size at birth and early childhood growth in relation to maternal smoking, parity and infant breast-feeding: longitudinal birth cohort study and analysis. Ped Res. 2002;52(6):863–7.CrossRef
136.
go back to reference Von Kries R. Maternal Smoking during Pregnancy and Childhood Obesity. Am J Epidemiol. 2002;156(10):954–61.CrossRef Von Kries R. Maternal Smoking during Pregnancy and Childhood Obesity. Am J Epidemiol. 2002;156(10):954–61.CrossRef
137.
go back to reference Jo YH, Talmage DA, Role LW. Nicotinic receptor-mediated effects on appetite and food intake. J Neurobiol. 2002;53(4):618–32.PubMedCrossRef Jo YH, Talmage DA, Role LW. Nicotinic receptor-mediated effects on appetite and food intake. J Neurobiol. 2002;53(4):618–32.PubMedCrossRef
138.
go back to reference Audrain-McGovern J, Benowitz NL. Cigarette smoking, nicotine, and body weight. Clin Pharmacol Therap. 2011;90(1):164–8. doi:164. Audrain-McGovern J, Benowitz NL. Cigarette smoking, nicotine, and body weight. Clin Pharmacol Therap. 2011;90(1):164–8. doi:164.
139.
go back to reference Lerman C, Berrettini W, Pinto A, et al. Changes in food reward following smoking cessation: a pharmacogenetic investigation. Psychopharmacology. 2004;174(4):571–7.PubMedCrossRef Lerman C, Berrettini W, Pinto A, et al. Changes in food reward following smoking cessation: a pharmacogenetic investigation. Psychopharmacology. 2004;174(4):571–7.PubMedCrossRef
140.
go back to reference Mindlin M, Jenkins R, Law C. Maternal employment and indicators of child health: a systematic review in pre-school children in OECD countries. J Epidemiol Comm Health. 2009;63:340–50.CrossRef Mindlin M, Jenkins R, Law C. Maternal employment and indicators of child health: a systematic review in pre-school children in OECD countries. J Epidemiol Comm Health. 2009;63:340–50.CrossRef
141.
go back to reference Champion SL, Rumbold AR, Steele EJ, et al. Parental work schedules and child overweight and obesity. Int J Obes. 2012;36:573–80.CrossRef Champion SL, Rumbold AR, Steele EJ, et al. Parental work schedules and child overweight and obesity. Int J Obes. 2012;36:573–80.CrossRef
Metadata
Title
Multifactorial Influences of Childhood Obesity
Authors
Yeow Nyin Ang
Bee Suan Wee
Bee Koon Poh
Mohd Noor Ismail
Publication date
01-03-2013
Publisher
Current Science Inc.
Published in
Current Obesity Reports / Issue 1/2013
Electronic ISSN: 2162-4968
DOI
https://doi.org/10.1007/s13679-012-0042-7

Other articles of this Issue 1/2013

Current Obesity Reports 1/2013 Go to the issue

Etiology of Obesity (JA Martinez, Section Editor)

Social Components of the Obesity Epidemic

Obesity Prevention (N King, Section Editor)

Is Sitting Time a Strong Predictor of Weight Gain?

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine