Skip to main content
Top
Published in: Cellular Oncology 4/2022

Open Access 28-07-2022 | Original Article

Selective targeting BMP2 and 4 in SMAD4 negative esophageal adenocarcinoma inhibits tumor growth and aggressiveness in preclinical models

Authors: Shulin Li, Sanne J. M. Hoefnagel, Matthew Read, Sybren Meijer, Mark I. van Berge Henegouwen, Suzanne S. Gisbertz, Elena Bonora, David S. H. Liu, Wayne A. Phillips, Silvia Calpe, Ana C. P. Correia, Maria D. C. Sancho-Serra, Sandro Mattioli, Kausilia K. Krishnadath, Members of the Esophageal Adenocarcinoma Study Group Europe (EACSGE)

Published in: Cellular Oncology | Issue 4/2022

Login to get access

Abstract

Purpose

Abnormalities within the Sonic Hedgehog (SHH), Bone Morphogenetic Protein (BMP) and SMAD4 signalling pathways have been associated with the malignant behavior of esophageal adenocarcinoma (EAC). We recently developed two specific llama-derived antibodies (VHHs), C4C4 and C8C8, which target BMP4 and BMP2/4, respectively. Here we aimed to demonstrate the feasibility of the VHHs for the treatment of EAC and to elucidate its underlying mechanism.

Methods

Gene Set Enrichment Analysis (GSEA) was performed on a TCGA dataset, while expression of SHH, BMP2/4 and SMAD4 was validated in a cohort of EAC patients. The effects of the VHHs were tested on the recently established SMAD4(-) ISO76A primary EAC cell line and its counterpart SMAD4(+) ISO76A. In a patient-derived xenograft (PDX) model, the VHHs were evaluated for their ability to selectively target tumor cells and for their effects on tumor growth and survival.

Results

High expression of BMP2/4 was detected in all SMAD4 negative EACs. SHH upregulated BMP2/4 expression and induced p38 MAPK signaling in the SMAD4(-) ISO76A cells. Inhibition of BMP2/4 by VHHs decreased the aggressive and chemo-resistant phenotype of the SMAD4(-) ISO76A but not of the SMAD4(+) ISO76A cells. In the PDX model, in vivo imaging indicated that VHHs effectively targeted tumor cells. Both VHHs significantly inhibited tumor growth and acted synergistically with cisplatin. Furthermore, we found that C8C8 significantly improved survival of the mice.

Conclusions

Our data indicate that increased BMP2/4 expression triggers aggressive non-canonical BMP signaling in SMAD4 negative EAC. Inhibiting BMP2/4 decreases malignant behavior and improves survival. Therefore, VHHs directed against BMP2/4 hold promise for the treatment of SMAD4 negative EAC.
Appendix
Available only for authorised users
Literature
1.
go back to reference S.E. Al-Batran, R.D. Hofheinz, C. Pauligk, H.G. Kopp, G.M. Haag, K.B. Luley, J. Meiler, N. Homann, S. Lorenzen, H. Schmalenberg, S. Probst, M. Koenigsmann, M. Egger, N. Prasnikar, K. Caca, J. Trojan, U.M. Martens, A. Block, W. Fischbach, et al., Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4-AIO): results from the phase 2 part of a multicentre, open-label, randomised phase 2/3 trial. Lancet Oncol. 17, 1697–1708 (2016)PubMedCrossRef S.E. Al-Batran, R.D. Hofheinz, C. Pauligk, H.G. Kopp, G.M. Haag, K.B. Luley, J. Meiler, N. Homann, S. Lorenzen, H. Schmalenberg, S. Probst, M. Koenigsmann, M. Egger, N. Prasnikar, K. Caca, J. Trojan, U.M. Martens, A. Block, W. Fischbach, et al., Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4-AIO): results from the phase 2 part of a multicentre, open-label, randomised phase 2/3 trial. Lancet Oncol. 17, 1697–1708 (2016)PubMedCrossRef
2.
go back to reference S.E. Al-Batran, N. Homann, C. Pauligk, T.O. Goetze, J. Meiler, S. Kasper, H.G. Kopp, F. Mayer, G.M. Haag, K. Luley, U. Lindig, W. Schmiegel, M. Pohl, J. Stoehlmacher, G. Folprecht, S. Probst, N. Prasnikar, W. Fischbach, R. Mahlberg, et al., Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 393, 1948–1957 (2019)PubMedCrossRef S.E. Al-Batran, N. Homann, C. Pauligk, T.O. Goetze, J. Meiler, S. Kasper, H.G. Kopp, F. Mayer, G.M. Haag, K. Luley, U. Lindig, W. Schmiegel, M. Pohl, J. Stoehlmacher, G. Folprecht, S. Probst, N. Prasnikar, W. Fischbach, R. Mahlberg, et al., Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 393, 1948–1957 (2019)PubMedCrossRef
3.
go back to reference P.S. Plum, F. Gebauer, M. Kramer, H. Alakus, F. Berlth, S.H. Chon, L. Schiffmann, T. Zander, R. Buttner, A.H. Holscher, C.J. Bruns, A. Quaas, H. Loeser, HER2/neu (ERBB2) expression and gene amplification correlates with better survival in esophageal adenocarcinoma. BMC Cancer 19, 38 (2019)PubMedPubMedCentralCrossRef P.S. Plum, F. Gebauer, M. Kramer, H. Alakus, F. Berlth, S.H. Chon, L. Schiffmann, T. Zander, R. Buttner, A.H. Holscher, C.J. Bruns, A. Quaas, H. Loeser, HER2/neu (ERBB2) expression and gene amplification correlates with better survival in esophageal adenocarcinoma. BMC Cancer 19, 38 (2019)PubMedPubMedCentralCrossRef
4.
go back to reference D.H. Wang, N.J. Clemons, T. Miyashita, A.J. Dupuy, W. Zhang, A. Szczepny, I.M. Corcoran-Schwartz, D.L. Wilburn, E.A. Montgomery, J.S. Wang, N.A. Jenkins, N.A. Copeland, J.W. Harmon, W.A. Phillips, D.N. Watkins, Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett's metaplasia. Gastroenterology 138, 1810–1822 (2010)PubMedCrossRef D.H. Wang, N.J. Clemons, T. Miyashita, A.J. Dupuy, W. Zhang, A. Szczepny, I.M. Corcoran-Schwartz, D.L. Wilburn, E.A. Montgomery, J.S. Wang, N.A. Jenkins, N.A. Copeland, J.W. Harmon, W.A. Phillips, D.N. Watkins, Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett's metaplasia. Gastroenterology 138, 1810–1822 (2010)PubMedCrossRef
5.
go back to reference Y. Yamanaka, A. Shiotani, Y. Fujimura, M. Ishii, M. Fujita, H. Matsumoto, K. Tarumi, T. Kamada, J. Hata, K. Haruma, Expression of Sonic hedgehog (SHH) and CDX2 in the columnar epithelium of the lower oesophagus. Dig. Liver Dis. 43, 54–59 (2011)PubMedCrossRef Y. Yamanaka, A. Shiotani, Y. Fujimura, M. Ishii, M. Fujita, H. Matsumoto, K. Tarumi, T. Kamada, J. Hata, K. Haruma, Expression of Sonic hedgehog (SHH) and CDX2 in the columnar epithelium of the lower oesophagus. Dig. Liver Dis. 43, 54–59 (2011)PubMedCrossRef
6.
go back to reference A. Blackford, O.K. Serrano, C.L. Wolfgang, G. Parmigiani, S. Jones, X. Zhang, D.W. Parsons, J.C. Lin, R.J. Leary, J.R. Eshleman, M. Goggins, E.M. Jaffee, C.A. Iacobuzio-Donahue, A. Maitra, J.L. Cameron, K. Olino, R. Schulick, J. Winter, J.M. Herman, et al., SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin. Cancer Res. 15, 4674–4679 (2009)PubMedPubMedCentralCrossRef A. Blackford, O.K. Serrano, C.L. Wolfgang, G. Parmigiani, S. Jones, X. Zhang, D.W. Parsons, J.C. Lin, R.J. Leary, J.R. Eshleman, M. Goggins, E.M. Jaffee, C.A. Iacobuzio-Donahue, A. Maitra, J.L. Cameron, K. Olino, R. Schulick, J. Winter, J.M. Herman, et al., SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin. Cancer Res. 15, 4674–4679 (2009)PubMedPubMedCentralCrossRef
7.
go back to reference P.W. Voorneveld, L.L. Kodach, R.J. Jacobs, N. Liv, A.C. Zonnevylle, J.P. Hoogenboom, I. Biemond, H.W. Verspaget, D.W. Hommes, K. de Rooij, C.J. van Noesel, H. Morreau, T. van Wezel, G.J. Offerhaus, G.R. van den Brink, M.P. Peppelenbosch, P. Ten Dijke, J.C. Hardwick, Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology 147, 196–208 e113 (2014)PubMedCrossRef P.W. Voorneveld, L.L. Kodach, R.J. Jacobs, N. Liv, A.C. Zonnevylle, J.P. Hoogenboom, I. Biemond, H.W. Verspaget, D.W. Hommes, K. de Rooij, C.J. van Noesel, H. Morreau, T. van Wezel, G.J. Offerhaus, G.R. van den Brink, M.P. Peppelenbosch, P. Ten Dijke, J.C. Hardwick, Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology 147, 196–208 e113 (2014)PubMedCrossRef
8.
go back to reference A.M. Dulak, P. Stojanov, S. Peng, M.S. Lawrence, C. Fox, C. Stewart, S. Bandla, Y. Imamura, S.E. Schumacher, E. Shefler, A. McKenna, S.L. Carter, K. Cibulskis, A. Sivachenko, G. Saksena, D. Voet, A.H. Ramos, D. Auclair, K. Thompson, et al., Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013)PubMedPubMedCentralCrossRef A.M. Dulak, P. Stojanov, S. Peng, M.S. Lawrence, C. Fox, C. Stewart, S. Bandla, Y. Imamura, S.E. Schumacher, E. Shefler, A. McKenna, S.L. Carter, K. Cibulskis, A. Sivachenko, G. Saksena, D. Voet, A.H. Ramos, D. Auclair, K. Thompson, et al., Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013)PubMedPubMedCentralCrossRef
9.
go back to reference A.D. Singhi, T.J. Foxwell, K. Nason, K.L. Cressman, K.M. McGrath, W.J. Sun, N. Bahary, H.J. Zeh, R.M. Levy, J.D. Luketich, J.M. Davison, Smad4 loss in esophageal adenocarcinoma is associated with an increased propensity for disease recurrence and poor survival. Am. J. Surg. Pathol. 39, 487–495 (2015)PubMedPubMedCentralCrossRef A.D. Singhi, T.J. Foxwell, K. Nason, K.L. Cressman, K.M. McGrath, W.J. Sun, N. Bahary, H.J. Zeh, R.M. Levy, J.D. Luketich, J.M. Davison, Smad4 loss in esophageal adenocarcinoma is associated with an increased propensity for disease recurrence and poor survival. Am. J. Surg. Pathol. 39, 487–495 (2015)PubMedPubMedCentralCrossRef
11.
go back to reference L.H. Chi, A.D. Burrows, R.L. Anderson, Bone morphogenetic protein signaling in breast cancer progression. Growth Factors 37, 12–28 (2019)PubMedCrossRef L.H. Chi, A.D. Burrows, R.L. Anderson, Bone morphogenetic protein signaling in breast cancer progression. Growth Factors 37, 12–28 (2019)PubMedCrossRef
12.
go back to reference K.S. Jeng, C.F. Chang, S.S. Lin, Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int. J. Mol. Sci. 21, 758 (2020) K.S. Jeng, C.F. Chang, S.S. Lin, Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int. J. Mol. Sci. 21, 758 (2020)
13.
go back to reference M. Hu, F. Cui, F. Liu, J. Wang, X. Wei, Y. Li, BMP signaling pathways affect differently migration and invasion of esophageal squamous cancer cells. Int. J. Oncol. 50, 193–202 (2017)PubMedCrossRef M. Hu, F. Cui, F. Liu, J. Wang, X. Wei, Y. Li, BMP signaling pathways affect differently migration and invasion of esophageal squamous cancer cells. Int. J. Oncol. 50, 193–202 (2017)PubMedCrossRef
14.
go back to reference D. Guo, J.Y. Huang, J.P. Gong, Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer. Mol. Cell. Biochem. 363, 179–190 (2012)PubMedCrossRef D. Guo, J.Y. Huang, J.P. Gong, Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer. Mol. Cell. Biochem. 363, 179–190 (2012)PubMedCrossRef
15.
go back to reference F. Huang, Y. Cao, G. Wu, J. Chen, W. CaihongWang, R. Lin, B. Lan, X. Wu, J.H. Xie, L. Fu, BMP2 signalling activation enhances bone metastases of non-small cell lung cancer. J. Cell. Mol. Med. 24, 10768–10784 (2020)PubMedPubMedCentralCrossRef F. Huang, Y. Cao, G. Wu, J. Chen, W. CaihongWang, R. Lin, B. Lan, X. Wu, J.H. Xie, L. Fu, BMP2 signalling activation enhances bone metastases of non-small cell lung cancer. J. Cell. Mol. Med. 24, 10768–10784 (2020)PubMedPubMedCentralCrossRef
16.
go back to reference M.H. Kang, J.S. Kim, J.E. Seo, S.C. Oh, Y.A. Yoo, BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp. Cell Res. 316, 24–37 (2010)PubMedCrossRef M.H. Kang, J.S. Kim, J.E. Seo, S.C. Oh, Y.A. Yoo, BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp. Cell Res. 316, 24–37 (2010)PubMedCrossRef
17.
go back to reference M.H. Wang, X.M. Zhou, M.Y. Zhang, L. Shi, R.W. Xiao, L.S. Zeng, X.Z. Yang, X.F.S. Zheng, H.Y. Wang, S.J. Mai, BMP2 promotes proliferation and invasion of nasopharyngeal carcinoma cells via mTORC1 pathway. Aging (Albany NY) 9, 1326–1340 (2017)CrossRef M.H. Wang, X.M. Zhou, M.Y. Zhang, L. Shi, R.W. Xiao, L.S. Zeng, X.Z. Yang, X.F.S. Zheng, H.Y. Wang, S.J. Mai, BMP2 promotes proliferation and invasion of nasopharyngeal carcinoma cells via mTORC1 pathway. Aging (Albany NY) 9, 1326–1340 (2017)CrossRef
18.
go back to reference K.R. Zhou, X.L. Shi, J.L. Huo, W.H. Liu, D.X. Yang, T.J. Yang, T.T. Qin, C. Wang, Bone morphogenetic protein 4 is overexpressed in and promotes migration and invasion of drug-resistant cancer cells. Int. J. Biol. Macromol. 101, 427–437 (2017)PubMedCrossRef K.R. Zhou, X.L. Shi, J.L. Huo, W.H. Liu, D.X. Yang, T.J. Yang, T.T. Qin, C. Wang, Bone morphogenetic protein 4 is overexpressed in and promotes migration and invasion of drug-resistant cancer cells. Int. J. Biol. Macromol. 101, 427–437 (2017)PubMedCrossRef
19.
go back to reference J.B. Wu, H.Q. Fu, L.Z. Huang, A.W. Liu, J.X. Zhang, Effects of siRNA-targeting BMP-2 on the abilities of migration and invasion of human liver cancer SMMC7721 cells and its mechanism. Cancer Gene Ther. 18, 20–25 (2011)PubMedCrossRef J.B. Wu, H.Q. Fu, L.Z. Huang, A.W. Liu, J.X. Zhang, Effects of siRNA-targeting BMP-2 on the abilities of migration and invasion of human liver cancer SMMC7721 cells and its mechanism. Cancer Gene Ther. 18, 20–25 (2011)PubMedCrossRef
20.
go back to reference W.H. Zuo, P. Zeng, X. Chen, Y.J. Lu, A. Li, J.B. Wu, Promotive effects of bone morphogenetic protein 2 on angiogenesis in hepatocarcinoma via multiple signal pathways. Sci. Rep. 6, 37499 (2016)PubMedPubMedCentralCrossRef W.H. Zuo, P. Zeng, X. Chen, Y.J. Lu, A. Li, J.B. Wu, Promotive effects of bone morphogenetic protein 2 on angiogenesis in hepatocarcinoma via multiple signal pathways. Sci. Rep. 6, 37499 (2016)PubMedPubMedCentralCrossRef
21.
go back to reference M.H. Kang, S.C. Oh, H.J. Lee, H.N. Kang, J.L. Kim, J.S. Kim, Y.A. Yoo, Metastatic function of BMP-2 in gastric cancer cells: the role of PI3K/AKT, MAPK, the NF-kappaB pathway, and MMP-9 expression. Exp. Cell Res. 317, 1746–1762 (2011)PubMedCrossRef M.H. Kang, S.C. Oh, H.J. Lee, H.N. Kang, J.L. Kim, J.S. Kim, Y.A. Yoo, Metastatic function of BMP-2 in gastric cancer cells: the role of PI3K/AKT, MAPK, the NF-kappaB pathway, and MMP-9 expression. Exp. Cell Res. 317, 1746–1762 (2011)PubMedCrossRef
22.
go back to reference A. Liao, W. Wang, D. Sun, Y. Jiang, S. Tian, J. Li, X. Yang, R. Shi, Bone morphogenetic protein 2 mediates epithelial-mesenchymal transition via AKT and ERK signaling pathways in gastric cancer. Tumour Biol. 36, 2773–2778 (2015)PubMedCrossRef A. Liao, W. Wang, D. Sun, Y. Jiang, S. Tian, J. Li, X. Yang, R. Shi, Bone morphogenetic protein 2 mediates epithelial-mesenchymal transition via AKT and ERK signaling pathways in gastric cancer. Tumour Biol. 36, 2773–2778 (2015)PubMedCrossRef
23.
go back to reference B.R. Kim, S.C. Oh, D.H. Lee, J.L. Kim, S.Y. Lee, M.H. Kang, S.I. Lee, S. Kang, S.Y. Joung, B.W. Min, BMP-2 induces motility and invasiveness by promoting colon cancer stemness through STAT3 activation. Tumor Biol. 36, 9475–9486 (2015)CrossRef B.R. Kim, S.C. Oh, D.H. Lee, J.L. Kim, S.Y. Lee, M.H. Kang, S.I. Lee, S. Kang, S.Y. Joung, B.W. Min, BMP-2 induces motility and invasiveness by promoting colon cancer stemness through STAT3 activation. Tumor Biol. 36, 9475–9486 (2015)CrossRef
24.
go back to reference R. Vishnubalaji, S. Yue, M. Alfayez, M. Kassem, F.F. Liu, A. Aldahmash, N.M. Alajez, Bone morphogenetic protein 2 (BMP2) induces growth suppression and enhances chemosensitivity of human colon cancer cells. Cancer Cell Int. 16, 77 (2016)PubMedPubMedCentralCrossRef R. Vishnubalaji, S. Yue, M. Alfayez, M. Kassem, F.F. Liu, A. Aldahmash, N.M. Alajez, Bone morphogenetic protein 2 (BMP2) induces growth suppression and enhances chemosensitivity of human colon cancer cells. Cancer Cell Int. 16, 77 (2016)PubMedPubMedCentralCrossRef
25.
go back to reference C.Y. Chiu, K.K. Kuo, T.L. Kuo, K.T. Lee, K.H. Cheng, The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration. Mol. Cancer Res. 10, 415–427 (2012)PubMedCrossRef C.Y. Chiu, K.K. Kuo, T.L. Kuo, K.T. Lee, K.H. Cheng, The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration. Mol. Cancer Res. 10, 415–427 (2012)PubMedCrossRef
26.
go back to reference H.Y. Deng, R. Makizumi, T.S. Ravikumaya, H.L. Dong, W.C. Yang, W.L. Yang, Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells. Exp. Cell Res. 313, 1033–1044 (2007)PubMedCrossRef H.Y. Deng, R. Makizumi, T.S. Ravikumaya, H.L. Dong, W.C. Yang, W.L. Yang, Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells. Exp. Cell Res. 313, 1033–1044 (2007)PubMedCrossRef
27.
go back to reference S.G. Kim, H.R. Park, S.K. Min, J.Y. Choi, S.H. Koh, J.W. Kim, H.W. Lee, Expression of bone morphogenic protein-4 is inversely related to prevalence of lymph node metastasis in gastric adenocarcinoma. Surg. Today 41, 688–692 (2011)PubMedCrossRef S.G. Kim, H.R. Park, S.K. Min, J.Y. Choi, S.H. Koh, J.W. Kim, H.W. Lee, Expression of bone morphogenic protein-4 is inversely related to prevalence of lymph node metastasis in gastric adenocarcinoma. Surg. Today 41, 688–692 (2011)PubMedCrossRef
28.
go back to reference C. Kestens, P.D. Siersema, G.J.A. Offerhaus, J.W.P.M. van Baal, BMP4 Signaling is able to induce an Epithelial-Mesenchymal Transition-Like Phenotype in Barrett's Esophagus and Esophageal Adenocarcinoma through induction of SNAIL2. PLoS One 11, e0155754 (2016) C. Kestens, P.D. Siersema, G.J.A. Offerhaus, J.W.P.M. van Baal, BMP4 Signaling is able to induce an Epithelial-Mesenchymal Transition-Like Phenotype in Barrett's Esophagus and Esophageal Adenocarcinoma through induction of SNAIL2. PLoS One 11, e0155754 (2016)
29.
go back to reference R.N. Wang, J. Green, Z. Wang, Y. Deng, M. Qiao, M. Peabody, Q. Zhang, J. Ye, Z. Yan, S. Denduluri, O. Idowu, M. Li, C. Shen, A. Hu, R.C. Haydon, R. Kang, J. Mok, M.J. Lee, H.L. Luu, L.L. Shi, Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 1, 87–105 (2014)PubMedPubMedCentralCrossRef R.N. Wang, J. Green, Z. Wang, Y. Deng, M. Qiao, M. Peabody, Q. Zhang, J. Ye, Z. Yan, S. Denduluri, O. Idowu, M. Li, C. Shen, A. Hu, R.C. Haydon, R. Kang, J. Mok, M.J. Lee, H.L. Luu, L.L. Shi, Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 1, 87–105 (2014)PubMedPubMedCentralCrossRef
30.
go back to reference K. Krishnadath, Regenerating esophageal squamous epithelium from squamous progenitor cells through BMP2/4 signal inhibition in models of barrett's esophagus: a promising chemopreventive treatment for esophageal adenocarcinoma. Diseases of the Esophagus 31, 195 (2019) K. Krishnadath, Regenerating esophageal squamous epithelium from squamous progenitor cells through BMP2/4 signal inhibition in models of barrett's esophagus: a promising chemopreventive treatment for esophageal adenocarcinoma. Diseases of the Esophagus 31, 195 (2019)
31.
go back to reference E. Pothin, D. Lesuisse, P. Lafaye, Brain delivery of Single-Domain Antibodies: A focus on VHH and VNAR. Pharmaceutics 12, 937 (2020) E. Pothin, D. Lesuisse, P. Lafaye, Brain delivery of Single-Domain Antibodies: A focus on VHH and VNAR. Pharmaceutics 12, 937 (2020)
32.
go back to reference A. Hanlon and A. Metjian, Caplacizumab in adult patients with acquired thrombotic thrombocytopenic purpura. Therapeutic Advances in Hematology 11, 2040620720902904 (2020) A. Hanlon and A. Metjian, Caplacizumab in adult patients with acquired thrombotic thrombocytopenic purpura. Therapeutic Advances in Hematology 11, 2040620720902904 (2020)
33.
go back to reference S. Bessalah, S. Jebahi, N. Mejri, I. Salhi, T. Khorchani, M. Hammadi, Perspective on therapeutic and diagnostic potential of camel nanobodies for coronavirus disease-19 (COVID-19), 3. Biotech 11, 89 (2021) S. Bessalah, S. Jebahi, N. Mejri, I. Salhi, T. Khorchani, M. Hammadi, Perspective on therapeutic and diagnostic potential of camel nanobodies for coronavirus disease-19 (COVID-19), 3. Biotech 11, 89 (2021)
34.
go back to reference Q. Lu, Z. Zhang, H. Li, K. Zhong, Q. Zhao, Z. Wang, Z. Wu, D. Yang, S. Sun, N. Yang, M. Zheng, Q. Chen, C. Long, W. Guo, H. Yang, C. Nie, A. Tong, Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. J Nanobiotechnol 19, 33 (2021)CrossRef Q. Lu, Z. Zhang, H. Li, K. Zhong, Q. Zhao, Z. Wang, Z. Wu, D. Yang, S. Sun, N. Yang, M. Zheng, Q. Chen, C. Long, W. Guo, H. Yang, C. Nie, A. Tong, Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. J Nanobiotechnol 19, 33 (2021)CrossRef
35.
go back to reference S. Calpe, A.C. Correia, C. Sancho-Serra Mdel, K.K. Krishnadath, Comparison of newly developed anti-bone morphogenetic protein 4 llama-derived antibodies with commercially available BMP4 inhibitors. MAbs 8, 678–688 (2016)PubMedPubMedCentralCrossRef S. Calpe, A.C. Correia, C. Sancho-Serra Mdel, K.K. Krishnadath, Comparison of newly developed anti-bone morphogenetic protein 4 llama-derived antibodies with commercially available BMP4 inhibitors. MAbs 8, 678–688 (2016)PubMedPubMedCentralCrossRef
36.
go back to reference S. Calpe, K. Wagner, M. El Khattabi, L. Rutten, C. Zimberlin, E. Dolk, C.T. Verrips, J.P. Medema, H. Spits, K.K. Krishnadath, Effective Inhibition of Bone Morphogenetic Protein Function by Highly Specific Llama-Derived Antibodies. Mol. Cancer Ther. 14, 2527–2540 (2015)PubMedCrossRef S. Calpe, K. Wagner, M. El Khattabi, L. Rutten, C. Zimberlin, E. Dolk, C.T. Verrips, J.P. Medema, H. Spits, K.K. Krishnadath, Effective Inhibition of Bone Morphogenetic Protein Function by Highly Specific Llama-Derived Antibodies. Mol. Cancer Ther. 14, 2527–2540 (2015)PubMedCrossRef
37.
go back to reference N. Cancer Genome Atlas Research, U. Analysis Working Group: Asan, B.C.C. Agency, Brigham, H. Women's, I. Broad, U. Brown, U. Case Western Reserve, I. Dana-Farber Cancer, U. Duke, C. Greater Poland Cancer, S. Harvard Medical, B. Institute for Systems, K.U. Leuven, C. Mayo, C. Memorial Sloan Kettering Cancer, I. National Cancer, H. Nationwide Children's, U. Stanford, A. University of, M. University of, C. University of North, P. University of, R. University of, C. University of Southern, M.D.A.C.C. University of Texas, W. University of, I. Van Andel Research, U. Vanderbilt, U. Washington, I. Genome Sequencing Center: Broad, L. Washington University in St, B.C.C.A. Genome Characterization Centers, I. Broad, S. Harvard Medical, U. Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, C. University of North, C. University of Southern California Epigenome, M.D.A.C.C. University of Texas, I. Van Andel Research, I. Genome Data Analysis Centers: Broad, U. Brown, S. Harvard Medical, B. Institute for Systems, C. Memorial Sloan Kettering Cancer, C. University of California Santa, M.D.A.C.C. University of Texas, C. Biospecimen Core Resource: International Genomics, H. Research Institute at Nationwide Children's, S. Tissue Source Sites: Analytic Biologic, C. Asan Medical, B. Asterand, H. Barretos Cancer, BioreclamationIvt, C. Botkin Municipal, S. Chonnam National University Medical, S. Christiana Care Health, Cureline, U. Duke, U. Emory, U. Erasmus, M. Indiana University School of, M. Institute of Oncology of, C. International Genomics, Invidumed, H. Israelitisches Krankenhaus, M. Keimyung University School of, C. Memorial Sloan Kettering Cancer, G. National Cancer Center, B. Ontario Tumour, C. Peter MacCallum Cancer, S. Pusan National University Medical, S. Ribeirao Preto Medical, H. St. Joseph's, C. Medical, U. St. Petersburg Academic, B. Tayside Tissue, D. University of, C. University of Kansas Medical, M. University of, H. University of North Carolina at Chapel, M. University of Pittsburgh School of, M.D.A.C.C. University of Texas, U. Disease Working Group: Duke, C. Memorial Sloan Kettering Cancer, I. National Cancer, M.D.A.C.C. University of Texas, M. Yonsei University College of, C.I. Data Coordination Center and H. Project Team: National Institutes of, Integrated genomic characterization of oesophageal carcinoma, Nature 541, 169–175 (2017) N. Cancer Genome Atlas Research, U. Analysis Working Group: Asan, B.C.C. Agency, Brigham, H. Women's, I. Broad, U. Brown, U. Case Western Reserve, I. Dana-Farber Cancer, U. Duke, C. Greater Poland Cancer, S. Harvard Medical, B. Institute for Systems, K.U. Leuven, C. Mayo, C. Memorial Sloan Kettering Cancer, I. National Cancer, H. Nationwide Children's, U. Stanford, A. University of, M. University of, C. University of North, P. University of, R. University of, C. University of Southern, M.D.A.C.C. University of Texas, W. University of, I. Van Andel Research, U. Vanderbilt, U. Washington, I. Genome Sequencing Center: Broad, L. Washington University in St, B.C.C.A. Genome Characterization Centers, I. Broad, S. Harvard Medical, U. Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, C. University of North, C. University of Southern California Epigenome, M.D.A.C.C. University of Texas, I. Van Andel Research, I. Genome Data Analysis Centers: Broad, U. Brown, S. Harvard Medical, B. Institute for Systems, C. Memorial Sloan Kettering Cancer, C. University of California Santa, M.D.A.C.C. University of Texas, C. Biospecimen Core Resource: International Genomics, H. Research Institute at Nationwide Children's, S. Tissue Source Sites: Analytic Biologic, C. Asan Medical, B. Asterand, H. Barretos Cancer, BioreclamationIvt, C. Botkin Municipal, S. Chonnam National University Medical, S. Christiana Care Health, Cureline, U. Duke, U. Emory, U. Erasmus, M. Indiana University School of, M. Institute of Oncology of, C. International Genomics, Invidumed, H. Israelitisches Krankenhaus, M. Keimyung University School of, C. Memorial Sloan Kettering Cancer, G. National Cancer Center, B. Ontario Tumour, C. Peter MacCallum Cancer, S. Pusan National University Medical, S. Ribeirao Preto Medical, H. St. Joseph's, C. Medical, U. St. Petersburg Academic, B. Tayside Tissue, D. University of, C. University of Kansas Medical, M. University of, H. University of North Carolina at Chapel, M. University of Pittsburgh School of, M.D.A.C.C. University of Texas, U. Disease Working Group: Duke, C. Memorial Sloan Kettering Cancer, I. National Cancer, M.D.A.C.C. University of Texas, M. Yonsei University College of, C.I. Data Coordination Center and H. Project Team: National Institutes of, Integrated genomic characterization of oesophageal carcinoma, Nature 541, 169–175 (2017)
38.
go back to reference A. Colaprico, T.C. Silva, C. Olsen, L. Garofano, C. Cava, D. Garolini, T.S. Sabedot, T.M. Malta, S.M. Pagnotta, I. Castiglioni, M. Ceccarelli, G. Bontempi, H. Noushmehr, TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016)PubMedCrossRef A. Colaprico, T.C. Silva, C. Olsen, L. Garofano, C. Cava, D. Garolini, T.S. Sabedot, T.M. Malta, S.M. Pagnotta, I. Castiglioni, M. Ceccarelli, G. Bontempi, H. Noushmehr, TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016)PubMedCrossRef
39.
go back to reference Y. Fan, L. Xi, D.S.T. Hughes, J.J. Zhang, J.H. Zhang, P.A. Futreal, D.A. Wheeler, W.Y. Wang, MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol. 17, 178 (2016) Y. Fan, L. Xi, D.S.T. Hughes, J.J. Zhang, J.H. Zhang, P.A. Futreal, D.A. Wheeler, W.Y. Wang, MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol. 17, 178 (2016)
40.
go back to reference R. Kolde, Pretty Heatmaps, Implementation of heatmaps that offers more control over dimensions and appearance (2019) R. Kolde, Pretty Heatmaps, Implementation of heatmaps that offers more control over dimensions and appearance (2019)
41.
42.
go back to reference A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005)PubMedPubMedCentralCrossRef A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005)PubMedPubMedCentralCrossRef
43.
go back to reference B. Jassal, L. Matthews, G. Viteri, C. Gong, P. Lorente, A. Fabregat, K. Sidiropoulos, J. Cook, M. Gillespie, R. Haw, F. Loney, B. May, M. Milacic, K. Rothfels, C. Sevilla, V. Shamovsky, S. Shorser, T. Varusai, J. Weiser, et al., The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020)PubMed B. Jassal, L. Matthews, G. Viteri, C. Gong, P. Lorente, A. Fabregat, K. Sidiropoulos, J. Cook, M. Gillespie, R. Haw, F. Loney, B. May, M. Milacic, K. Rothfels, C. Sevilla, V. Shamovsky, S. Shorser, T. Varusai, J. Weiser, et al., The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020)PubMed
45.
go back to reference V.K. Mootha, C.M. Lindgren, K.F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M.J. Daly, N. Patterson, J.P. Mesirov, T.R. Golub, P. Tamayo, B. Spiegelman, E.S. Lander, J.N. Hirschhorn, et al., PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003)PubMedCrossRef V.K. Mootha, C.M. Lindgren, K.F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M.J. Daly, N. Patterson, J.P. Mesirov, T.R. Golub, P. Tamayo, B. Spiegelman, E.S. Lander, J.N. Hirschhorn, et al., PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003)PubMedCrossRef
46.
go back to reference E. Bonora, S. Chakrabarty, G. Kellaris, M. Tsutsumi, F. Bianco, C. Bergamini, F. Ullah, F. Isidori, I. Liparulo, C. Diquigiovanni, L. Masin, N. Rizzardi, M.G. Cratere, E. Boschetti, V. Papa, A. Maresca, G. Cenacchi, R. Casadio, P. Martelli, et al., Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain 144, 1451–1466 (2021)PubMedCrossRef E. Bonora, S. Chakrabarty, G. Kellaris, M. Tsutsumi, F. Bianco, C. Bergamini, F. Ullah, F. Isidori, I. Liparulo, C. Diquigiovanni, L. Masin, N. Rizzardi, M.G. Cratere, E. Boschetti, V. Papa, A. Maresca, G. Cenacchi, R. Casadio, P. Martelli, et al., Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain 144, 1451–1466 (2021)PubMedCrossRef
47.
go back to reference F. Isidori, I. Bozzarelli, L. Mastracci, D. Malvi, M. Lugaresi, C. Molinari, H. Soderstrom, J. Rasanen, A. D’Errico, R. Fiocca, M. Seri, K.K. Krishnadath, E. Bonora, S. Mattioli, Targeted sequencing of sorted esophageal adenocarcinoma cells unveils known and novel mutations in the separated subpopulations. Clin. Transl. Gastroenterol. 11, e00202 (2020)PubMedPubMedCentralCrossRef F. Isidori, I. Bozzarelli, L. Mastracci, D. Malvi, M. Lugaresi, C. Molinari, H. Soderstrom, J. Rasanen, A. D’Errico, R. Fiocca, M. Seri, K.K. Krishnadath, E. Bonora, S. Mattioli, Targeted sequencing of sorted esophageal adenocarcinoma cells unveils known and novel mutations in the separated subpopulations. Clin. Transl. Gastroenterol. 11, e00202 (2020)PubMedPubMedCentralCrossRef
48.
go back to reference M. Read, D. Liu, C.P. Duong, C. Cullinane, W.K. Murray, C.M. Fennell, J. Shortt, D. Westerman, P. Burton, N.J. Clemons, W.A. Phillips, Intramuscular transplantation improves engraftment rates for esophageal patient-derived tumor xenografts. Ann. Surg. Oncol. 23, 305–311 (2016)PubMedCrossRef M. Read, D. Liu, C.P. Duong, C. Cullinane, W.K. Murray, C.M. Fennell, J. Shortt, D. Westerman, P. Burton, N.J. Clemons, W.A. Phillips, Intramuscular transplantation improves engraftment rates for esophageal patient-derived tumor xenografts. Ann. Surg. Oncol. 23, 305–311 (2016)PubMedCrossRef
49.
go back to reference S. Ouahoud, P.W. Voorneveld, L.R.A. van der Burg, E.S.M. de Jonge-Muller, M.J.A. Schoonderwoerd, M. Paauwe, T. de Vos, S. de Wit, G.W. van Pelt, W.E. Mesker, L. Hawinkels, J.C.H. Hardwick, Bidirectional tumor/stroma crosstalk promotes metastasis in mesenchymal colorectal cancer. Oncogene 39, 2453–2466 (2020)PubMedCrossRef S. Ouahoud, P.W. Voorneveld, L.R.A. van der Burg, E.S.M. de Jonge-Muller, M.J.A. Schoonderwoerd, M. Paauwe, T. de Vos, S. de Wit, G.W. van Pelt, W.E. Mesker, L. Hawinkels, J.C.H. Hardwick, Bidirectional tumor/stroma crosstalk promotes metastasis in mesenchymal colorectal cancer. Oncogene 39, 2453–2466 (2020)PubMedCrossRef
50.
go back to reference M. Secrier, X. Li, N. de Silva, M.D. Eldridge, G. Contino, J. Bornschein, S. MacRae, N. Grehan, M. O'Donovan, A. Miremadi, T.P. Yang, L. Bower, H. Chettouh, J. Crawte, N. Galeano-Dalmau, A. Grabowska, J. Saunders, T. Underwood, N. Waddell, et al., Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 48, 1131–1141 (2016)PubMedPubMedCentralCrossRef M. Secrier, X. Li, N. de Silva, M.D. Eldridge, G. Contino, J. Bornschein, S. MacRae, N. Grehan, M. O'Donovan, A. Miremadi, T.P. Yang, L. Bower, H. Chettouh, J. Crawte, N. Galeano-Dalmau, A. Grabowska, J. Saunders, T. Underwood, N. Waddell, et al., Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 48, 1131–1141 (2016)PubMedPubMedCentralCrossRef
51.
go back to reference L.B. Alexandrov, S. Nik-Zainal, D.C. Wedge, S.A. Aparicio, S. Behjati, A.V. Biankin, G.R. Bignell, N. Bolli, A. Borg, A.L. Borresen-Dale, S. Boyault, B. Burkhardt, A.P. Butler, C. Caldas, H.R. Davies, C. Desmedt, R. Eils, J.E. Eyfjord, J.A. Foekens, M. Greaves, F. Hosoda, B. Hutter, T. Ilicic, S. Imbeaud, M. Imielinski, N. Jager, D.T. Jones, D. Jones, S. Knappskog, M. Kool, S.R. Lakhani, C. Lopez-Otin, S. Martin, N.C. Munshi, H. Nakamura, P.A. Northcott, M. Pajic, E. Papaemmanuil, A. Paradiso, J.V. Pearson, X.S. Puente, K. Raine, M. Ramakrishna, A.L. Richardson, J. Richter, P. Rosenstiel, M. Schlesner, T.N. Schumacher, P.N. Span, J.W. Teague, Y. Totoki, A.N. Tutt, R. Valdes-Mas, M.M. van Buuren, L. van 't Veer, A. Vincent-Salomon, N. Waddell, L.R. Yates, I. Australian Pancreatic Cancer Genome, I.B.C. Consortium, I.M.-S. Consortium, I. PedBrain, J. Zucman-Rossi, P.A. Futreal, U. McDermott, P. Lichter, M. Meyerson, S.M. Grimmond, R. Siebert, E. Campo, T. Shibata, S.M. Pfister, P.J. Campbell and M.R. Stratton,Signatures of mutational processes in human cancer, Nature 500, 415-421 (2013) L.B. Alexandrov, S. Nik-Zainal, D.C. Wedge, S.A. Aparicio, S. Behjati, A.V. Biankin, G.R. Bignell, N. Bolli, A. Borg, A.L. Borresen-Dale, S. Boyault, B. Burkhardt, A.P. Butler, C. Caldas, H.R. Davies, C. Desmedt, R. Eils, J.E. Eyfjord, J.A. Foekens, M. Greaves, F. Hosoda, B. Hutter, T. Ilicic, S. Imbeaud, M. Imielinski, N. Jager, D.T. Jones, D. Jones, S. Knappskog, M. Kool, S.R. Lakhani, C. Lopez-Otin, S. Martin, N.C. Munshi, H. Nakamura, P.A. Northcott, M. Pajic, E. Papaemmanuil, A. Paradiso, J.V. Pearson, X.S. Puente, K. Raine, M. Ramakrishna, A.L. Richardson, J. Richter, P. Rosenstiel, M. Schlesner, T.N. Schumacher, P.N. Span, J.W. Teague, Y. Totoki, A.N. Tutt, R. Valdes-Mas, M.M. van Buuren, L. van 't Veer, A. Vincent-Salomon, N. Waddell, L.R. Yates, I. Australian Pancreatic Cancer Genome, I.B.C. Consortium, I.M.-S. Consortium, I. PedBrain, J. Zucman-Rossi, P.A. Futreal, U. McDermott, P. Lichter, M. Meyerson, S.M. Grimmond, R. Siebert, E. Campo, T. Shibata, S.M. Pfister, P.J. Campbell and M.R. Stratton,Signatures of mutational processes in human cancer, Nature 500, 415-421 (2013)
52.
go back to reference X.L. Ma, T. Sheng, Y.X. Zhang, X.L. Zhang, J. He, S.H. Huang, K. Chen, J. Sultz, P.A. Adegboyega, H.W. Zhang, J.W. Xie, Hedgehog signaling is activated in subsets of esophageal cancers. Int. J. Cancer 118, 139–148 (2006)PubMedCrossRef X.L. Ma, T. Sheng, Y.X. Zhang, X.L. Zhang, J. He, S.H. Huang, K. Chen, J. Sultz, P.A. Adegboyega, H.W. Zhang, J.W. Xie, Hedgehog signaling is activated in subsets of esophageal cancers. Int. J. Cancer 118, 139–148 (2006)PubMedCrossRef
53.
go back to reference J.H. Song, A.H. Tieu, Y.L. Cheng, K. Ma, V.S. Akshintala, C. Simsek, V. Prasath, E.J. Shin, S. Ngamruengphong, M.A. Khashab, J.M. Abraham, S.J. Meltzer, Novel long noncoding RNA miR205HG functions as an esophageal tumor-suppressive hedgehog inhibitor. Cancers (Basel) 13, 1707 (2021) J.H. Song, A.H. Tieu, Y.L. Cheng, K. Ma, V.S. Akshintala, C. Simsek, V. Prasath, E.J. Shin, S. Ngamruengphong, M.A. Khashab, J.M. Abraham, S.J. Meltzer, Novel long noncoding RNA miR205HG functions as an esophageal tumor-suppressive hedgehog inhibitor. Cancers (Basel) 13, 1707 (2021)
54.
go back to reference L. Yang, L.S. Wang, X.L. Chen, Z. Gatalica, S. Qiu, Z. Liu, G. Stoner, H. Zhang, H. Weiss, J. Xie, Hedgehog signaling activation in the development of squamous cell carcinoma and adenocarcinoma of esophagus. Int J Biochem Mol Biol 3, 46–57 (2012)PubMedPubMedCentral L. Yang, L.S. Wang, X.L. Chen, Z. Gatalica, S. Qiu, Z. Liu, G. Stoner, H. Zhang, H. Weiss, J. Xie, Hedgehog signaling activation in the development of squamous cell carcinoma and adenocarcinoma of esophagus. Int J Biochem Mol Biol 3, 46–57 (2012)PubMedPubMedCentral
55.
go back to reference C.K. Ng, K. Ma, Y. Cheng, T. Miyashita, J.W. Harmon, S.J. Meltzer, Kruppel-like factor 5 promotes sonic hedgehog signaling and neoplasia in Barrett’s esophagus and esophageal adenocarcinoma. Transl. Oncol. 12, 1432–1441 (2019)PubMedPubMedCentralCrossRef C.K. Ng, K. Ma, Y. Cheng, T. Miyashita, J.W. Harmon, S.J. Meltzer, Kruppel-like factor 5 promotes sonic hedgehog signaling and neoplasia in Barrett’s esophagus and esophageal adenocarcinoma. Transl. Oncol. 12, 1432–1441 (2019)PubMedPubMedCentralCrossRef
56.
go back to reference T. Ivanova, H. Zouridis, Y.H. Wu, L.L. Cheng, I.B. Tan, V. Gopalakrishnan, C.H. Ooi, J. Lee, L. Qin, J.N. Wu, M. Lee, S.Y. Rha, D. Huang, N. Liem, K.G. Yeoh, W.P. Yong, B.T. Teh, P. Tan, Integrated epigenomics identifies BMP4 as a modulator of cisplatin sensitivity in gastric cancer. Gut 62, 22–33 (2013)PubMedCrossRef T. Ivanova, H. Zouridis, Y.H. Wu, L.L. Cheng, I.B. Tan, V. Gopalakrishnan, C.H. Ooi, J. Lee, L. Qin, J.N. Wu, M. Lee, S.Y. Rha, D. Huang, N. Liem, K.G. Yeoh, W.P. Yong, B.T. Teh, P. Tan, Integrated epigenomics identifies BMP4 as a modulator of cisplatin sensitivity in gastric cancer. Gut 62, 22–33 (2013)PubMedCrossRef
57.
go back to reference P. Friedl, K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003)PubMedCrossRef P. Friedl, K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003)PubMedCrossRef
58.
go back to reference M. Perse, Cisplatin mouse models: Treatment, toxicity and translatability. Biomedicines 9, 1406 (2021) M. Perse, Cisplatin mouse models: Treatment, toxicity and translatability. Biomedicines 9, 1406 (2021)
59.
go back to reference C.H. Wu, J.L. Ko, J.M. Liao, S.S. Huang, M.Y. Lin, L.H. Lee, L.Y. Chang, C.C. Ou, D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther Adv Med Oncol 11, 1758835918821021 (2019)PubMedPubMedCentral C.H. Wu, J.L. Ko, J.M. Liao, S.S. Huang, M.Y. Lin, L.H. Lee, L.Y. Chang, C.C. Ou, D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther Adv Med Oncol 11, 1758835918821021 (2019)PubMedPubMedCentral
Metadata
Title
Selective targeting BMP2 and 4 in SMAD4 negative esophageal adenocarcinoma inhibits tumor growth and aggressiveness in preclinical models
Authors
Shulin Li
Sanne J. M. Hoefnagel
Matthew Read
Sybren Meijer
Mark I. van Berge Henegouwen
Suzanne S. Gisbertz
Elena Bonora
David S. H. Liu
Wayne A. Phillips
Silvia Calpe
Ana C. P. Correia
Maria D. C. Sancho-Serra
Sandro Mattioli
Kausilia K. Krishnadath
Members of the Esophageal Adenocarcinoma Study Group Europe (EACSGE)
Publication date
28-07-2022
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2022
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-022-00689-2

Other articles of this Issue 4/2022

Cellular Oncology 4/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine