Skip to main content
Top
Published in: Cellular Oncology 5/2013

01-10-2013 | Original Paper

Epigenetic drug combination induces genome-wide demethylation and altered gene expression in neuro-ectodermal tumor-derived cell lines

Authors: Floor A.M. Duijkers, Renee X. de Menezes, Inès J. Goossens-Beumer, Dominique J.P.M. Stumpel, Pieter Admiraal, Rob Pieters, Jules P.P. Meijerink, Max M. van Noesel

Published in: Cellular Oncology | Issue 5/2013

Login to get access

Abstract

Background

Epigenetic alterations are inherent to cancer cells, and epigenetic drugs are currently primarily used to treat hematological malignancies. Pediatric neuro-ectodermal tumors originate from neural crest cells and also exhibit epigenetic alterations involving e.g. apoptotic pathways, which suggests that these tumors may also be sensitive to epigenetic drugs. This notion prompted us to assess molecular and functional effects of low dosage epigenetic drugs in neuro-ectodermal tumor-derived cell lines of pediatric origin.

Results

In 17 neuroblastoma (NBL) and 5 peripheral primitive neuro-ectodermal tumor (PNET) cell lines a combination treatment of 5-aza-2′-deoxycytidine (DAC) and Trichostatin A (TSA) at nanomolar dosages was found to reduce proliferation and to induce wide-spread DNA demethylation, accompanied by major changes in gene expression profiles. Approximately half of the genes that were significantly up-regulated upon treatment exhibited a significant demethylation in their promoter regions. In the NBL cell lines, almost every cellular pathway (193/200) investigated showed expression alterations after treatment, especially a marked up-regulation of genes in the p53 pathway. The combination treatment also resulted in up-regulation of known epigenetically regulated genes such as X-chromosomal genes, tissue-specific genes and a limited number of imprinted genes, as well as known tumor suppressor genes and oncogenes.

Conclusions

Nanomolar dosages of epigenetic drugs have a dramatic impact on the genomes of neuro-ectodermal tumor-derived cell lines, including alterations in DNA methylation and concomitant alterations in gene expression.
Appendix
Available only for authorised users
Literature
1.
go back to reference S.B. Baylin, P.A. Jones, A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11(10), 726–734 (2011)PubMedCrossRef S.B. Baylin, P.A. Jones, A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11(10), 726–734 (2011)PubMedCrossRef
2.
3.
4.
go back to reference R.L. Piekarz, S.E. Bates, Epigenetic modifiers: basic understanding and clinical development. Clin Cancer Res 15(12), 3918–3926 (2009)PubMedCrossRef R.L. Piekarz, S.E. Bates, Epigenetic modifiers: basic understanding and clinical development. Clin Cancer Res 15(12), 3918–3926 (2009)PubMedCrossRef
5.
go back to reference H.M. Prince, M.J. Bishton, S.J. Harrison, Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15(12), 3958–3969 (2009)PubMedCrossRef H.M. Prince, M.J. Bishton, S.J. Harrison, Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15(12), 3958–3969 (2009)PubMedCrossRef
6.
go back to reference G. Chai, L. Li, W. Zhou, L. Wu, Y. Zhao, D. Wang, S. Lu, Y. Yu, H. Wang, M.A. McNutt, Y.G. Hu, Y. Chen, Y. Yang, X. Wu, G.A. Otterson, W.G. Zhu, HDAC inhibitors act with 5-aza-2'-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells. PLoS One 3(6), e2445 (2008)PubMedCrossRef G. Chai, L. Li, W. Zhou, L. Wu, Y. Zhao, D. Wang, S. Lu, Y. Yu, H. Wang, M.A. McNutt, Y.G. Hu, Y. Chen, Y. Yang, X. Wu, G.A. Otterson, W.G. Zhu, HDAC inhibitors act with 5-aza-2'-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells. PLoS One 3(6), e2445 (2008)PubMedCrossRef
7.
go back to reference M. Dickinson, R.W. Johnstone, H.M. Prince, Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs 28(Suppl 1), S3–20 (2010)PubMedCrossRef M. Dickinson, R.W. Johnstone, H.M. Prince, Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs 28(Suppl 1), S3–20 (2010)PubMedCrossRef
8.
go back to reference N. Steele, P. Finn, R. Brown, J.A. Plumb, Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer 5, 758–763 (2009)CrossRef N. Steele, P. Finn, R. Brown, J.A. Plumb, Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer 5, 758–763 (2009)CrossRef
9.
go back to reference M. Bishton, M. Kenealy, R. Johnstone, W. Rasheed, H.M. Prince, Epigenetic targets in hematological malignancies: combination therapies with HDACis and demethylating agents. Expert Rev Anticancer Ther 7(10), 1439–1449 (2007)PubMedCrossRef M. Bishton, M. Kenealy, R. Johnstone, W. Rasheed, H.M. Prince, Epigenetic targets in hematological malignancies: combination therapies with HDACis and demethylating agents. Expert Rev Anticancer Ther 7(10), 1439–1449 (2007)PubMedCrossRef
10.
go back to reference W. Blum, R.B. Klisovic, B. Hackanson, Z. Liu, S. Liu, H. Devine, T. Vukosavljevic, L. Huynh, G. Lozanski, C. Kefauver, C. Plass, S.M. Devine, N.A. Heerema, A. Murgo, K.K. Chan, M.R. Grever, J.C. Byrd, G. Marcucci, Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25(25), 3884–3891 (2007)PubMedCrossRef W. Blum, R.B. Klisovic, B. Hackanson, Z. Liu, S. Liu, H. Devine, T. Vukosavljevic, L. Huynh, G. Lozanski, C. Kefauver, C. Plass, S.M. Devine, N.A. Heerema, A. Murgo, K.K. Chan, M.R. Grever, J.C. Byrd, G. Marcucci, Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25(25), 3884–3891 (2007)PubMedCrossRef
11.
go back to reference M. Bots, R.W. Johnstone, Rational combinations using HDAC inhibitors. Clin Cancer Res 15(12), 3970–3977 (2009)PubMedCrossRef M. Bots, R.W. Johnstone, Rational combinations using HDAC inhibitors. Clin Cancer Res 15(12), 3970–3977 (2009)PubMedCrossRef
12.
go back to reference G. Garcia-Manero, H.M. Kantarjian, B. Sanchez-Gonzalez, H. Yang, G. Rosner, S. Verstovsek, M. Rytting, W.G. Wierda, F. Ravandi, C. Koller, L. Xiao, S. Faderl, Z. Estrov, J. Cortes, S. O'Brien, E. Estey, C. Bueso-Ramos, J. Fiorentino, E. Jabbou, J.P. Issa, Phase 1/2 study of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients with leukemia. Blood 108(10), 3271–3279 (2006)PubMedCrossRef G. Garcia-Manero, H.M. Kantarjian, B. Sanchez-Gonzalez, H. Yang, G. Rosner, S. Verstovsek, M. Rytting, W.G. Wierda, F. Ravandi, C. Koller, L. Xiao, S. Faderl, Z. Estrov, J. Cortes, S. O'Brien, E. Estey, C. Bueso-Ramos, J. Fiorentino, E. Jabbou, J.P. Issa, Phase 1/2 study of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients with leukemia. Blood 108(10), 3271–3279 (2006)PubMedCrossRef
13.
go back to reference R.W. Johnstone, Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1(4), 287–299 (2002)PubMedCrossRef R.W. Johnstone, Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1(4), 287–299 (2002)PubMedCrossRef
14.
go back to reference A. Insinga, S. Minucci, P.G. Pelicci, Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 4(6), 741–743 (2005)PubMedCrossRef A. Insinga, S. Minucci, P.G. Pelicci, Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 4(6), 741–743 (2005)PubMedCrossRef
15.
go back to reference A. Insinga, S. Monestiroli, S. Ronzoni, V. Gelmetti, F. Marchesi, A. Viale, L. Altucci, C. Nervi, S. Minucci, P.G. Pelicci, Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11(1), 71–76 (2005)PubMedCrossRef A. Insinga, S. Monestiroli, S. Ronzoni, V. Gelmetti, F. Marchesi, A. Viale, L. Altucci, C. Nervi, S. Minucci, P.G. Pelicci, Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11(1), 71–76 (2005)PubMedCrossRef
16.
go back to reference P. Marks, R.A. Rifkind, V.M. Richon, R. Breslow, T. Miller, W.K. Kelly, Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1(3), 194–202 (2001)PubMedCrossRef P. Marks, R.A. Rifkind, V.M. Richon, R. Breslow, T. Miller, W.K. Kelly, Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1(3), 194–202 (2001)PubMedCrossRef
17.
go back to reference J. E. Fraczek, M. Vinken, D. Tourwe, T. Vanhaecke,V. Rogiers, Synergetic effects of DNA demethylation and histone deacetylase inhibition in primary rat hepatocytes. Invest New Drugs (2011) J. E. Fraczek, M. Vinken, D. Tourwe, T. Vanhaecke,V. Rogiers, Synergetic effects of DNA demethylation and histone deacetylase inhibition in primary rat hepatocytes. Invest New Drugs (2011)
18.
go back to reference F. Lyko, R. Brown, DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97(20), 1498–1506 (2005)PubMedCrossRef F. Lyko, R. Brown, DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97(20), 1498–1506 (2005)PubMedCrossRef
19.
go back to reference H.C. Tsai, H. Li, L. Van Neste, Y. Cai, C. Robert, F.V. Rassool, J.J. Shin, K.M. Harbom, R. Beaty, E. Pappou, J. Harris, R.W. Yen, N. Ahuja, M.V. Brock, V. Stearns, D. Feller-Kopman, L.B. Yarmus, D. Feller-Kopman, L.B. Yarmus, Y.C. Lin, A.L. Welm, J.P. Issa, I. Minn, W. Matsui, Y.Y. Jang, S.J. Sharkis, S.B. Baylin, C.A. Zahnow, Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21(3), 430–446 (2012)PubMedCrossRef H.C. Tsai, H. Li, L. Van Neste, Y. Cai, C. Robert, F.V. Rassool, J.J. Shin, K.M. Harbom, R. Beaty, E. Pappou, J. Harris, R.W. Yen, N. Ahuja, M.V. Brock, V. Stearns, D. Feller-Kopman, L.B. Yarmus, D. Feller-Kopman, L.B. Yarmus, Y.C. Lin, A.L. Welm, J.P. Issa, I. Minn, W. Matsui, Y.Y. Jang, S.J. Sharkis, S.B. Baylin, C.A. Zahnow, Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21(3), 430–446 (2012)PubMedCrossRef
20.
go back to reference J. Lopez, M. Percharde, H.M. Coley, A. Webb, T. Crook, The context and potential of epigenetics in oncology. Br J Cancer 4, 571–577 (2009)CrossRef J. Lopez, M. Percharde, H.M. Coley, A. Webb, T. Crook, The context and potential of epigenetics in oncology. Br J Cancer 4, 571–577 (2009)CrossRef
21.
go back to reference T. Qin, J. Jelinek, J. Si, J. Shu, J.P. Issa, Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. Blood 113(3), 659–667 (2009)PubMedCrossRef T. Qin, J. Jelinek, J. Si, J. Shu, J.P. Issa, Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. Blood 113(3), 659–667 (2009)PubMedCrossRef
22.
go back to reference T. Qin, E.M. Youssef, J. Jelinek, R. Chen, A.S. Yang, G. Garcia-Manero, J.P. Issa, Effect of cytarabine and decitabine in combination in human leukemic cell lines. Clin Cancer Res 13(14), 4225–4232 (2007)PubMedCrossRef T. Qin, E.M. Youssef, J. Jelinek, R. Chen, A.S. Yang, G. Garcia-Manero, J.P. Issa, Effect of cytarabine and decitabine in combination in human leukemic cell lines. Clin Cancer Res 13(14), 4225–4232 (2007)PubMedCrossRef
23.
go back to reference E.E. Cameron, K.E. Bachman, S. Myohanen, J.G. Herman, S.B. Baylin, Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1), 103–107 (1999)PubMedCrossRef E.E. Cameron, K.E. Bachman, S. Myohanen, J.G. Herman, S.B. Baylin, Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1), 103–107 (1999)PubMedCrossRef
24.
go back to reference O. Galm, J.G. Herman, S.B. Baylin, The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 20(1), 1–13 (2006)PubMedCrossRef O. Galm, J.G. Herman, S.B. Baylin, The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 20(1), 1–13 (2006)PubMedCrossRef
25.
go back to reference T.J. Walton, G. Li, R. Seth, S.E. McArdle, M.C. Bishop, R.C. Rees, DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor beta and induce apoptosis in prostate cancer cell-lines. Prostate 68(2), 210–222 (2008)PubMedCrossRef T.J. Walton, G. Li, R. Seth, S.E. McArdle, M.C. Bishop, R.C. Rees, DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor beta and induce apoptosis in prostate cancer cell-lines. Prostate 68(2), 210–222 (2008)PubMedCrossRef
26.
go back to reference H.C. Tsai, S.B. Baylin, Cancer epigenetics: linking basic biology to clinical medicine. Cell Res 21(3), 502–517 (2011)PubMedCrossRef H.C. Tsai, S.B. Baylin, Cancer epigenetics: linking basic biology to clinical medicine. Cell Res 21(3), 502–517 (2011)PubMedCrossRef
27.
go back to reference C.D. Margetts, M. Morris, D. Astuti, D.C. Gentle, A. Cascon, F.E. McRonald, D. Catchpoole, M. Robledo, H.P. Neumann, F. Latif, E.R. Maher, Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma. Endocr Relat Cancer 15(3), 777–786 (2008)PubMedCrossRef C.D. Margetts, M. Morris, D. Astuti, D.C. Gentle, A. Cascon, F.E. McRonald, D. Catchpoole, M. Robledo, H.P. Neumann, F. Latif, E.R. Maher, Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma. Endocr Relat Cancer 15(3), 777–786 (2008)PubMedCrossRef
28.
go back to reference B. Banelli, I. Gelvi, A. Di Vinci, P. Scaruffi, I. Casciano, G. Allemanni, S. Bonassi, G.P. Tonini, M. Romani, Distinct CpG methylation profiles characterize different clinical groups of neuroblastic tumors. Oncogene 24(36), 5619–5628 (2005)PubMedCrossRef B. Banelli, I. Gelvi, A. Di Vinci, P. Scaruffi, I. Casciano, G. Allemanni, S. Bonassi, G.P. Tonini, M. Romani, Distinct CpG methylation profiles characterize different clinical groups of neuroblastic tumors. Oncogene 24(36), 5619–5628 (2005)PubMedCrossRef
29.
go back to reference J. Hoebeeck, E. Michels, F. Pattyn, V. Combaret, J. Vermeulen, N. Yigit, C. Hoyoux, G. Laureys, A. De Paepe, F. Speleman, J. Vandesompele, Aberrant methylation of candidate tumor suppressor genes in neuroblastoma. Cancer Lett 273(2), 336–346 (2009)PubMedCrossRef J. Hoebeeck, E. Michels, F. Pattyn, V. Combaret, J. Vermeulen, N. Yigit, C. Hoyoux, G. Laureys, A. De Paepe, F. Speleman, J. Vandesompele, Aberrant methylation of candidate tumor suppressor genes in neuroblastoma. Cancer Lett 273(2), 336–346 (2009)PubMedCrossRef
30.
go back to reference K. Harada, S. Toyooka, A. Maitra, R. Maruyama, K.O. Toyooka, C.F. Timmons, G.E. Tomlinson, D. Mastrangelo, R.J. Hay, J.D. Minna, A.F. Gazdar, Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene 21(27), 4345–4349 (2002)PubMedCrossRef K. Harada, S. Toyooka, A. Maitra, R. Maruyama, K.O. Toyooka, C.F. Timmons, G.E. Tomlinson, D. Mastrangelo, R.J. Hay, J.D. Minna, A.F. Gazdar, Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene 21(27), 4345–4349 (2002)PubMedCrossRef
31.
go back to reference M. Abe, M. Ohira, A. Kaneda, Y. Yagi, S. Yamamoto, Y. Kitano, T. Takato, A. Nakagawara, T. Ushijima, CpG island methylator phenotype is a strong determinant of poor prognosis in neuroblastomas. Cancer Res 65(3), 828–834 (2005)PubMed M. Abe, M. Ohira, A. Kaneda, Y. Yagi, S. Yamamoto, Y. Kitano, T. Takato, A. Nakagawara, T. Ushijima, CpG island methylator phenotype is a strong determinant of poor prognosis in neuroblastomas. Cancer Res 65(3), 828–834 (2005)PubMed
32.
go back to reference T. Teitz, T. Wei, M.B. Valentine, E.F. Vanin, J. Grenet, V.A. Valentine, F.G. Behm, A.T. Look, J.M. Lahti, V.J. Kidd, Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6(5), 529–535 (2000)PubMedCrossRef T. Teitz, T. Wei, M.B. Valentine, E.F. Vanin, J. Grenet, V.A. Valentine, F.G. Behm, A.T. Look, J.M. Lahti, V.J. Kidd, Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6(5), 529–535 (2000)PubMedCrossRef
33.
go back to reference P. Gonzalez-Gomez, M.J. Bello, J. Lomas, D. Arjona, M.E. Alonso, C. Aminoso, I. Lopez-Marin, N.P. Anselmo, J.L. Sarasa, M. Gutierrez, C. Casartelli, J.A. Rey, Aberrant methylation of multiple genes in neuroblastic tumours. relationship with MYCN amplification and allelic status at 1p. Eur J Cancer 39(10), 1478–1485 (2003)PubMedCrossRef P. Gonzalez-Gomez, M.J. Bello, J. Lomas, D. Arjona, M.E. Alonso, C. Aminoso, I. Lopez-Marin, N.P. Anselmo, J.L. Sarasa, M. Gutierrez, C. Casartelli, J.A. Rey, Aberrant methylation of multiple genes in neuroblastic tumours. relationship with MYCN amplification and allelic status at 1p. Eur J Cancer 39(10), 1478–1485 (2003)PubMedCrossRef
34.
go back to reference A. Decock, M. Ongenaert, J. Vandesompele, F. Speleman, Neuroblastoma epigenetics: From candidate gene approaches to genome-wide screenings. Epigenetics 6(8), 962–970 (2011)PubMedCrossRef A. Decock, M. Ongenaert, J. Vandesompele, F. Speleman, Neuroblastoma epigenetics: From candidate gene approaches to genome-wide screenings. Epigenetics 6(8), 962–970 (2011)PubMedCrossRef
35.
go back to reference M.M. van Noesel, S. van Bezouw, G.S. Salomons, P.A. Voute, R. Pieters, S.B. Baylin, J.G. Herman, R. Versteeg, Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation. Cancer Res 62(7), 2157–2161 (2002)PubMed M.M. van Noesel, S. van Bezouw, G.S. Salomons, P.A. Voute, R. Pieters, S.B. Baylin, J.G. Herman, R. Versteeg, Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation. Cancer Res 62(7), 2157–2161 (2002)PubMed
36.
go back to reference M.M. van Noesel, S. van Bezouw, P.A. Voute, J.G. Herman, R. Pieters, R. Versteeg, Clustering of hypermethylated genes in neuroblastoma. Genes Chromosomes Cancer 38(3), 226–233 (2003)PubMedCrossRef M.M. van Noesel, S. van Bezouw, P.A. Voute, J.G. Herman, R. Pieters, R. Versteeg, Clustering of hypermethylated genes in neuroblastoma. Genes Chromosomes Cancer 38(3), 226–233 (2003)PubMedCrossRef
37.
go back to reference H. Caren, A. Djos, M. Nethander, R. M. Sjoberg, P. Kogner, C. Enstrom, S. Nilsson,T. Martinsson, Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma. BMC Cancer. 11:(1): p. 66 ( H. Caren, A. Djos, M. Nethander, R. M. Sjoberg, P. Kogner, C. Enstrom, S. Nilsson,T. Martinsson, Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma. BMC Cancer. 11:(1): p. 66 (
38.
go back to reference P. G. Buckley, S. Das, K. Bryan, K. M. Watters, L. Alcock, J. Koster, R. Versteeg,R. L. Stallings, Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions. Int J Cancer ( P. G. Buckley, S. Das, K. Bryan, K. M. Watters, L. Alcock, J. Koster, R. Versteeg,R. L. Stallings, Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions. Int J Cancer (
39.
go back to reference D.M. Murphy, P.G. Buckley, K. Bryan, S. Das, L. Alcock, N.H. Foley, S. Prenter, I. Bray, K.M. Watters, D. Higgins, R.L. Stallings, Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation. PLoS One 4(12), e8154 (2009)PubMedCrossRef D.M. Murphy, P.G. Buckley, K. Bryan, S. Das, L. Alcock, N.H. Foley, S. Prenter, I. Bray, K.M. Watters, D. Higgins, R.L. Stallings, Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation. PLoS One 4(12), e8154 (2009)PubMedCrossRef
40.
go back to reference M. Berdasco, S. Ropero, F. Setien, M.F. Fraga, P. Lapunzina, R. Losson, M. Alaminos, N.K. Cheung, N. Rahman, M. Esteller, Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci USA 106(51), 21830–21835 (2009)PubMedCrossRef M. Berdasco, S. Ropero, F. Setien, M.F. Fraga, P. Lapunzina, R. Losson, M. Alaminos, N.K. Cheung, N. Rahman, M. Esteller, Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci USA 106(51), 21830–21835 (2009)PubMedCrossRef
41.
go back to reference Y. Sugino, A. Misawa, J. Inoue, M. Kitagawa, H. Hosoi, T. Sugimoto, I. Imoto, J. Inazawa, Epigenetic silencing of prostaglandin E receptor 2 (PTGER2) is associated with progression of neuroblastomas. Oncogene 26(53), 7401–7413 (2007)PubMedCrossRef Y. Sugino, A. Misawa, J. Inoue, M. Kitagawa, H. Hosoi, T. Sugimoto, I. Imoto, J. Inazawa, Epigenetic silencing of prostaglandin E receptor 2 (PTGER2) is associated with progression of neuroblastomas. Oncogene 26(53), 7401–7413 (2007)PubMedCrossRef
42.
go back to reference R.E. George, J.M. Lahti, P.C. Adamson, K. Zhu, D. Finkelstein, A.M. Ingle, J.M. Reid, M. Krailo, D. Neuberg, S.M. Blaney, L. Diller, Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer 55(4), 629–638 (2010)PubMedCrossRef R.E. George, J.M. Lahti, P.C. Adamson, K. Zhu, D. Finkelstein, A.M. Ingle, J.M. Reid, M. Krailo, D. Neuberg, S.M. Blaney, L. Diller, Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer 55(4), 629–638 (2010)PubMedCrossRef
43.
go back to reference A. Aparicio, C.A. Eads, L.A. Leong, P.W. Laird, E.M. Newman, T.W. Synold, S.D. Baker, M. Zhao, J.S. Weber, Phase I trial of continuous infusion 5-aza-2'-deoxycytidine. Cancer Chemother Pharmacol 51(3), 231–239 (2003)PubMed A. Aparicio, C.A. Eads, L.A. Leong, P.W. Laird, E.M. Newman, T.W. Synold, S.D. Baker, M. Zhao, J.S. Weber, Phase I trial of continuous infusion 5-aza-2'-deoxycytidine. Cancer Chemother Pharmacol 51(3), 231–239 (2003)PubMed
44.
go back to reference H. Kantarjian, Y. Oki, G. Garcia-Manero, X. Huang, S. O'Brien, J. Cortes, S. Faderl, C. Bueso-Ramos, F. Ravandi, Z. Estrov, A. Ferrajoli, W. Wierda, J. Shan, J. Davis, F. Giles, H.I. Saba, J.P. Issa, Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109(1), 52–57 (2007)PubMedCrossRef H. Kantarjian, Y. Oki, G. Garcia-Manero, X. Huang, S. O'Brien, J. Cortes, S. Faderl, C. Bueso-Ramos, F. Ravandi, Z. Estrov, A. Ferrajoli, W. Wierda, J. Shan, J. Davis, F. Giles, H.I. Saba, J.P. Issa, Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109(1), 52–57 (2007)PubMedCrossRef
45.
go back to reference A. Thibault, W.D. Figg, R.C. Bergan, R.M. Lush, C.E. Myers, A. Tompkins, E. Reed, D. Samid, A phase II study of 5-aza-2'deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 84(1), 87–89 (1998)PubMed A. Thibault, W.D. Figg, R.C. Bergan, R.M. Lush, C.E. Myers, A. Tompkins, E. Reed, D. Samid, A phase II study of 5-aza-2'deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 84(1), 87–89 (1998)PubMed
46.
go back to reference W. D. Johnson, A pharmacokinetic/pharmacodynamic approach to evaluating the safety of zebularine in non-human primates Proc Amer Assoc Cancer Res. 47: (2006) W. D. Johnson, A pharmacokinetic/pharmacodynamic approach to evaluating the safety of zebularine in non-human primates Proc Amer Assoc Cancer Res. 47: (2006)
47.
go back to reference J.L. Holleran, R.A. Parise, E. Joseph, J.L. Eiseman, J.M. Covey, E.R. Glaze, A.V. Lyubimov, Y.F. Chen, D.Z. D'Argenio, M.J. Egorin, Plasma pharmacokinetics, oral bioavailability, and interspecies scaling of the DNA methyltransferase inhibitor, zebularine. Clin Cancer Res 11(10), 3862–3868 (2005)PubMedCrossRef J.L. Holleran, R.A. Parise, E. Joseph, J.L. Eiseman, J.M. Covey, E.R. Glaze, A.V. Lyubimov, Y.F. Chen, D.Z. D'Argenio, M.J. Egorin, Plasma pharmacokinetics, oral bioavailability, and interspecies scaling of the DNA methyltransferase inhibitor, zebularine. Clin Cancer Res 11(10), 3862–3868 (2005)PubMedCrossRef
48.
go back to reference S. Shichijo, A. Yamada, K. Sagawa, O. Iwamoto, M. Sakata, K. Nagai, K. Itoh, Induction of MAGE genes in lymphoid cells by the demethylating agent 5-aza-2'-deoxycytidine. Jpn J Cancer Res 87(7), 751–756 (1996)PubMedCrossRef S. Shichijo, A. Yamada, K. Sagawa, O. Iwamoto, M. Sakata, K. Nagai, K. Itoh, Induction of MAGE genes in lymphoid cells by the demethylating agent 5-aza-2'-deoxycytidine. Jpn J Cancer Res 87(7), 751–756 (1996)PubMedCrossRef
49.
go back to reference F. Condorelli, I. Gnemmi, A. Vallario, A.A. Genazzani, P.L. Canonico, Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells. Br J Pharmacol 153(4), 657–668 (2008)PubMedCrossRef F. Condorelli, I. Gnemmi, A. Vallario, A.A. Genazzani, P.L. Canonico, Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells. Br J Pharmacol 153(4), 657–668 (2008)PubMedCrossRef
50.
go back to reference C. De Smet, C. Lurquin, B. Lethe, V. Martelange, T. Boon, DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19(11), 7327–7335 (1999)PubMed C. De Smet, C. Lurquin, B. Lethe, V. Martelange, T. Boon, DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19(11), 7327–7335 (1999)PubMed
51.
go back to reference P.G. Buckley, S. Das, K. Bryan, K.M. Watters, L. Alcock, J. Koster, R. Versteeg, R.L. Stallings, Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions. Int J Cancer 128(10), 2296–2305 (2011)PubMedCrossRef P.G. Buckley, S. Das, K. Bryan, K.M. Watters, L. Alcock, J. Koster, R. Versteeg, R.L. Stallings, Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions. Int J Cancer 128(10), 2296–2305 (2011)PubMedCrossRef
52.
go back to reference V. M. Komashko,P. J. Farnham, 5-azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics. 5:(3): (2010) V. M. Komashko,P. J. Farnham, 5-azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics. 5:(3): (2010)
53.
go back to reference Y. Gomyo, J. Sasaki, C. Branch, J.A. Roth, T. Mukhopadhyay, 5-aza-2'-deoxycytidine upregulates caspase-9 expression cooperating with p53-induced apoptosis in human lung cancer cells. Oncogene 23(40), 6779–6787 (2004)PubMedCrossRef Y. Gomyo, J. Sasaki, C. Branch, J.A. Roth, T. Mukhopadhyay, 5-aza-2'-deoxycytidine upregulates caspase-9 expression cooperating with p53-induced apoptosis in human lung cancer cells. Oncogene 23(40), 6779–6787 (2004)PubMedCrossRef
54.
go back to reference M.S. Soengas, P. Capodieci, D. Polsky, J. Mora, M. Esteller, X. Opitz-Araya, R. McCombie, J.G. Herman, W.L. Gerald, Y.A. Lazebnik, C. Cordon-Cardo, S.W. Lowe, Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409(6817), 207–211 (2001)PubMedCrossRef M.S. Soengas, P. Capodieci, D. Polsky, J. Mora, M. Esteller, X. Opitz-Araya, R. McCombie, J.G. Herman, W.L. Gerald, Y.A. Lazebnik, C. Cordon-Cardo, S.W. Lowe, Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409(6817), 207–211 (2001)PubMedCrossRef
55.
go back to reference W.G. Zhu, Z. Dai, H. Ding, K. Srinivasan, J. Hall, W. Duan, M.A. Villalona-Calero, C. Plass, G.A. Otterson, Increased expression of unmethylated CDKN2D by 5-aza-2'-deoxycytidine in human lung cancer cells. Oncogene 20(53), 7787–7796 (2001)PubMedCrossRef W.G. Zhu, Z. Dai, H. Ding, K. Srinivasan, J. Hall, W. Duan, M.A. Villalona-Calero, C. Plass, G.A. Otterson, Increased expression of unmethylated CDKN2D by 5-aza-2'-deoxycytidine in human lung cancer cells. Oncogene 20(53), 7787–7796 (2001)PubMedCrossRef
56.
go back to reference A. Doi, I.H. Park, B. Wen, P. Murakami, M.J. Aryee, R. Irizarry, B. Herb, C. Ladd-Acosta, J. Rho, S. Loewer, J. Miller, T. Schlaeger, G.Q. Daley, A.P. Feinberg, Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12), 1350–1353 (2009)PubMedCrossRef A. Doi, I.H. Park, B. Wen, P. Murakami, M.J. Aryee, R. Irizarry, B. Herb, C. Ladd-Acosta, J. Rho, S. Loewer, J. Miller, T. Schlaeger, G.Q. Daley, A.P. Feinberg, Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12), 1350–1353 (2009)PubMedCrossRef
57.
go back to reference A. Meissner, T.S. Mikkelsen, H. Gu, M. Wernig, J. Hanna, A. Sivachenko, X. Zhang, B.E. Bernstein, C. Nusbaum, D.B. Jaffe, A. Gnirke, R. Jaenisch, E.S. Lander, Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205), 766–770 (2008)PubMed A. Meissner, T.S. Mikkelsen, H. Gu, M. Wernig, J. Hanna, A. Sivachenko, X. Zhang, B.E. Bernstein, C. Nusbaum, D.B. Jaffe, A. Gnirke, R. Jaenisch, E.S. Lander, Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205), 766–770 (2008)PubMed
58.
go back to reference R. Lister, M. Pelizzola, R.H. Dowen, R.D. Hawkins, G. Hon, J. Tonti-Filippini, J.R. Nery, L. Lee, Z. Ye, Q.M. Ngo, L. Edsall, J. Antosiewicz-Bourget, R. Stewart, V. Ruotti, A.H. Millar, J.A. Thomson, B. Ren, J.R. Ecker, Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271), 315–322 (2009)PubMedCrossRef R. Lister, M. Pelizzola, R.H. Dowen, R.D. Hawkins, G. Hon, J. Tonti-Filippini, J.R. Nery, L. Lee, Z. Ye, Q.M. Ngo, L. Edsall, J. Antosiewicz-Bourget, R. Stewart, V. Ruotti, A.H. Millar, J.A. Thomson, B. Ren, J.R. Ecker, Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271), 315–322 (2009)PubMedCrossRef
59.
go back to reference E.M. Klenova, H.C. Morse 3rd, R. Ohlsson, V.V. Lobanenkov, The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol 12(5), 399–414 (2002)PubMedCrossRef E.M. Klenova, H.C. Morse 3rd, R. Ohlsson, V.V. Lobanenkov, The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol 12(5), 399–414 (2002)PubMedCrossRef
60.
go back to reference S. Vatolin, Z. Abdullaev, S.D. Pack, P.T. Flanagan, M. Custer, D.I. Loukinov, E. Pugacheva, J.A. Hong, H. Morse 3rd, D.S. Schrump, J.I. Risinger, J.C. Barrett, V.V. Lobanenkov, Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes. Cancer Res 65(17), 7751–7762 (2005)PubMed S. Vatolin, Z. Abdullaev, S.D. Pack, P.T. Flanagan, M. Custer, D.I. Loukinov, E. Pugacheva, J.A. Hong, H. Morse 3rd, D.S. Schrump, J.I. Risinger, J.C. Barrett, V.V. Lobanenkov, Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes. Cancer Res 65(17), 7751–7762 (2005)PubMed
61.
go back to reference R. Ohlsson, R. Renkawitz, V. Lobanenkov, CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17(9), 520–527 (2001)PubMedCrossRef R. Ohlsson, R. Renkawitz, V. Lobanenkov, CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17(9), 520–527 (2001)PubMedCrossRef
62.
go back to reference A. Woloszynska-Read, S.R. James, C. Song, B. Jin, K. Odunsi, A.R. Karpf, BORIS/CTCFL expression is insufficient for cancer-germline antigen gene expression and DNA hypomethylation in ovarian cell lines. Cancer Immun 10(6) (2010) A. Woloszynska-Read, S.R. James, C. Song, B. Jin, K. Odunsi, A.R. Karpf, BORIS/CTCFL expression is insufficient for cancer-germline antigen gene expression and DNA hypomethylation in ovarian cell lines. Cancer Immun 10(6) (2010)
63.
go back to reference J.P. Issa, G. Garcia-Manero, F.J. Giles, R. Mannari, D. Thomas, S. Faderl, E. Bayar, J. Lyons, C.S. Rosenfeld, J. Cortes, H.M. Kantarjian, Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103(5), 1635–1640 (2004)PubMedCrossRef J.P. Issa, G. Garcia-Manero, F.J. Giles, R. Mannari, D. Thomas, S. Faderl, E. Bayar, J. Lyons, C.S. Rosenfeld, J. Cortes, H.M. Kantarjian, Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103(5), 1635–1640 (2004)PubMedCrossRef
Metadata
Title
Epigenetic drug combination induces genome-wide demethylation and altered gene expression in neuro-ectodermal tumor-derived cell lines
Authors
Floor A.M. Duijkers
Renee X. de Menezes
Inès J. Goossens-Beumer
Dominique J.P.M. Stumpel
Pieter Admiraal
Rob Pieters
Jules P.P. Meijerink
Max M. van Noesel
Publication date
01-10-2013
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 5/2013
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-013-0140-x

Other articles of this Issue 5/2013

Cellular Oncology 5/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine