Skip to main content
Top
Published in: Journal of NeuroVirology 6/2012

01-12-2012

Human trigeminal ganglionic explants as a model to study alphaherpesvirus reactivation

Authors: Yevgeniy Azarkh, Nathan Bos, Don Gilden, Randall J. Cohrs

Published in: Journal of NeuroVirology | Issue 6/2012

Login to get access

Abstract

Varicella zoster virus (VZV) latency is characterized by limited virus gene expression and the absence of virus DNA replication. Investigations of VZV latency and reactivation have been hindered by the lack of an in vitro model of virus latency. Since VZV is an exclusively human pathogen, we used naturally infected human trigeminal ganglia (TG) obtained at autopsy to study virus latency. Herein, we report optimization of medium to maintain TG integrity as determined by histology and immunohistochemistry. Using the optimized culture medium, we also found that both herpes simplex virus-1 (HSV-1) and VZV DNA replicated in TG explants after 5 days in culture. The increase in HSV-1 DNA was fourfold greater than the increase in VZV DNA. Overall, we present a model for alphaherpesvirus latency in human neurons in which the key molecular events leading to virus reactivation can be studied.
Literature
go back to reference Azarkh Y, Gilden D, Cohrs RJ (2010) Molecular characterization of varicella zoster virus in latently infected human ganglia: physical state and abundance of VZV DNA, Quantitation of viral transcripts and detection of VZV-specific proteins. Curr Top Microbiol Immunol 342:229–241PubMedCrossRef Azarkh Y, Gilden D, Cohrs RJ (2010) Molecular characterization of varicella zoster virus in latently infected human ganglia: physical state and abundance of VZV DNA, Quantitation of viral transcripts and detection of VZV-specific proteins. Curr Top Microbiol Immunol 342:229–241PubMedCrossRef
go back to reference Baringer JR, Swoveland P (1973) Recovery of herpes-simplex virus from human trigeminal ganglions. NEJM 288:648–650PubMedCrossRef Baringer JR, Swoveland P (1973) Recovery of herpes-simplex virus from human trigeminal ganglions. NEJM 288:648–650PubMedCrossRef
go back to reference Clarke P, Beer T, Cohrs R, Gilden DH (1995) Configuration of latent varicella-zoster virus DNA. J Virol 69:8151–8154PubMed Clarke P, Beer T, Cohrs R, Gilden DH (1995) Configuration of latent varicella-zoster virus DNA. J Virol 69:8151–8154PubMed
go back to reference Cohrs R, Mahalingam R, Dueland AN, Wolf W, Wellish M, Gilden D (1992) Restricted transcription of varicella-zoster virus in latently infected human trigeminal and thoracic ganglia. J Infect Dis 166:S24–S29PubMedCrossRef Cohrs R, Mahalingam R, Dueland AN, Wolf W, Wellish M, Gilden D (1992) Restricted transcription of varicella-zoster virus in latently infected human trigeminal and thoracic ganglia. J Infect Dis 166:S24–S29PubMedCrossRef
go back to reference Cohrs RJ, Randall J, Smith J, Gilden D, Dabrowski CK, van Der H, Tal-Singer R (2000) Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol 74:11464–11471PubMedCrossRef Cohrs RJ, Randall J, Smith J, Gilden D, Dabrowski CK, van Der H, Tal-Singer R (2000) Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol 74:11464–11471PubMedCrossRef
go back to reference Cohrs RJ, Gilden DH, Kinchington PR, Grinfeld E, Kennedy PG (2003) Varicella-zoster virus gene 66 transcription and translation in latently infected human ganglia. J Virol 77:6660–6665PubMedCrossRef Cohrs RJ, Gilden DH, Kinchington PR, Grinfeld E, Kennedy PG (2003) Varicella-zoster virus gene 66 transcription and translation in latently infected human ganglia. J Virol 77:6660–6665PubMedCrossRef
go back to reference Debrus S, Sadzot-DelvauxC NAF, Piette J, Rentier B (1995) Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latency. J Virol 69:3240–3245PubMed Debrus S, Sadzot-DelvauxC NAF, Piette J, Rentier B (1995) Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latency. J Virol 69:3240–3245PubMed
go back to reference Dukhovny A, Sloutskin A, Markus A, Yee MB, Kinchington PR, Goldstein RS (2012) Varicella-zoster virus infects human embryonic stem cell-derived neurons and neurospheres but not pluripotent embryonic stem cells or early progenitors. J Virol 86:3211–3218PubMedCrossRef Dukhovny A, Sloutskin A, Markus A, Yee MB, Kinchington PR, Goldstein RS (2012) Varicella-zoster virus infects human embryonic stem cell-derived neurons and neurospheres but not pluripotent embryonic stem cells or early progenitors. J Virol 86:3211–3218PubMedCrossRef
go back to reference Gary L, Gilden DH, Cohrs RJ (2006) Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal ganglia. J Virol 80:4921–4926PubMedCrossRef Gary L, Gilden DH, Cohrs RJ (2006) Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal ganglia. J Virol 80:4921–4926PubMedCrossRef
go back to reference Gilden D, Dueland AN, Devlin ME, Mahalingam R, Cohrs R (1992) Varicella-zoster virus reactivation without rash. J Infect Dis 166:S30–S34PubMedCrossRef Gilden D, Dueland AN, Devlin ME, Mahalingam R, Cohrs R (1992) Varicella-zoster virus reactivation without rash. J Infect Dis 166:S30–S34PubMedCrossRef
go back to reference Gilden D, Cohrs RJ, Mahalingam R (2003) Clinical and molecular pathogenesis of varicella virus infection. Viral Immunol 16:243–258PubMedCrossRef Gilden D, Cohrs RJ, Mahalingam R (2003) Clinical and molecular pathogenesis of varicella virus infection. Viral Immunol 16:243–258PubMedCrossRef
go back to reference Grinfeld E, Kennedy PG (2004) Translation of varicella-zoster virus genes during human ganglionic latency. Virus Genes 29:317–319PubMedCrossRef Grinfeld E, Kennedy PG (2004) Translation of varicella-zoster virus genes during human ganglionic latency. Virus Genes 29:317–319PubMedCrossRef
go back to reference Kennedy PG, Grinfeld E, Gow JW (1998) Latent varicella-zoster virus is located predominantly in neurons in human trigeminal ganglia. Proc Natl Acad Sci USA 95:4658–4662PubMedCrossRef Kennedy PG, Grinfeld E, Gow JW (1998) Latent varicella-zoster virus is located predominantly in neurons in human trigeminal ganglia. Proc Natl Acad Sci USA 95:4658–4662PubMedCrossRef
go back to reference Kennedy PG, Grinfeld E, Gow JW (1999) Latent varicella-zoster virus in human dorsal root ganglia. Virology 258:451–454PubMedCrossRef Kennedy PG, Grinfeld E, Gow JW (1999) Latent varicella-zoster virus in human dorsal root ganglia. Virology 258:451–454PubMedCrossRef
go back to reference Kennedy PG, Grinfeld E, Bell JE (2000) Varicella-zoster virus gene expression in latently infected and explanted human ganglia. J Virol 74:11893–11898PubMedCrossRef Kennedy PG, Grinfeld E, Bell JE (2000) Varicella-zoster virus gene expression in latently infected and explanted human ganglia. J Virol 74:11893–11898PubMedCrossRef
go back to reference Laguardia JJ, Gilden D (2001) Varicella-zoster virus: a re-emerging infection. J Investig Dermatol Symp Proc 6:183–187PubMedCrossRef Laguardia JJ, Gilden D (2001) Varicella-zoster virus: a re-emerging infection. J Investig Dermatol Symp Proc 6:183–187PubMedCrossRef
go back to reference Mahalingam R, Traina-Dorge V, Wellish M, Smith J, Gilden D (2002) Naturally acquired simian varicella virus infection in African green monkeys. J Virol 76:8548–8550PubMedCrossRef Mahalingam R, Traina-Dorge V, Wellish M, Smith J, Gilden D (2002) Naturally acquired simian varicella virus infection in African green monkeys. J Virol 76:8548–8550PubMedCrossRef
go back to reference Mahalingam R, Traina-Dorge V, Wellish M, Deharo E, Singletary ML, Ribka EP, Sanford R, Gilden D (2010) Latent simian varicella virus reactivates in monkeys treated with tacrolimus with or without exposure to irradiation. J Neurovirol 16:342–354PubMedCrossRef Mahalingam R, Traina-Dorge V, Wellish M, Deharo E, Singletary ML, Ribka EP, Sanford R, Gilden D (2010) Latent simian varicella virus reactivates in monkeys treated with tacrolimus with or without exposure to irradiation. J Neurovirol 16:342–354PubMedCrossRef
go back to reference Markus A, Grigoryan S, Sloutskin A, Yee MB, Zhu H, Yang IH, Thakor NV, Sarid R, Kinchington PR, Goldstein RS (2011) Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol 85:6220–6233PubMedCrossRef Markus A, Grigoryan S, Sloutskin A, Yee MB, Zhu H, Yang IH, Thakor NV, Sarid R, Kinchington PR, Goldstein RS (2011) Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol 85:6220–6233PubMedCrossRef
go back to reference Myers MG, Duer HL, Hausler CK (1980) Experimental infection of guinea pigs with varicella-zoster virus. J Infect Dis 142:414–420PubMedCrossRef Myers MG, Duer HL, Hausler CK (1980) Experimental infection of guinea pigs with varicella-zoster virus. J Infect Dis 142:414–420PubMedCrossRef
go back to reference Nagel MA, Choe A, Traktinskiy I, Cordery-Cotter R, Gilden D, Cohrs RJ (2011) Varicella-zoster virus transcriptome in latently infected human ganglia. J Virol 85:2276–2287PubMedCrossRef Nagel MA, Choe A, Traktinskiy I, Cordery-Cotter R, Gilden D, Cohrs RJ (2011) Varicella-zoster virus transcriptome in latently infected human ganglia. J Virol 85:2276–2287PubMedCrossRef
go back to reference Plotkin SA, Stein S, Snyder M, Immesoete P (1977) Attempts to recover varicella virus from ganglia. Ann Neurol 2:249PubMedCrossRef Plotkin SA, Stein S, Snyder M, Immesoete P (1977) Attempts to recover varicella virus from ganglia. Ann Neurol 2:249PubMedCrossRef
go back to reference Pugazhenthi S, Nair S, Velmurugan K, Liang Q, Mahalingam R, Cohrs RJ, Nagel MA, Gilden D (2011) Varicella-zoster virus infection of differentiated human neural stem cells. J Virol 85:6678–6686PubMedCrossRef Pugazhenthi S, Nair S, Velmurugan K, Liang Q, Mahalingam R, Cohrs RJ, Nagel MA, Gilden D (2011) Varicella-zoster virus infection of differentiated human neural stem cells. J Virol 85:6678–6686PubMedCrossRef
go back to reference Ragozzino MW, Melton LJ III, Kurland LT, Chu CP, Perry HO (1982) Population-based study of herpes zoster and its sequelae. Med (Baltimore) 61:310–316CrossRef Ragozzino MW, Melton LJ III, Kurland LT, Chu CP, Perry HO (1982) Population-based study of herpes zoster and its sequelae. Med (Baltimore) 61:310–316CrossRef
go back to reference White TM, Gilden D, Mahalingam R (2001) An animal model of varicella virus infection. Brain Pathol 11:475–479PubMedCrossRef White TM, Gilden D, Mahalingam R (2001) An animal model of varicella virus infection. Brain Pathol 11:475–479PubMedCrossRef
go back to reference Wroblewska Z, Devlin M, Reilly K, van Trieste H, Wellish M, Gilden D (1982) The production of varicella zoster virus antiserum in laboratory animals. Brief Rep Arch Virol 74:233–238CrossRef Wroblewska Z, Devlin M, Reilly K, van Trieste H, Wellish M, Gilden D (1982) The production of varicella zoster virus antiserum in laboratory animals. Brief Rep Arch Virol 74:233–238CrossRef
Metadata
Title
Human trigeminal ganglionic explants as a model to study alphaherpesvirus reactivation
Authors
Yevgeniy Azarkh
Nathan Bos
Don Gilden
Randall J. Cohrs
Publication date
01-12-2012
Publisher
Springer US
Published in
Journal of NeuroVirology / Issue 6/2012
Print ISSN: 1355-0284
Electronic ISSN: 1538-2443
DOI
https://doi.org/10.1007/s13365-012-0123-0

Other articles of this Issue 6/2012

Journal of NeuroVirology 6/2012 Go to the issue