Skip to main content
Top
Published in: Diabetology International 4/2011

01-12-2011 | Original article

Converse contributions of fasting and postprandial glucose to HbA1c and glycated albumin

Authors: Nobuko Sakuma, Masao Omura, Eisei Oda, Toshikazu Saito

Published in: Diabetology International | Issue 4/2011

Login to get access

Abstract

Objective

We evaluated the relationship between glycated hemoglobin (HbA1c) in diabetic patients with stable glycemic control and the average fasting blood glucose (FBG) and postprandial blood glucose (PPG) values of 4 weeks prior to HbA1c measurement and compared the results with glycated albumin (GA).

Research design and methods

Fifty-one diabetic patients were asked to use self-monitoring blood glucose to measure FBG before breakfast and PPG 1 and 2 h after breakfast 1 day a week for 4 weeks while maintaining normal daily activities. During monthly outpatient visits, HbA1c and GA were measured. Data were analyzed in 40 patients, with <1% variation in HbA1c values over 4 months.

Results

HbA1c was best predicted by the average FBG (AvFBG) and the average of 1-h and 2-h PPG (AvMPPG) (adjusted R 2 = 0.51; HbA1c = 4.35 + 0.013 AvFBG + 0.0056 AvMPPG). The contribution ratio was 0.013:0.0056, showing about 2.3 times greater contribution by FBG. GA was best predicted by the AvFBG and the average of 2-h PPG (Av2hPPG) (adjusted R 2 = 0.55; GA = 9.36 + 0.0241 AvFBG + 0.0430 Av2hPPG). The contribution ratio was 0.024:0.043, showing about 1.8 times greater contribution by 2-h PPG. This converse contribution of fasting and postprandial glucose to HbA1c and GA was more prominent in insulin-treated patients than in untreated patients.

Conclusions

HbA1c and GA can be satisfactorily predicted by FBG and PPG. HbA1c reflects FBG more so than PPG, whereas GA better reflects PPG. Thus, depending on the characteristics of the glycated protein, a different glycemic status is reflected.
Literature
1.
go back to reference Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, Ziegelasch HJ, Lindner J. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia. 1996;39:1577–83.PubMedCrossRef Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, Ziegelasch HJ, Lindner J. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia. 1996;39:1577–83.PubMedCrossRef
2.
go back to reference Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis of diagnostic criteria in Europe. Lancet. 1999;354:617–621. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis of diagnostic criteria in Europe. Lancet. 1999;354:617–621.
3.
go back to reference Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care. 1999;22:920–4.PubMedCrossRef Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care. 1999;22:920–4.PubMedCrossRef
4.
go back to reference Avignon A, Radauceanu A, Monnier L. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care. 1997;20:1822–6.PubMedCrossRef Avignon A, Radauceanu A, Monnier L. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care. 1997;20:1822–6.PubMedCrossRef
5.
go back to reference Bonora E, Calcaterra F, Lombardi S, Bonfante N, Formentini G, Bonadonna RC, Muggeo M. Plasma glucose levels throughout the day and HbA1C interrelationships in type 2 diabetes: implications for treatment and monitoring of metabolic control. Diabetes Care. 2001;24:2023–9.PubMedCrossRef Bonora E, Calcaterra F, Lombardi S, Bonfante N, Formentini G, Bonadonna RC, Muggeo M. Plasma glucose levels throughout the day and HbA1C interrelationships in type 2 diabetes: implications for treatment and monitoring of metabolic control. Diabetes Care. 2001;24:2023–9.PubMedCrossRef
6.
go back to reference Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA1C. Diabetes Care. 2003;26:881–5.PubMedCrossRef Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA1C. Diabetes Care. 2003;26:881–5.PubMedCrossRef
7.
go back to reference Derr R, Garrett E, Stacy GA, Saudek CD. Is HbA1C affected by glycemic instability? Diabetes Care. 2003;26:2728–33.PubMedCrossRef Derr R, Garrett E, Stacy GA, Saudek CD. Is HbA1C affected by glycemic instability? Diabetes Care. 2003;26:2728–33.PubMedCrossRef
8.
go back to reference Boland E, Monsod T, Delucia M, Brandt CA, Fernando S, Tamborlane WV. Limitations of conventional methods of self-monitoring of blood glucose: lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes. Diabetes Care. 2001;24:1858–62.PubMedCrossRef Boland E, Monsod T, Delucia M, Brandt CA, Fernando S, Tamborlane WV. Limitations of conventional methods of self-monitoring of blood glucose: lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes. Diabetes Care. 2001;24:1858–62.PubMedCrossRef
9.
go back to reference Salardi S, Zucchini S, Santoni R, Ragni L, Gualandi S, Cicognani A, Cacciari E. The glucose area under the profiles obtained with continuous glucose monitoring system relationships with HbA1C in pediatric type 1 diabetic patients. Diabetes Care. 2002;25:1840–4.PubMedCrossRef Salardi S, Zucchini S, Santoni R, Ragni L, Gualandi S, Cicognani A, Cacciari E. The glucose area under the profiles obtained with continuous glucose monitoring system relationships with HbA1C in pediatric type 1 diabetic patients. Diabetes Care. 2002;25:1840–4.PubMedCrossRef
10.
go back to reference Kohnert KD, Augstein P, Heinke P, Zander E, Peterson K, Freyse EJ, Salzsieder E. Chronic hyperglycemia but not glucose variability determines HbA1c levels in well-controlled patients with type 2 diabetes. Diabetes Res Clin Pract. 2007;77:420–6.PubMedCrossRef Kohnert KD, Augstein P, Heinke P, Zander E, Peterson K, Freyse EJ, Salzsieder E. Chronic hyperglycemia but not glucose variability determines HbA1c levels in well-controlled patients with type 2 diabetes. Diabetes Res Clin Pract. 2007;77:420–6.PubMedCrossRef
11.
go back to reference Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, Tabata T, Okamura M, Okada S, Yamakawa T, Ishimura E, Nishizawa Y, Osaka CKD Expert Research Group. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. J Am Soc Nephrol. 2007;18:896–903.PubMedCrossRef Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, Tabata T, Okamura M, Okada S, Yamakawa T, Ishimura E, Nishizawa Y, Osaka CKD Expert Research Group. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. J Am Soc Nephrol. 2007;18:896–903.PubMedCrossRef
12.
go back to reference Hashimoto K, Noguchi S, Morimoto Y, Hamada S, Wasada K, Imai S, Murata Y, Kasayama S, Koga M. A1C but not serum glycated albumin is elevated in late pregnancy owing to iron deficiency. Diabetes Care. 2008;31:1945–8.PubMedCrossRef Hashimoto K, Noguchi S, Morimoto Y, Hamada S, Wasada K, Imai S, Murata Y, Kasayama S, Koga M. A1C but not serum glycated albumin is elevated in late pregnancy owing to iron deficiency. Diabetes Care. 2008;31:1945–8.PubMedCrossRef
13.
go back to reference Tahara Y, Shima K. Kinetics of HbA1c, glycated albumin, and fructosamine and analysis of their weight functions against preceding plasma glucose level. Diabetes Care. 1995;18:440–7.PubMedCrossRef Tahara Y, Shima K. Kinetics of HbA1c, glycated albumin, and fructosamine and analysis of their weight functions against preceding plasma glucose level. Diabetes Care. 1995;18:440–7.PubMedCrossRef
14.
go back to reference Takahashi S, Uchino H, Shimizu T, Kanazawa A, Tamura Y, Sakai K, Watada H, Hirose T, Kawamori R, Tanaka Y. Comparison of glycated albumin (GA) and glycated hemoglobin (HbA1c) in type 2 diabetic patients: usefulness of GA for evaluation of short-term changes in glycemic control. Endocr J. 2007;54:139–44.PubMedCrossRef Takahashi S, Uchino H, Shimizu T, Kanazawa A, Tamura Y, Sakai K, Watada H, Hirose T, Kawamori R, Tanaka Y. Comparison of glycated albumin (GA) and glycated hemoglobin (HbA1c) in type 2 diabetic patients: usefulness of GA for evaluation of short-term changes in glycemic control. Endocr J. 2007;54:139–44.PubMedCrossRef
15.
go back to reference Kouzuma T, Uemastu Y, Usami T, Imamura S. Study of glycated amino acid elimination reaction for an improved enzymatic glycated albumin measurement method. Clinical Chimca Acta. 2004;346:135–43.CrossRef Kouzuma T, Uemastu Y, Usami T, Imamura S. Study of glycated amino acid elimination reaction for an improved enzymatic glycated albumin measurement method. Clinical Chimca Acta. 2004;346:135–43.CrossRef
16.
go back to reference Bonora E, Corrao G, Bagnardi V, Ceriello A, Comaschi M, Montanari P, Meigs JB. Prevalence and correlates of post-prandial hyperglycaemia in a large sample of patients with type 2 diabetes mellitus. Diabetologia. 2006;49:846–54.PubMedCrossRef Bonora E, Corrao G, Bagnardi V, Ceriello A, Comaschi M, Montanari P, Meigs JB. Prevalence and correlates of post-prandial hyperglycaemia in a large sample of patients with type 2 diabetes mellitus. Diabetologia. 2006;49:846–54.PubMedCrossRef
17.
go back to reference Borg R, Kuenen J, Carstensen B, Zheng H, Nathan D, Heine R, Nerup J, Johnsen K, Witte D, on behalf of the ADAG study Group. Associations between features of glucose exposure and A1C, the A1C-Derived Average Glucose (ADAG) Study. Diabetes. 2011;54(1):69–72. Borg R, Kuenen J, Carstensen B, Zheng H, Nathan D, Heine R, Nerup J, Johnsen K, Witte D, on behalf of the ADAG study Group. Associations between features of glucose exposure and A1C, the A1C-Derived Average Glucose (ADAG) Study. Diabetes. 2011;54(1):69–72.
18.
go back to reference Yoshiuchi K, Matsuhisa M, Katakami N, Nakatani Y, Sakamoto K, Matsuoka T, Umayahara Y, Kosugi K, Kaneto H, Yamasaki Y, Hori M. Glycated albumin is a better indicator for glucose excursion than glycated hemoglobin in type 1 and type 2 diabetes. Endocr J. 2008;55:503–7.PubMedCrossRef Yoshiuchi K, Matsuhisa M, Katakami N, Nakatani Y, Sakamoto K, Matsuoka T, Umayahara Y, Kosugi K, Kaneto H, Yamasaki Y, Hori M. Glycated albumin is a better indicator for glucose excursion than glycated hemoglobin in type 1 and type 2 diabetes. Endocr J. 2008;55:503–7.PubMedCrossRef
19.
go back to reference Koga M, Murai J, Saito H, Kasayama S. Glycated albumin and glycated hemoglobin are influenced differently by endogenous insulin secretion in patients with type 2 diabetes. Diabetes Care. 2010;33:270–2.PubMedCrossRef Koga M, Murai J, Saito H, Kasayama S. Glycated albumin and glycated hemoglobin are influenced differently by endogenous insulin secretion in patients with type 2 diabetes. Diabetes Care. 2010;33:270–2.PubMedCrossRef
20.
go back to reference Suwa T, Ohta A, Matsui T, Koganei R, Kato H, Kawata T, Sada Y, Ishii S, Kondo A, Murakami K, Katabami T, Tanaka Y. Relationship between clinical markers of glycemia and glucose excursion evaluated by continuous glucose monitoring (CGM). Endocr J. 2010;57:135–40.PubMedCrossRef Suwa T, Ohta A, Matsui T, Koganei R, Kato H, Kawata T, Sada Y, Ishii S, Kondo A, Murakami K, Katabami T, Tanaka Y. Relationship between clinical markers of glycemia and glucose excursion evaluated by continuous glucose monitoring (CGM). Endocr J. 2010;57:135–40.PubMedCrossRef
21.
go back to reference Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care. 2007;30:263–9.PubMedCrossRef Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care. 2007;30:263–9.PubMedCrossRef
22.
go back to reference Monnier L, Colette C, Rabasa-Lhoret R, Lapinski H, Caubel C, Avignon A, Boniface H. Morning hyperglycemic excursions: a constant failure in the metabolic control of non-insulin-using patients with type 2 diabetes. Diabetes Care. 2002;25:737–41.PubMedCrossRef Monnier L, Colette C, Rabasa-Lhoret R, Lapinski H, Caubel C, Avignon A, Boniface H. Morning hyperglycemic excursions: a constant failure in the metabolic control of non-insulin-using patients with type 2 diabetes. Diabetes Care. 2002;25:737–41.PubMedCrossRef
23.
go back to reference Day JF, Ingebretsen CG, Ingebretsen WR Jr, Baynes JW, Thorpe SR. Nonenzymatic glucosylation of serum proteins and hemoglobin: response to changes in blood glucose levels in diabetic rats. Diabetes. 1980;29:524–7.PubMedCrossRef Day JF, Ingebretsen CG, Ingebretsen WR Jr, Baynes JW, Thorpe SR. Nonenzymatic glucosylation of serum proteins and hemoglobin: response to changes in blood glucose levels in diabetic rats. Diabetes. 1980;29:524–7.PubMedCrossRef
Metadata
Title
Converse contributions of fasting and postprandial glucose to HbA1c and glycated albumin
Authors
Nobuko Sakuma
Masao Omura
Eisei Oda
Toshikazu Saito
Publication date
01-12-2011
Publisher
Springer Japan
Published in
Diabetology International / Issue 4/2011
Print ISSN: 2190-1678
Electronic ISSN: 2190-1686
DOI
https://doi.org/10.1007/s13340-011-0036-9

Other articles of this Issue 4/2011

Diabetology International 4/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine