Skip to main content
Top
Published in: European Journal of Drug Metabolism and Pharmacokinetics 1/2023

01-01-2023 | Morphine | Systematic Review

Hepatic Transporters Alternations Associated with Non-alcoholic Fatty Liver Disease (NAFLD): A Systematic Review

Authors: Navid Omidkhoda, Simin zare, Sina Mahdiani, Sara Samadi, Fatemeh Akhlaghi, Amir Hooshang Mohammadpour

Published in: European Journal of Drug Metabolism and Pharmacokinetics | Issue 1/2023

Login to get access

Abstract

Background and Objectives

Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disorder and is usually accompanied by obesity, metabolic syndrome, and diabetes mellitus. NAFLD progression can lead to impaired functions of hepatocytes such as alternations in expression and function of hepatic transporters. The present study aimed to summarize and discuss the results of clinical and preclinical human studies that investigate the effect of NAFLD on hepatic transporters.

Methods

The databases of PubMed, Scopus, Embase, and Web of Science were searched systematically up to 1 March 2022. The risk of bias was assessed for cross-sectional studies through the Newcastle–Ottawa Scale score.

Results

Our review included ten cross-sectional studies consisting of 485 participants. Substantial alternations in hepatic transporters were seen during NAFLD progression to non-alcoholic steatohepatitis (NASH) in comparison with control groups. A significant reduction in expression and function of several hepatic uptake transporters, upregulation of many efflux transporters, downregulation of cholesterol efflux transporters, and mislocalization of canalicular transporter ABCC2 are associated with NAFLD progression.

Conclusion

Since extensive changes in hepatic transporters could alter the pharmacokinetics of the drugs and potentially affect the safety and efficacy of drugs, close monitoring of drug administration is highly suggested in patients with NASH.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37:81–4.CrossRef Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37:81–4.CrossRef
2.
go back to reference Haque M, Sanyal AJ. The metabolic abnormalities associated with non-alcoholic fatty liver disease. Best Pract Res Cl Ga. 2002;16(5):709–31.CrossRef Haque M, Sanyal AJ. The metabolic abnormalities associated with non-alcoholic fatty liver disease. Best Pract Res Cl Ga. 2002;16(5):709–31.CrossRef
3.
go back to reference Charlton MR, et al. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141(4):1249–53.CrossRef Charlton MR, et al. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141(4):1249–53.CrossRef
4.
go back to reference Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.CrossRef Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.CrossRef
5.
go back to reference Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J Clin Pharmacol. 2016;56(Suppl 7):S23-39.CrossRef Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J Clin Pharmacol. 2016;56(Suppl 7):S23-39.CrossRef
6.
go back to reference Thakkar N, Slizgi JR, Brouwer KLR. Effect of liver disease on hepatic transporter expression and function. J Pharma Sci. 2017;106(9):2282–94.CrossRef Thakkar N, Slizgi JR, Brouwer KLR. Effect of liver disease on hepatic transporter expression and function. J Pharma Sci. 2017;106(9):2282–94.CrossRef
7.
go back to reference Jou J, Choi SS, Diehl AM. Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28(4):370–9.CrossRef Jou J, Choi SS, Diehl AM. Mechanisms of disease progression in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28(4):370–9.CrossRef
8.
go back to reference Greco D, et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol. 2008;294(5):G1281-1287.CrossRef Greco D, et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol. 2008;294(5):G1281-1287.CrossRef
9.
go back to reference Fabbrini E, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA. 2009;106(36):15430–5.CrossRef Fabbrini E, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA. 2009;106(36):15430–5.CrossRef
10.
go back to reference Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev. 2008;60(3):311–57.CrossRef Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev. 2008;60(3):311–57.CrossRef
11.
go back to reference Bell M, et al. Consequences of lipid droplet coat protein downregulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes. 2008;57(8):2037–45.CrossRef Bell M, et al. Consequences of lipid droplet coat protein downregulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes. 2008;57(8):2037–45.CrossRef
12.
go back to reference Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114(2):147–52.CrossRef Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114(2):147–52.CrossRef
13.
go back to reference Sanyal AJ, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120(5):1183–92.CrossRef Sanyal AJ, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120(5):1183–92.CrossRef
14.
go back to reference Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–71.CrossRef Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–71.CrossRef
15.
go back to reference Canet MJ, et al. Modeling human nonalcoholic steatohepatitis-associated changes in drug transporter expression using experimental rodent models. Drug Metab Dispos. 2014;42(4):586–95.CrossRef Canet MJ, et al. Modeling human nonalcoholic steatohepatitis-associated changes in drug transporter expression using experimental rodent models. Drug Metab Dispos. 2014;42(4):586–95.CrossRef
16.
go back to reference Dzierlenga AL, et al. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J Pharmacol Exp Ther. 2015;352(3):462–70.CrossRef Dzierlenga AL, et al. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J Pharmacol Exp Ther. 2015;352(3):462–70.CrossRef
17.
go back to reference Hardwick RN, et al. Molecular mechanism of altered ezetimibe disposition in nonalcoholic steatohepatitis. Drug Metab Dispos. 2012;40(3):450–60.CrossRef Hardwick RN, et al. Molecular mechanism of altered ezetimibe disposition in nonalcoholic steatohepatitis. Drug Metab Dispos. 2012;40(3):450–60.CrossRef
18.
go back to reference Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.CrossRef Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.CrossRef
19.
go back to reference Caballero F, et al. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol. 2009;50(4):789–96.CrossRef Caballero F, et al. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol. 2009;50(4):789–96.CrossRef
20.
go back to reference Hardwick RN, et al. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2011;39(12):2395–402.CrossRef Hardwick RN, et al. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2011;39(12):2395–402.CrossRef
21.
go back to reference Canet MJ, et al. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug Metab Dispos. 2015;43(6):829–35.CrossRef Canet MJ, et al. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug Metab Dispos. 2015;43(6):829–35.CrossRef
22.
go back to reference Vega-Badillo J, et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;36(9):1383–91.CrossRef Vega-Badillo J, et al. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016;36(9):1383–91.CrossRef
23.
go back to reference Ferslew BC, et al. Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther. 2015;97(4):419–27.CrossRef Ferslew BC, et al. Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther. 2015;97(4):419–27.CrossRef
24.
go back to reference Clarke JD, et al. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int. 2017;37(7):1074–81.CrossRef Clarke JD, et al. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int. 2017;37(7):1074–81.CrossRef
25.
go back to reference Ali I, et al. Transporter-mediated alterations in patients with NASH increase systemic and hepatic exposure to an OATP and MRP2 substrate. Clin Pharmacol Ther. 2018;104(4):749–56.CrossRef Ali I, et al. Transporter-mediated alterations in patients with NASH increase systemic and hepatic exposure to an OATP and MRP2 substrate. Clin Pharmacol Ther. 2018;104(4):749–56.CrossRef
26.
go back to reference Dzierlenga AL, Cherrington NJ. Misregulation of membrane trafficking processes in human nonalcoholic steatohepatitis. J Biochem Mol Toxicol. 2018;32:3.CrossRef Dzierlenga AL, Cherrington NJ. Misregulation of membrane trafficking processes in human nonalcoholic steatohepatitis. J Biochem Mol Toxicol. 2018;32:3.CrossRef
27.
go back to reference Vildhede A, et al. Quantitative proteomics and mechanistic modeling of transporter-mediated disposition in nonalcoholic fatty liver disease. Clin Pharmacol Ther. 2020;107(5):1128–37.CrossRef Vildhede A, et al. Quantitative proteomics and mechanistic modeling of transporter-mediated disposition in nonalcoholic fatty liver disease. Clin Pharmacol Ther. 2020;107(5):1128–37.CrossRef
28.
go back to reference Chatterjee S, et al. Transporter activity changes in nonalcoholic steatohepatitis: assessment with plasma coproporphyrin I and III. J Pharmacol Exp Ther. 2021;376(1):29–39.CrossRef Chatterjee S, et al. Transporter activity changes in nonalcoholic steatohepatitis: assessment with plasma coproporphyrin I and III. J Pharmacol Exp Ther. 2021;376(1):29–39.CrossRef
29.
go back to reference Svoboda M, et al. Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr Drug Metab. 2011;12(2):139–53.CrossRef Svoboda M, et al. Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr Drug Metab. 2011;12(2):139–53.CrossRef
30.
go back to reference Giacomini KM, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.CrossRef Giacomini KM, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.CrossRef
31.
go back to reference Williams JA, et al. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.CrossRef Williams JA, et al. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.CrossRef
32.
go back to reference Ballantyne CM, et al. Risk for myopathy with statin therapy in high-risk patients. Arch Intern Med. 2003;163(5):553–64.CrossRef Ballantyne CM, et al. Risk for myopathy with statin therapy in high-risk patients. Arch Intern Med. 2003;163(5):553–64.CrossRef
33.
go back to reference Omar MA, Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother. 2002;36(2):288–95.CrossRef Omar MA, Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother. 2002;36(2):288–95.CrossRef
34.
go back to reference Ishiguro N, et al. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab Dispos. 2006;34(7):1109–15.CrossRef Ishiguro N, et al. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab Dispos. 2006;34(7):1109–15.CrossRef
35.
go back to reference Poirier A, et al. Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Phar. 2009;36(6):585–611.CrossRef Poirier A, et al. Prediction of pharmacokinetic profile of valsartan in human based on in vitro uptake transport data. J Pharmacokinet Phar. 2009;36(6):585–611.CrossRef
36.
go back to reference Prasad B, et al. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos. 2014;42(1):78–88.CrossRef Prasad B, et al. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex. Drug Metab Dispos. 2014;42(1):78–88.CrossRef
37.
go back to reference Wang L, et al. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos. 2015;43(3):367–74.CrossRef Wang L, et al. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics. Drug Metab Dispos. 2015;43(3):367–74.CrossRef
38.
go back to reference Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87.CrossRef Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87.CrossRef
39.
go back to reference Nies AT, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009;50(4):1227–40.CrossRef Nies AT, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology. 2009;50(4):1227–40.CrossRef
40.
go back to reference Zhang L, et al. Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol. 1997;51(6):913–21.CrossRef Zhang L, et al. Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol. 1997;51(6):913–21.CrossRef
41.
go back to reference Ahlin G, et al. Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions. Pharmacogenomics J. 2011;11(6):400–11.CrossRef Ahlin G, et al. Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions. Pharmacogenomics J. 2011;11(6):400–11.CrossRef
42.
go back to reference Cho SK, et al. Verapamil decreases the glucose-lowering effect of metformin in healthy volunteers. Br J Clin Pharmacol. 2014;78(6):1426–32.CrossRef Cho SK, et al. Verapamil decreases the glucose-lowering effect of metformin in healthy volunteers. Br J Clin Pharmacol. 2014;78(6):1426–32.CrossRef
43.
go back to reference Cho SK, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89(3):416–21.CrossRef Cho SK, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89(3):416–21.CrossRef
44.
go back to reference Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch. 2014;466(1):77–89.CrossRef Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch. 2014;466(1):77–89.CrossRef
45.
go back to reference Bi YA, et al. Quantitative assessment of the contribution of sodium-dependent taurocholate co-transporting polypeptide (NTCP) to the hepatic uptake of rosuvastatin, pitavastatin and fluvastatin. Biopharm Drug Dispos. 2013;34(8):452–61.CrossRef Bi YA, et al. Quantitative assessment of the contribution of sodium-dependent taurocholate co-transporting polypeptide (NTCP) to the hepatic uptake of rosuvastatin, pitavastatin and fluvastatin. Biopharm Drug Dispos. 2013;34(8):452–61.CrossRef
46.
go back to reference Gozalpour E, et al. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3. Mol Pharm. 2014;11(6):1844–55.CrossRef Gozalpour E, et al. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3. Mol Pharm. 2014;11(6):1844–55.CrossRef
47.
go back to reference Lepist EI, et al. Evaluation of the endothelin receptor antagonists ambrisentan, bosentan, macitentan, and sitaxsentan as hepatobiliary transporter inhibitors and substrates in sandwich-cultured human hepatocytes. PLoS ONE. 2014;9(1): e87548.CrossRef Lepist EI, et al. Evaluation of the endothelin receptor antagonists ambrisentan, bosentan, macitentan, and sitaxsentan as hepatobiliary transporter inhibitors and substrates in sandwich-cultured human hepatocytes. PLoS ONE. 2014;9(1): e87548.CrossRef
48.
go back to reference McRae MP, et al. Ritonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J Pharmacol Exp Ther. 2006;318(3):1068–75.CrossRef McRae MP, et al. Ritonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J Pharmacol Exp Ther. 2006;318(3):1068–75.CrossRef
49.
go back to reference Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol. 2011;201:205–59.CrossRef Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol. 2011;201:205–59.CrossRef
50.
go back to reference König J, et al. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology. 1999;29(4):1156–63.CrossRef König J, et al. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology. 1999;29(4):1156–63.CrossRef
51.
go back to reference Kool M, et al. Expression of human MRP6, a homologue of the multidrug resistance protein gene MRP1, in tissues and cancer cells. Cancer Res. 1999;59(1):175–82. Kool M, et al. Expression of human MRP6, a homologue of the multidrug resistance protein gene MRP1, in tissues and cancer cells. Cancer Res. 1999;59(1):175–82.
52.
go back to reference Ferslew BC, et al. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos. 2014;42(9):1567–74.CrossRef Ferslew BC, et al. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos. 2014;42(9):1567–74.CrossRef
53.
go back to reference Pfeifer ND, Yang K, Brouwer KL. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition I: characterization of basolateral versus biliary clearance using a novel protocol in sandwich-cultured hepatocytes. J Pharmacol Exp Ther. 2013;347(3):727–36.CrossRef Pfeifer ND, Yang K, Brouwer KL. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition I: characterization of basolateral versus biliary clearance using a novel protocol in sandwich-cultured hepatocytes. J Pharmacol Exp Ther. 2013;347(3):727–36.CrossRef
54.
go back to reference Zamek-Gliszczynski MJ, et al. Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci. 2006;27(5):447–86.CrossRef Zamek-Gliszczynski MJ, et al. Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci. 2006;27(5):447–86.CrossRef
55.
go back to reference Varma MV, et al. Physicochemical determinants of human renal clearance. J Med Chem. 2009;52(15):4844–52.CrossRef Varma MV, et al. Physicochemical determinants of human renal clearance. J Med Chem. 2009;52(15):4844–52.CrossRef
56.
go back to reference Yokoo K, et al. Effect of S-1 on pharmacokinetics of irinotecan in a patient with colorectal cancer. Clin Pharmacol Ther. 2006;80(4):422–4.CrossRef Yokoo K, et al. Effect of S-1 on pharmacokinetics of irinotecan in a patient with colorectal cancer. Clin Pharmacol Ther. 2006;80(4):422–4.CrossRef
57.
go back to reference Gregoor PJ, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation. 1999;68(10):1603–6.CrossRef Gregoor PJ, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation. 1999;68(10):1603–6.CrossRef
58.
go back to reference Shipkova M, et al. Effect of cyclosporine withdrawal on mycophenolic acid pharmacokinetics in kidney transplant recipients with deteriorating renal function: preliminary report. Ther Drug Monit. 2001;23(6):717–21.CrossRef Shipkova M, et al. Effect of cyclosporine withdrawal on mycophenolic acid pharmacokinetics in kidney transplant recipients with deteriorating renal function: preliminary report. Ther Drug Monit. 2001;23(6):717–21.CrossRef
59.
go back to reference Kuypers DR, et al. Mycophenolic acid exposure after administration of mycophenolate mofetil in the presence and absence of cyclosporin in renal transplant recipients. Clin Pharmacokinet. 2009;48(5):329–41.CrossRef Kuypers DR, et al. Mycophenolic acid exposure after administration of mycophenolate mofetil in the presence and absence of cyclosporin in renal transplant recipients. Clin Pharmacokinet. 2009;48(5):329–41.CrossRef
60.
go back to reference Fukuda T, et al. Nonsteroidal anti-inflammatory drugs may reduce enterohepatic recirculation of mycophenolic acid in patients with childhood-onset systemic lupus erythematosus. Ther Drug Monit. 2011;33(5):658–62.CrossRef Fukuda T, et al. Nonsteroidal anti-inflammatory drugs may reduce enterohepatic recirculation of mycophenolic acid in patients with childhood-onset systemic lupus erythematosus. Ther Drug Monit. 2011;33(5):658–62.CrossRef
61.
go back to reference Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev. 2002;23(5):687–702.CrossRef Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev. 2002;23(5):687–702.CrossRef
62.
go back to reference Teng S, Piquette-Miller M. The involvement of the pregnane X receptor in hepatic gene regulation during inflammation in mice. J Pharmacol Exp Ther. 2005;312(2):841–8.CrossRef Teng S, Piquette-Miller M. The involvement of the pregnane X receptor in hepatic gene regulation during inflammation in mice. J Pharmacol Exp Ther. 2005;312(2):841–8.CrossRef
63.
go back to reference Huang L, et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem. 2003;278(51):51085–90.CrossRef Huang L, et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem. 2003;278(51):51085–90.CrossRef
64.
go back to reference Kast HR, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002;277(4):2908–15.CrossRef Kast HR, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002;277(4):2908–15.CrossRef
65.
go back to reference Zollner G, et al. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm. 2006;3(3):231–51.CrossRef Zollner G, et al. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm. 2006;3(3):231–51.CrossRef
66.
go back to reference Lefebvre P, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91.CrossRef Lefebvre P, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91.CrossRef
67.
go back to reference Sinal CJ, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–44.CrossRef Sinal CJ, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–44.CrossRef
68.
go back to reference Feng TTQ. Effect of NAFLD on regulation of hepatic transporters and metabolizing enzymes using a high fat/high cholesterol dietary model in rat. Toronto: University of Toronto; 2012. Feng TTQ. Effect of NAFLD on regulation of hepatic transporters and metabolizing enzymes using a high fat/high cholesterol dietary model in rat. Toronto: University of Toronto; 2012.
69.
go back to reference Duran-Sandoval D, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53(4):890–8.CrossRef Duran-Sandoval D, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53(4):890–8.CrossRef
70.
go back to reference Fang C, et al. Hepatic expression of multiple acute phase proteins and down-regulation of nuclear receptors after acute endotoxin exposure. Biochem Pharmacol. 2004;67(7):1389–97.CrossRef Fang C, et al. Hepatic expression of multiple acute phase proteins and down-regulation of nuclear receptors after acute endotoxin exposure. Biochem Pharmacol. 2004;67(7):1389–97.CrossRef
Metadata
Title
Hepatic Transporters Alternations Associated with Non-alcoholic Fatty Liver Disease (NAFLD): A Systematic Review
Authors
Navid Omidkhoda
Simin zare
Sina Mahdiani
Sara Samadi
Fatemeh Akhlaghi
Amir Hooshang Mohammadpour
Publication date
01-01-2023
Publisher
Springer International Publishing
Published in
European Journal of Drug Metabolism and Pharmacokinetics / Issue 1/2023
Print ISSN: 0378-7966
Electronic ISSN: 2107-0180
DOI
https://doi.org/10.1007/s13318-022-00802-8

Other articles of this Issue 1/2023

European Journal of Drug Metabolism and Pharmacokinetics 1/2023 Go to the issue