Skip to main content
Top
Published in: Neurotherapeutics 4/2018

01-10-2018 | Review

Myotonic Dystrophies: Targeting Therapies for Multisystem Disease

Authors: Samantha LoRusso, Benjamin Weiner, W. David Arnold

Published in: Neurotherapeutics | Issue 4/2018

Login to get access

Abstract

Myotonic dystrophy is an autosomal dominant muscular dystrophy not only associated with muscle weakness, atrophy, and myotonia but also prominent multisystem involvement. There are 2 similar, but distinct, forms of myotonic dystrophy; type 1 is caused by a CTG repeat expansion in the DMPK gene, and type 2 is caused by a CCTG repeat expansion in the CNBP gene. Type 1 is associated with distal limb, neck flexor, and bulbar weakness and results in different phenotypic subtypes with variable onset from congenital to very late-onset as well as variable signs and symptoms. The classically described adult-onset form is the most common. In contrast, myotonic dystrophy type 2 is adult-onset or late-onset, has proximal predominant muscle weakness, and generally has less severe multisystem involvement. In both forms of myotonic dystrophy, the best characterized disease mechanism is a RNA toxic gain-of-function during which RNA repeats form nuclear foci resulting in sequestration of RNA-binding proteins and, therefore, dysregulated splicing of premessenger RNA. There are currently no disease-modifying therapies, but clinical surveillance, preventative measures, and supportive treatments are used to reduce the impact of muscular impairment and other systemic involvement including cataracts, cardiac conduction abnormalities, fatigue, central nervous system dysfunction, respiratory weakness, dysphagia, and endocrine dysfunction. Exciting preclinical progress has been made in identifying a number of potential strategies including genome editing, small molecule therapeutics, and antisense oligonucleotide-based therapies to target the pathogenesis of type 1 and type 2 myotonic dystrophies at the DNA, RNA, or downstream target level.
Appendix
Available only for authorised users
Literature
1.
go back to reference Emery AEH. Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord 1991;1:19–29.CrossRefPubMed Emery AEH. Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord 1991;1:19–29.CrossRefPubMed
13.
go back to reference Day JW, Ricker K, Jacobsen JF, Rasmussen LJ, Dick KA, Kress W et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 2003;60:657–664.CrossRefPubMed Day JW, Ricker K, Jacobsen JF, Rasmussen LJ, Dick KA, Kress W et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 2003;60:657–664.CrossRefPubMed
15.
go back to reference Peric M, Peric S, Rapajic N, Dobricic V, Savic-Pavicevic D, Nesic I et al. Multidimensional aspects of pain in myotonic dystrophies. Acta Myol 2015;34:126–132.PubMedPubMedCentral Peric M, Peric S, Rapajic N, Dobricic V, Savic-Pavicevic D, Nesic I et al. Multidimensional aspects of pain in myotonic dystrophies. Acta Myol 2015;34:126–132.PubMedPubMedCentral
19.
go back to reference Lindeman E, Leffers P, Spaans F, Drukker J, Reulen J, Kerckhoffs M et al. Strength training in patients with myotonic dystrophy and hereditary motor and sensory neuropathy: a randomized clinical trial. Arch Phys Med Rehabil 1995;76:612–620.CrossRefPubMed Lindeman E, Leffers P, Spaans F, Drukker J, Reulen J, Kerckhoffs M et al. Strength training in patients with myotonic dystrophy and hereditary motor and sensory neuropathy: a randomized clinical trial. Arch Phys Med Rehabil 1995;76:612–620.CrossRefPubMed
30.
go back to reference LoRusso S, Kline D, Bartlett A, Agriesti J, Freimer M, Rich M et al. Open label trial of ranolazine for the treatment of paramyotonia congenita (P3.436). Neurology. 2018;90(15 Supplement). LoRusso S, Kline D, Bartlett A, Agriesti J, Freimer M, Rich M et al. Open label trial of ranolazine for the treatment of paramyotonia congenita (P3.436). Neurology. 2018;90(15 Supplement).
32.
go back to reference Lawless M, Arnold W, Agriesti J, Moravec T, Moravec T, Moravec T. Investigation of ranolazine as an anti-myotonia treatment in myotonic dystrophy type 1 (P5.443). Neurology. 2018;90(15 Supplement). Lawless M, Arnold W, Agriesti J, Moravec T, Moravec T, Moravec T. Investigation of ranolazine as an anti-myotonia treatment in myotonic dystrophy type 1 (P5.443). Neurology. 2018;90(15 Supplement).
43.
go back to reference Sergeant N, Sablonniere B, Schraen-Maschke S, Ghestem A, Maurage CA, Wattez A et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 2001;10:2143–2155.CrossRefPubMed Sergeant N, Sablonniere B, Schraen-Maschke S, Ghestem A, Maurage CA, Wattez A et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 2001;10:2143–2155.CrossRefPubMed
47.
go back to reference Mathieu J, Allard P, Potvin L, Prevost C, Begin P. A 10-year study of mortality in a cohort of patients with myotonic dystrophy. Neurology 1999;52:1658–1662.CrossRefPubMed Mathieu J, Allard P, Potvin L, Prevost C, Begin P. A 10-year study of mortality in a cohort of patients with myotonic dystrophy. Neurology 1999;52:1658–1662.CrossRefPubMed
56.
go back to reference Melacini P, Villanova C, Menegazzo E, Novelli G, Danieli G, Rizzoli G et al. Correlation between cardiac involvement and CTG trinucleotide repeat length in myotonic dystrophy. J Am Coll Cardiol 1995;25:239–245.CrossRefPubMed Melacini P, Villanova C, Menegazzo E, Novelli G, Danieli G, Rizzoli G et al. Correlation between cardiac involvement and CTG trinucleotide repeat length in myotonic dystrophy. J Am Coll Cardiol 1995;25:239–245.CrossRefPubMed
57.
go back to reference Clarke NRA, Kelion AD, Nixon J, Hilton-Jones D, Forfar JC. Does cytosine-thymine-guanine (CTG) expansion size predict cardiac events and electrocardiographic progression in myotonic dystrophy?, Heart 2001;86:411–416.CrossRefPubMedPubMedCentral Clarke NRA, Kelion AD, Nixon J, Hilton-Jones D, Forfar JC. Does cytosine-thymine-guanine (CTG) expansion size predict cardiac events and electrocardiographic progression in myotonic dystrophy?, Heart 2001;86:411–416.CrossRefPubMedPubMedCentral
59.
go back to reference Prystowsky EN, Pritchett EL, Roses AD, Gallagher J. The natural history of conduction system disease in myotonic muscular dystrophy as determined by serial electrophysiologic studies. Circulation 1979;60:1360–1364.CrossRefPubMed Prystowsky EN, Pritchett EL, Roses AD, Gallagher J. The natural history of conduction system disease in myotonic muscular dystrophy as determined by serial electrophysiologic studies. Circulation 1979;60:1360–1364.CrossRefPubMed
64.
go back to reference Ludatscher RM, Kerner H, Amikam S, Gellei B. Myotonia dystrophica with heart involvement: an electron microscopic study of skeletal, cardiac, and smooth muscle. J Clin Pathol 1978;31:1057–1064.CrossRefPubMedPubMedCentral Ludatscher RM, Kerner H, Amikam S, Gellei B. Myotonia dystrophica with heart involvement: an electron microscopic study of skeletal, cardiac, and smooth muscle. J Clin Pathol 1978;31:1057–1064.CrossRefPubMedPubMedCentral
65.
go back to reference Motta J, Guilleminault C, Billingham M, Barry W, Mason J. Cardiac abnormalities in myotonic dystrophy. Electrophysiologic and histopathologic studies. Am J Med 1979;67:467–673.CrossRefPubMed Motta J, Guilleminault C, Billingham M, Barry W, Mason J. Cardiac abnormalities in myotonic dystrophy. Electrophysiologic and histopathologic studies. Am J Med 1979;67:467–673.CrossRefPubMed
66.
go back to reference Nguyen HH, Wolfe JT, 3rd, Holmes DR, Jr., Edwards WD. Pathology of the cardiac conduction system in myotonic dystrophy: a study of 12 cases. J Am Coll Cardiol 1988;11:662–671.CrossRefPubMed Nguyen HH, Wolfe JT, 3rd, Holmes DR, Jr., Edwards WD. Pathology of the cardiac conduction system in myotonic dystrophy: a study of 12 cases. J Am Coll Cardiol 1988;11:662–671.CrossRefPubMed
74.
go back to reference Degraeuwe J, Van Laecke E, De Muynck M, Van Biervliet S, Vande Velde S, Van Winckel M. Faecal incontinence due to atrophy of the anal sphincter in myotonic dystrophy: a case report. Acta Gastroenterol Belg 2011;74:88–90.PubMed Degraeuwe J, Van Laecke E, De Muynck M, Van Biervliet S, Vande Velde S, Van Winckel M. Faecal incontinence due to atrophy of the anal sphincter in myotonic dystrophy: a case report. Acta Gastroenterol Belg 2011;74:88–90.PubMed
76.
go back to reference Marcon M, Briani C, Ermani M, Menegazzo E, Iurilli V, Feltrin GP et al. Positive correlation of CTG expansion and pharyngoesophageal alterations in myotonic dystrophy patients. Ital J Neurol Sci 1998;19:75–80.CrossRefPubMed Marcon M, Briani C, Ermani M, Menegazzo E, Iurilli V, Feltrin GP et al. Positive correlation of CTG expansion and pharyngoesophageal alterations in myotonic dystrophy patients. Ital J Neurol Sci 1998;19:75–80.CrossRefPubMed
79.
go back to reference Wochner RD, Drews G, Strober W, Waldmann TA. Accelerated breakdown of immunoglobulin G (IgG) in myotonic dystrophy: a hereditary error of immunoglobulin catabolism. J Clin Investig 1966;45:321–329.CrossRefPubMedPubMedCentral Wochner RD, Drews G, Strober W, Waldmann TA. Accelerated breakdown of immunoglobulin G (IgG) in myotonic dystrophy: a hereditary error of immunoglobulin catabolism. J Clin Investig 1966;45:321–329.CrossRefPubMedPubMedCentral
84.
go back to reference Martorell L, Illa I, Rosell J, Benitez J, Sedano MJ, Baiget M. Homozygous myotonic dystrophy: clinical and molecular studies of three unrelated cases. J Med Genet 1996;33:783–785.CrossRefPubMedPubMedCentral Martorell L, Illa I, Rosell J, Benitez J, Sedano MJ, Baiget M. Homozygous myotonic dystrophy: clinical and molecular studies of three unrelated cases. J Med Genet 1996;33:783–785.CrossRefPubMedPubMedCentral
86.
go back to reference Bergoffen J, Kant J, Sladky J, McDonald-McGinn D, Zackai EH, Fischbeck KH. Paternal transmission of congenital myotonic dystrophy. J Med Genet 1994;31:518–520.CrossRefPubMedPubMedCentral Bergoffen J, Kant J, Sladky J, McDonald-McGinn D, Zackai EH, Fischbeck KH. Paternal transmission of congenital myotonic dystrophy. J Med Genet 1994;31:518–520.CrossRefPubMedPubMedCentral
87.
go back to reference Zeesman S, Carson N, Whelan DT. Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature. Am J Med Genet 2002;107:222–226.CrossRefPubMed Zeesman S, Carson N, Whelan DT. Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature. Am J Med Genet 2002;107:222–226.CrossRefPubMed
89.
go back to reference Ashizawa T, Anvret M, Baiget M, Barcelo JM, Brunner H, Cobo AM et al. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am J Hum Genet 1994;54:414–423.PubMedPubMedCentral Ashizawa T, Anvret M, Baiget M, Barcelo JM, Brunner H, Cobo AM et al. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am J Hum Genet 1994;54:414–423.PubMedPubMedCentral
90.
go back to reference Tian B, White RJ, Xia T, Welle S, Turner DH, Mathews MB et al. Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA 2000;6:79–87.CrossRefPubMedPubMedCentral Tian B, White RJ, Xia T, Welle S, Turner DH, Mathews MB et al. Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA 2000;6:79–87.CrossRefPubMedPubMedCentral
91.
go back to reference Michalowski S, Miller JW, Urbinati CR, Paliouras M, Swanson MS, Griffith J. Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucleic Acids Res 1999;27:3534–3542.CrossRefPubMedPubMedCentral Michalowski S, Miller JW, Urbinati CR, Paliouras M, Swanson MS, Griffith J. Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucleic Acids Res 1999;27:3534–3542.CrossRefPubMedPubMedCentral
98.
go back to reference Philips AV, Timchenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998;280:737–741.CrossRefPubMed Philips AV, Timchenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998;280:737–741.CrossRefPubMed
125.
go back to reference Group F-NBW. BEST (Biomarkers, EndpointS, and other Tools) resource. Silver Spring (MD): Food and Drug Administration (US); 2016. Group F-NBW. BEST (Biomarkers, EndpointS, and other Tools) resource. Silver Spring (MD): Food and Drug Administration (US); 2016.
132.
go back to reference Ketley A, Chen CZ, Li X, Arya S, Robinson TE, Granados-Riveron J et al. High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines. Hum Mol Genet 2014;23:1551–1562. https://doi.org/10.1093/hmg/ddt542.PubMedCrossRef Ketley A, Chen CZ, Li X, Arya S, Robinson TE, Granados-Riveron J et al. High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines. Hum Mol Genet 2014;23:1551–1562. https://​doi.​org/​10.​1093/​hmg/​ddt542.PubMedCrossRef
147.
go back to reference Xia G, Gao Y, Jin S, Subramony SH, Terada N, Ranum LP et al. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells (Dayton, Ohio). 2015;33:1829–1838. https://doi.org/10.1002/stem.1970.CrossRef Xia G, Gao Y, Jin S, Subramony SH, Terada N, Ranum LP et al. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells (Dayton, Ohio). 2015;33:1829–1838. https://​doi.​org/​10.​1002/​stem.​1970.CrossRef
Metadata
Title
Myotonic Dystrophies: Targeting Therapies for Multisystem Disease
Authors
Samantha LoRusso
Benjamin Weiner
W. David Arnold
Publication date
01-10-2018
Publisher
Springer International Publishing
Published in
Neurotherapeutics / Issue 4/2018
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-018-00679-z

Other articles of this Issue 4/2018

Neurotherapeutics 4/2018 Go to the issue