Skip to main content
Top
Published in: Neurotherapeutics 4/2018

Open Access 01-10-2018 | Review

Diagnosis and Treatment of Mitochondrial Myopathies

Authors: Syeda T. Ahmed, Lyndsey Craven, Oliver M. Russell, Doug M. Turnbull, Amy E. Vincent

Published in: Neurotherapeutics | Issue 4/2018

Login to get access

Abstract

Mitochondrial myopathies are progressive muscle conditions caused primarily by the impairment of oxidative phosphorylation (OXPHOS) in the mitochondria. This causes a deficit in energy production in the form of adenosine triphosphate (ATP), particularly in skeletal muscle. The diagnosis of mitochondrial myopathy is reliant on the combination of numerous techniques including traditional histochemical, immunohistochemical, and biochemical testing combined with the fast-emerging molecular genetic techniques, namely next-generation sequencing (NGS). This has allowed for the diagnosis to become more effective in terms of determining causative or novel genes. However, there are currently no effective or disease-modifying treatments available for the vast majority of patients with mitochondrial myopathies. Existing therapeutic options focus on the symptomatic management of disease manifestations. An increasing number of clinical trials have investigated the therapeutic effects of various vitamins, cofactors, and small molecules, though these trials have failed to show definitive outcome measures for clinical practice thus far. In addition, new molecular strategies, specifically mtZFNs and mtTALENs, that cause beneficial heteroplasmic shifts in cell lines harboring varying pathogenic mtDNA mutations offer hope for the future. Moreover, recent developments in the reproductive options for patients with mitochondrial myopathies mean that for some families, the possibility of preventing transmission of the mutation to the next generation is now possible.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gorman GS, Chinnery PF, DiMauro S et al. Mitochondrial diseases. Nat Rev Dis Primers, 2, 16080 (2016).CrossRef Gorman GS, Chinnery PF, DiMauro S et al. Mitochondrial diseases. Nat Rev Dis Primers, 2, 16080 (2016).CrossRef
2.
go back to reference Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A, 86(20), 7952–7956 (1989).CrossRefPubMedPubMedCentral Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A, 86(20), 7952–7956 (1989).CrossRefPubMedPubMedCentral
4.
go back to reference Smith AC, Robinson AJ. MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res, 44(D1), D1258–D1261 (2016).CrossRef Smith AC, Robinson AJ. MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res, 44(D1), D1258–D1261 (2016).CrossRef
5.
go back to reference Sommerville EW, Chinnery PF, Gorman GS, Taylor RW. Adult-onset Mendelian PEO Associated with Mitochondrial Disease. J Neuromuscul Dis, 1(2), 119–133 (2014).PubMed Sommerville EW, Chinnery PF, Gorman GS, Taylor RW. Adult-onset Mendelian PEO Associated with Mitochondrial Disease. J Neuromuscul Dis, 1(2), 119–133 (2014).PubMed
6.
go back to reference Gorman GS, Elson JL, Newman J et al. Perceived fatigue is highly prevalent and debilitating in patients with mitochondrial disease. Neuromuscul Disord, 25(7), 563–566 (2015).CrossRefPubMedPubMedCentral Gorman GS, Elson JL, Newman J et al. Perceived fatigue is highly prevalent and debilitating in patients with mitochondrial disease. Neuromuscul Disord, 25(7), 563–566 (2015).CrossRefPubMedPubMedCentral
7.
go back to reference Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol, 241(2), 236–250 (2017).CrossRefPubMed Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol, 241(2), 236–250 (2017).CrossRefPubMed
8.
go back to reference Moraes CT, Ricci E, Bonilla E, DiMauro S, Schon EA. The mitochondrial tRNA(Leu(UUR)) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet, 50(5), 934–949 (1992).PubMedPubMedCentral Moraes CT, Ricci E, Bonilla E, DiMauro S, Schon EA. The mitochondrial tRNA(Leu(UUR)) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet, 50(5), 934–949 (1992).PubMedPubMedCentral
9.
go back to reference Bua E, Johnson J, Herbst A et al. Mitochondrial DNA–Deletion Mutations Accumulate Intracellularly to Detrimental Levels in Aged Human Skeletal Muscle Fibers. Am J Hum Genet, 79(3), 469–480 (2006).CrossRefPubMedPubMedCentral Bua E, Johnson J, Herbst A et al. Mitochondrial DNA–Deletion Mutations Accumulate Intracellularly to Detrimental Levels in Aged Human Skeletal Muscle Fibers. Am J Hum Genet, 79(3), 469–480 (2006).CrossRefPubMedPubMedCentral
10.
go back to reference Campbell G, Krishnan KJ, Deschauer M, Taylor RW, Turnbull DM. Dissecting the mechanisms underlying the accumulation of mitochondrial DNA deletions in human skeletal muscle. Hum Mol Genet, 23(17), 4612–4620 (2014).CrossRefPubMedPubMedCentral Campbell G, Krishnan KJ, Deschauer M, Taylor RW, Turnbull DM. Dissecting the mechanisms underlying the accumulation of mitochondrial DNA deletions in human skeletal muscle. Hum Mol Genet, 23(17), 4612–4620 (2014).CrossRefPubMedPubMedCentral
11.
go back to reference Rygiel Karolina A, Picard M, Turnbull Doug M. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. J Physiol, 594(16), 4499–4512 (2016).CrossRefPubMedPubMedCentral Rygiel Karolina A, Picard M, Turnbull Doug M. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. J Physiol, 594(16), 4499–4512 (2016).CrossRefPubMedPubMedCentral
12.
go back to reference Ahmed ST, Alston CL, Hopton S et al. Using a quantitative quadruple immunofluorescent assay to diagnose isolated mitochondrial Complex I deficiency. Sci Rep, 7(1), 15676 (2017).CrossRefPubMedPubMedCentral Ahmed ST, Alston CL, Hopton S et al. Using a quantitative quadruple immunofluorescent assay to diagnose isolated mitochondrial Complex I deficiency. Sci Rep, 7(1), 15676 (2017).CrossRefPubMedPubMedCentral
13.
go back to reference Rocha MC, Grady JP, Grünewald A et al. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis. Sci Rep, 5, 15037 (2015).CrossRefPubMedPubMedCentral Rocha MC, Grady JP, Grünewald A et al. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis. Sci Rep, 5, 15037 (2015).CrossRefPubMedPubMedCentral
14.
go back to reference Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology, 59(9), 1406–1411 (2002).CrossRefPubMed Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology, 59(9), 1406–1411 (2002).CrossRefPubMed
15.
go back to reference Taylor RW, Pyle A, Griffin H, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA, 312(1), 68–77 (2014).CrossRefPubMedPubMedCentral Taylor RW, Pyle A, Griffin H, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA, 312(1), 68–77 (2014).CrossRefPubMedPubMedCentral
16.
go back to reference Frazier AE, Thorburn DR, Compton AG. Mitochondrial energy generation disorders: genes, mechanisms and clues to pathology. J Biol Chem, (2017). Frazier AE, Thorburn DR, Compton AG. Mitochondrial energy generation disorders: genes, mechanisms and clues to pathology. J Biol Chem, (2017).
17.
go back to reference Grady JP, Pickett SJ. mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. 10(6) (2018). Grady JP, Pickett SJ. mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. 10(6) (2018).
18.
go back to reference Calvo SE, Compton AG, Hershman SG et al. Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing. Sci Transl Med, 4(118), 118ra110-118ra110 (2012).CrossRef Calvo SE, Compton AG, Hershman SG et al. Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing. Sci Transl Med, 4(118), 118ra110-118ra110 (2012).CrossRef
19.
go back to reference Calvo S, Jain M, Xie X et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet, 38(5), 576–582 (2006).CrossRefPubMed Calvo S, Jain M, Xie X et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet, 38(5), 576–582 (2006).CrossRefPubMed
20.
go back to reference McFarland R, Taylor RW, Turnbull DM. A neurological perspective on mitochondrial disease. Lancet Neurol, 9(8), 829–840 (2010).CrossRefPubMed McFarland R, Taylor RW, Turnbull DM. A neurological perspective on mitochondrial disease. Lancet Neurol, 9(8), 829–840 (2010).CrossRefPubMed
21.
go back to reference Grady JP, Campbell G, Ratnaike T et al. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain, 137(Pt 2), 323–334 (2014).CrossRefPubMed Grady JP, Campbell G, Ratnaike T et al. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain, 137(Pt 2), 323–334 (2014).CrossRefPubMed
22.
go back to reference Volpi L, Ricci G, Orsucci D et al. Metabolic myopathies: functional evaluation by different exercise testing approaches. Musculoskelet Surg, 95(2), 59–67 (2011).CrossRefPubMed Volpi L, Ricci G, Orsucci D et al. Metabolic myopathies: functional evaluation by different exercise testing approaches. Musculoskelet Surg, 95(2), 59–67 (2011).CrossRefPubMed
23.
go back to reference Tarnopolsky MA, Baker SK, Myint T, Maxner CE, Robitaille J, Robinson BH. Clinical variability in maternally inherited leber hereditary optic neuropathy with the G14459A mutation. Am J Med Genet A, 124a(4), 372–376 (2004).CrossRefPubMed Tarnopolsky MA, Baker SK, Myint T, Maxner CE, Robitaille J, Robinson BH. Clinical variability in maternally inherited leber hereditary optic neuropathy with the G14459A mutation. Am J Med Genet A, 124a(4), 372–376 (2004).CrossRefPubMed
24.
go back to reference Suomalainen A, Elo JM, Pietilainen KH et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. The Lancet. Neurology, 10(9), 806–818 (2011).PubMed Suomalainen A, Elo JM, Pietilainen KH et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. The Lancet. Neurology, 10(9), 806–818 (2011).PubMed
25.
go back to reference Lehtonen JM, Forsstrom S, Bottani E et al. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology, 87(22), 2290–2299 (2016).CrossRefPubMedPubMedCentral Lehtonen JM, Forsstrom S, Bottani E et al. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology, 87(22), 2290–2299 (2016).CrossRefPubMedPubMedCentral
26.
go back to reference Morovat A, Weerasinghe G, Nesbitt V et al. Use of FGF-21 as a Biomarker of Mitochondrial Disease in Clinical Practice. J Clin Med, 6(8), 80 (2017).CrossRefPubMedCentral Morovat A, Weerasinghe G, Nesbitt V et al. Use of FGF-21 as a Biomarker of Mitochondrial Disease in Clinical Practice. J Clin Med, 6(8), 80 (2017).CrossRefPubMedCentral
27.
go back to reference Yatsuga S, Fujita Y, Ishii A et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann Neurol, 78(5), 814–823 (2015).CrossRefPubMedPubMedCentral Yatsuga S, Fujita Y, Ishii A et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann Neurol, 78(5), 814–823 (2015).CrossRefPubMedPubMedCentral
28.
go back to reference Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion, 20, 34–42 (2015).CrossRefPubMed Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion, 20, 34–42 (2015).CrossRefPubMed
29.
go back to reference Taivassalo T, Abbott A, Wyrick P, Haller Ronald G. Venous oxygen levels during aerobic forearm exercise: An index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol, 51(1), 38–44 (2002).CrossRefPubMed Taivassalo T, Abbott A, Wyrick P, Haller Ronald G. Venous oxygen levels during aerobic forearm exercise: An index of impaired oxidative metabolism in mitochondrial myopathy. Ann Neurol, 51(1), 38–44 (2002).CrossRefPubMed
30.
go back to reference Horvath R, Czermin B, Gulati S et al. Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J Neurol Neurosurg Psychiatry, 83(2), 174–178 (2012).CrossRefPubMed Horvath R, Czermin B, Gulati S et al. Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J Neurol Neurosurg Psychiatry, 83(2), 174–178 (2012).CrossRefPubMed
31.
go back to reference Glover Elisa I, Martin J, Maher A, Thornhill Rebecca E, Moran Gerald R, Tarnopolsky Mark A. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve, 42(5), 739–748 (2010).CrossRefPubMed Glover Elisa I, Martin J, Maher A, Thornhill Rebecca E, Moran Gerald R, Tarnopolsky Mark A. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve, 42(5), 739–748 (2010).CrossRefPubMed
32.
go back to reference Stacpoole PW, deGrauw TJ, Feigenbaum AS et al. Design and Implementation of the First Randomized Controlled Trial of Coenzyme Q(10) in Children with Primary Mitochondrial Diseases. Mitochondrion, 12(6), 623–629 (2012).CrossRefPubMedPubMedCentral Stacpoole PW, deGrauw TJ, Feigenbaum AS et al. Design and Implementation of the First Randomized Controlled Trial of Coenzyme Q(10) in Children with Primary Mitochondrial Diseases. Mitochondrion, 12(6), 623–629 (2012).CrossRefPubMedPubMedCentral
33.
34.
go back to reference Klopstock T, Yu-Wai-Man P, Dimitriadis K et al. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain, 134(Pt 9), 2677–2686 (2011).CrossRefPubMedPubMedCentral Klopstock T, Yu-Wai-Man P, Dimitriadis K et al. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain, 134(Pt 9), 2677–2686 (2011).CrossRefPubMedPubMedCentral
35.
go back to reference Kaufmann P, Hirano M. Study of idebenone in the treatment of mitochondrial encephalopathy lactic acidosis & stroke-like episodes (MELAS); ClinicalTrials.gov, NCT00887562. 2009. (2009). Kaufmann P, Hirano M. Study of idebenone in the treatment of mitochondrial encephalopathy lactic acidosis & stroke-like episodes (MELAS); ClinicalTrials.​gov, NCT00887562. 2009. (2009).
36.
go back to reference Hirano M. Study of idebenone in the treatment of mitochondrial encephalopathy lactic acidosis & stroke-like episodes (MELAS); clinicaltrials.gov, NCT00887562. 2012. (2012). Hirano M. Study of idebenone in the treatment of mitochondrial encephalopathy lactic acidosis & stroke-like episodes (MELAS); clinicaltrials.​gov, NCT00887562. 2012. (2012).
37.
go back to reference Cantó C, Houtkooper RH, Pirinen E et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet induced obesity. Cell Metab, 15(6), 838–847 (2012).CrossRefPubMedPubMedCentral Cantó C, Houtkooper RH, Pirinen E et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet induced obesity. Cell Metab, 15(6), 838–847 (2012).CrossRefPubMedPubMedCentral
38.
go back to reference Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell, 117(4), 495–502 (2004).CrossRefPubMed Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell, 117(4), 495–502 (2004).CrossRefPubMed
39.
go back to reference Khan NA, Auranen M, Paetau I et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med, 6(6), 721–731 (2014).CrossRef Khan NA, Auranen M, Paetau I et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med, 6(6), 721–731 (2014).CrossRef
40.
go back to reference Tyynismaa H, Mjosund KP, Wanrooij S et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A, 102(49), 17687–17692 (2005).CrossRefPubMedPubMedCentral Tyynismaa H, Mjosund KP, Wanrooij S et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A, 102(49), 17687–17692 (2005).CrossRefPubMedPubMedCentral
41.
go back to reference van de Weijer T, Phielix E, Bilet L et al. Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes, 64(4), 1193–1201 (2015).CrossRefPubMed van de Weijer T, Phielix E, Bilet L et al. Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes, 64(4), 1193–1201 (2015).CrossRefPubMed
42.
go back to reference Yatsuga S, Suomalainen A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum Mol Genet, 21(3), 526–535 (2012).CrossRefPubMed Yatsuga S, Suomalainen A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum Mol Genet, 21(3), 526–535 (2012).CrossRefPubMed
43.
go back to reference Viscomi C, Bottani E, Civiletto G et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1alpha axis. Cell Metab, 14(1), 80–90 (2011).CrossRefPubMedPubMedCentral Viscomi C, Bottani E, Civiletto G et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1alpha axis. Cell Metab, 14(1), 80–90 (2011).CrossRefPubMedPubMedCentral
44.
go back to reference Reisman SA, Lee CY, Meyer CJ, Proksch JW, Sonis ST, Ward KW. Topical application of the synthetic triterpenoid RTA 408 protects mice from radiation-induced dermatitis. Radiat Res, 181(5), 512–520 (2014).CrossRefPubMed Reisman SA, Lee CY, Meyer CJ, Proksch JW, Sonis ST, Ward KW. Topical application of the synthetic triterpenoid RTA 408 protects mice from radiation-induced dermatitis. Radiat Res, 181(5), 512–520 (2014).CrossRefPubMed
45.
go back to reference Shen W, Liu K, Tian C et al. R-alpha-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia, 51(1), 165–174 (2008).CrossRefPubMed Shen W, Liu K, Tian C et al. R-alpha-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia, 51(1), 165–174 (2008).CrossRefPubMed
46.
go back to reference Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K et al. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet, 19(10), 1974–1984 (2010).CrossRefPubMed Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K et al. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet, 19(10), 1974–1984 (2010).CrossRefPubMed
47.
go back to reference Santra S, Gilkerson RW, Davidson M, Schon EA. Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol, 56(5), 662–669 (2004).CrossRefPubMed Santra S, Gilkerson RW, Davidson M, Schon EA. Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol, 56(5), 662–669 (2004).CrossRefPubMed
48.
go back to reference Ahola S, Auranen M, Isohanni P et al. Modified Atkins diet induces subacute selective ragged-red-fiber lysis in mitochondrial myopathy patients. EMBO Mol Med, 8(11), 1234–1247 (2016).CrossRefPubMedPubMedCentral Ahola S, Auranen M, Isohanni P et al. Modified Atkins diet induces subacute selective ragged-red-fiber lysis in mitochondrial myopathy patients. EMBO Mol Med, 8(11), 1234–1247 (2016).CrossRefPubMedPubMedCentral
49.
go back to reference Alam NM, Mills WCt, Wong AA, Douglas RM, Szeto HH, Prusky GT. A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech, 8(7), 701–710 (2015).CrossRefPubMedPubMedCentral Alam NM, Mills WCt, Wong AA, Douglas RM, Szeto HH, Prusky GT. A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech, 8(7), 701–710 (2015).CrossRefPubMedPubMedCentral
50.
go back to reference Szeto HH, Birk AV. Serendipity and the Discovery of Novel Compounds That Restore Mitochondrial Plasticity. Clin Pharmacol Ther, 96(6), 672–683 (2014).CrossRefPubMedPubMedCentral Szeto HH, Birk AV. Serendipity and the Discovery of Novel Compounds That Restore Mitochondrial Plasticity. Clin Pharmacol Ther, 96(6), 672–683 (2014).CrossRefPubMedPubMedCentral
51.
go back to reference Siegel MP, Kruse SE, Percival JM et al. Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell, 12(5), 763–771 (2013).CrossRefPubMedPubMedCentral Siegel MP, Kruse SE, Percival JM et al. Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell, 12(5), 763–771 (2013).CrossRefPubMedPubMedCentral
52.
go back to reference Karaa A, Haas R, Goldstein A, Vockley J, Weaver WD, Cohen BH. Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology, 90(14), e1212-e1221 (2018).CrossRefPubMedPubMedCentral Karaa A, Haas R, Goldstein A, Vockley J, Weaver WD, Cohen BH. Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology, 90(14), e1212-e1221 (2018).CrossRefPubMedPubMedCentral
53.
go back to reference Koene S, Spaans E, Van Bortel L et al. KH176 under development for rare mitochondrial disease: a first in man randomized controlled clinical trial in healthy male volunteers. Orphanet J Rare Dis, 12(1), 163 (2017).CrossRefPubMedPubMedCentral Koene S, Spaans E, Van Bortel L et al. KH176 under development for rare mitochondrial disease: a first in man randomized controlled clinical trial in healthy male volunteers. Orphanet J Rare Dis, 12(1), 163 (2017).CrossRefPubMedPubMedCentral
54.
go back to reference Taivassalo T, Shoubridge EA, Chen J et al. Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol, 50(2), 133–141 (2001).CrossRefPubMed Taivassalo T, Shoubridge EA, Chen J et al. Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol, 50(2), 133–141 (2001).CrossRefPubMed
55.
go back to reference Jeppesen TD, Schwartz M, Olsen DB et al. Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain, 129(Pt 12), 3402–3412 (2006).CrossRefPubMed Jeppesen TD, Schwartz M, Olsen DB et al. Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain, 129(Pt 12), 3402–3412 (2006).CrossRefPubMed
56.
go back to reference Taivassalo T, Gardner JL, Taylor RW et al. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain, 129(Pt 12), 3391–3401 (2006).CrossRefPubMed Taivassalo T, Gardner JL, Taylor RW et al. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain, 129(Pt 12), 3391–3401 (2006).CrossRefPubMed
57.
go back to reference Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain, 126(Pt 2), 413–423 (2003).CrossRefPubMed Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain, 126(Pt 2), 413–423 (2003).CrossRefPubMed
58.
go back to reference Cejudo P, Bautista J, Montemayor T et al. Exercise training in mitochondrial myopathy: a randomized controlled trial. Muscle Nerve, 32(3), 342–350 (2005).CrossRefPubMed Cejudo P, Bautista J, Montemayor T et al. Exercise training in mitochondrial myopathy: a randomized controlled trial. Muscle Nerve, 32(3), 342–350 (2005).CrossRefPubMed
59.
go back to reference Murphy JL, Blakely EL, Schaefer AM et al. Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain, 131(Pt 11), 2832–2840 (2008).CrossRefPubMed Murphy JL, Blakely EL, Schaefer AM et al. Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain, 131(Pt 11), 2832–2840 (2008).CrossRefPubMed
60.
go back to reference Bates MGD, Newman JH, Jakovljevic DG et al. Defining cardiac adaptations and safety of endurance training in patients with m.3243A>G-related mitochondrial disease()()(). Int J Cardiol, 168(4), 3599–3608 (2013).CrossRefPubMedPubMedCentral Bates MGD, Newman JH, Jakovljevic DG et al. Defining cardiac adaptations and safety of endurance training in patients with m.3243A>G-related mitochondrial disease()()(). Int J Cardiol, 168(4), 3599–3608 (2013).CrossRefPubMedPubMedCentral
61.
62.
go back to reference Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res, 36(12), 3926–3938 (2008).CrossRefPubMedPubMedCentral Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res, 36(12), 3926–3938 (2008).CrossRefPubMedPubMedCentral
63.
go back to reference Bacman SR, Williams SL, Pinto M, Moraes CT. The Use of Mitochondria-Targeted Endonucleases to Manipulate mtDNA. Methods Enzymol, 547, 373–397 (2014).CrossRefPubMedPubMedCentral Bacman SR, Williams SL, Pinto M, Moraes CT. The Use of Mitochondria-Targeted Endonucleases to Manipulate mtDNA. Methods Enzymol, 547, 373–397 (2014).CrossRefPubMedPubMedCentral
64.
go back to reference Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med, 6(4), 458–466 (2014).CrossRefPubMedPubMedCentral Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med, 6(4), 458–466 (2014).CrossRefPubMedPubMedCentral
65.
go back to reference Hashimoto M, Bacman SR, Peralta S et al. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases. Mol Ther, 23(10), 1592–1599 (2015).CrossRefPubMedPubMedCentral Hashimoto M, Bacman SR, Peralta S et al. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases. Mol Ther, 23(10), 1592–1599 (2015).CrossRefPubMedPubMedCentral
66.
go back to reference Gammage PA, Gaude E, Van Haute L et al. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res, 44(16), 7804–7816 (2016).CrossRefPubMedPubMedCentral Gammage PA, Gaude E, Van Haute L et al. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res, 44(16), 7804–7816 (2016).CrossRefPubMedPubMedCentral
67.
68.
go back to reference Garone C, Garcia-Diaz B, Emmanuele V et al. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med, 6(8), 1016–1027 (2014).CrossRefPubMedPubMedCentral Garone C, Garcia-Diaz B, Emmanuele V et al. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med, 6(8), 1016–1027 (2014).CrossRefPubMedPubMedCentral
69.
70.
go back to reference Smeets HJ, Sallevelt SC, Dreesen JC, de Die-Smulders CE, de Coo IF. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis. Ann N Y Acad Sci, 1350, 29–36 (2015).CrossRefPubMed Smeets HJ, Sallevelt SC, Dreesen JC, de Die-Smulders CE, de Coo IF. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis. Ann N Y Acad Sci, 1350, 29–36 (2015).CrossRefPubMed
71.
go back to reference Craven L, Tuppen HA, Greggains GD et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature, 465(7294), 82–85 (2010).CrossRefPubMedPubMedCentral Craven L, Tuppen HA, Greggains GD et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature, 465(7294), 82–85 (2010).CrossRefPubMedPubMedCentral
72.
go back to reference Lyndsey C, Charlotte LA, Robert WT, Doug MT. Recent Advances in Mitochondrial Disease. Annu Rev Genomics Hum Genet, 18(1), 257–275 (2017).CrossRef Lyndsey C, Charlotte LA, Robert WT, Doug MT. Recent Advances in Mitochondrial Disease. Annu Rev Genomics Hum Genet, 18(1), 257–275 (2017).CrossRef
73.
go back to reference Yamada M, Emmanuele V, Sanchez-Quintero Maria J et al. Genetic Drift Can Compromise Mitochondrial Replacement by Nuclear Transfer in Human Oocytes. Cell Stem Cell, 18(6), 749–754 (2016).CrossRefPubMed Yamada M, Emmanuele V, Sanchez-Quintero Maria J et al. Genetic Drift Can Compromise Mitochondrial Replacement by Nuclear Transfer in Human Oocytes. Cell Stem Cell, 18(6), 749–754 (2016).CrossRefPubMed
74.
go back to reference Kang E, Wu J, Gutierrez NM et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature, 540(7632), 270–275 (2016).CrossRefPubMed Kang E, Wu J, Gutierrez NM et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature, 540(7632), 270–275 (2016).CrossRefPubMed
75.
go back to reference Hyslop LA, Blakeley P, Craven L et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature, 534(7607), 383–386 (2016).CrossRefPubMedPubMedCentral Hyslop LA, Blakeley P, Craven L et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature, 534(7607), 383–386 (2016).CrossRefPubMedPubMedCentral
76.
go back to reference Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF. Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat Biotechnol, 35, 1059 (2017).CrossRefPubMed Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF. Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat Biotechnol, 35, 1059 (2017).CrossRefPubMed
77.
go back to reference Craven L, Herbert M, Murdoch A, Murphy J, Lawford Davies J, Turnbull DM. Research into Policy: A Brief History of Mitochondrial Donation. Stem Cells, 34(2), 265–267 (2016).CrossRefPubMed Craven L, Herbert M, Murdoch A, Murphy J, Lawford Davies J, Turnbull DM. Research into Policy: A Brief History of Mitochondrial Donation. Stem Cells, 34(2), 265–267 (2016).CrossRefPubMed
Metadata
Title
Diagnosis and Treatment of Mitochondrial Myopathies
Authors
Syeda T. Ahmed
Lyndsey Craven
Oliver M. Russell
Doug M. Turnbull
Amy E. Vincent
Publication date
01-10-2018
Publisher
Springer International Publishing
Published in
Neurotherapeutics / Issue 4/2018
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-018-00674-4

Other articles of this Issue 4/2018

Neurotherapeutics 4/2018 Go to the issue