Skip to main content
Top
Published in: Neurotherapeutics 1/2018

01-01-2018 | Review

Microbiota Signaling Pathways that Influence Neurologic Disease

Authors: Laura M. Cox, Howard L. Weiner

Published in: Neurotherapeutics | Issue 1/2018

Login to get access

Abstract

Though seemingly distinct and autonomous, emerging evidence suggests there is a bidirectional interaction between the intestinal microbiota and the brain. This crosstalk may play a substantial role in neurologic diseases, including anxiety, depression, autism, multiple sclerosis, Parkinson’s disease, and, potentially, Alzheimer’s disease. Long hypothesized by Metchnikoff and others well over 100 years ago, investigations into the mind–microbe axis is now seeing a rapid resurgence of research. If specific pathways and mechanisms of interaction are understood, it could have broad therapeutic potential, as the microbiome is environmentally acquired and can be modified to promote health. This review will discuss immune, endocrine, and neural system pathways that interconnect the gut microbiota to central nervous system and discuss how these findings might be applied to neurologic disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sender, R., S. Fuchs, and R. Milo. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164(3): p. 337-340.PubMedCrossRef Sender, R., S. Fuchs, and R. Milo. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164(3): p. 337-340.PubMedCrossRef
2.
3.
go back to reference Laukens, D., B.M. Brinkman, J. Raes, M. De Vos, and P. Vandenabeele, Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol. Rev., 2016. 40(1): p. 117-132.PubMedCrossRef Laukens, D., B.M. Brinkman, J. Raes, M. De Vos, and P. Vandenabeele, Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol. Rev., 2016. 40(1): p. 117-132.PubMedCrossRef
4.
go back to reference Tremaroli, V. and F. Bäckhed, Functional interactions between the gut microbiota and host metabolism. Nature, 2012. 489(7415): p. 242-249.PubMedCrossRef Tremaroli, V. and F. Bäckhed, Functional interactions between the gut microbiota and host metabolism. Nature, 2012. 489(7415): p. 242-249.PubMedCrossRef
6.
go back to reference Belkaid, Y. and O.J. Harrison, Homeostatic immunity and the microbiota. Immunity, 2017. 46(4): p. 562-576.PubMedCrossRef Belkaid, Y. and O.J. Harrison, Homeostatic immunity and the microbiota. Immunity, 2017. 46(4): p. 562-576.PubMedCrossRef
8.
go back to reference Collins, S.M., M. Surette, and P. Bercik, The interplay between the intestinal microbiota and the brain. Nature Rev Microbiol, 2012. 10(11): p. 735-742.CrossRef Collins, S.M., M. Surette, and P. Bercik, The interplay between the intestinal microbiota and the brain. Nature Rev Microbiol, 2012. 10(11): p. 735-742.CrossRef
9.
go back to reference Markle, J.G.M., D.N. Frank, S. Mortin-Toth, et al., Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 2013. 339(6123): p. 1084-1088.PubMedCrossRef Markle, J.G.M., D.N. Frank, S. Mortin-Toth, et al., Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 2013. 339(6123): p. 1084-1088.PubMedCrossRef
10.
go back to reference Sayin, S.I., A. Wahlström, J. Felin, et al., Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab, 2013. 17(2): p. 225-235.PubMedCrossRef Sayin, S.I., A. Wahlström, J. Felin, et al., Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab, 2013. 17(2): p. 225-235.PubMedCrossRef
11.
go back to reference Haiser, H.J. and P.J. Turnbaugh, Is it time for a metagenomic basis of therapeutics? Science, 2012. 336(6086): p. 1253-1255.PubMedCrossRef Haiser, H.J. and P.J. Turnbaugh, Is it time for a metagenomic basis of therapeutics? Science, 2012. 336(6086): p. 1253-1255.PubMedCrossRef
12.
go back to reference Yatsunenko, T., F.E. Rey, M.J. Manary, et al., Human gut microbiome viewed across age and geography. Nature, 2012. 486: p. 222-227.PubMedPubMedCentral Yatsunenko, T., F.E. Rey, M.J. Manary, et al., Human gut microbiome viewed across age and geography. Nature, 2012. 486: p. 222-227.PubMedPubMedCentral
14.
go back to reference Wassenaar, T. and P. Panigrahi, Is a foetus developing in a sterile environment? Lett Appl Microbiol 2014. 59(6): p. 572-579.PubMedCrossRef Wassenaar, T. and P. Panigrahi, Is a foetus developing in a sterile environment? Lett Appl Microbiol 2014. 59(6): p. 572-579.PubMedCrossRef
15.
go back to reference Fardini, Y., P. Chung, R. Dumm, N. Joshi, and Y.W. Han, Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun, 2010. 78(4): p. 1789-1796.PubMedPubMedCentralCrossRef Fardini, Y., P. Chung, R. Dumm, N. Joshi, and Y.W. Han, Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun, 2010. 78(4): p. 1789-1796.PubMedPubMedCentralCrossRef
17.
go back to reference Dominguez-Bello, M.G., E.K. Costello, M. Contreras, et al., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A, 2010. 107(26): p. 11971-11975.PubMedPubMedCentralCrossRef Dominguez-Bello, M.G., E.K. Costello, M. Contreras, et al., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A, 2010. 107(26): p. 11971-11975.PubMedPubMedCentralCrossRef
18.
go back to reference Zeissig, S. and R.S. Blumberg, Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat Immunol, 2014. 15(4): p. 307-310.PubMedCrossRef Zeissig, S. and R.S. Blumberg, Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat Immunol, 2014. 15(4): p. 307-310.PubMedCrossRef
19.
go back to reference Cox, L.M., S. Yamanishi, J. Sohn, et al., Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 2014. 158(4): p. 705-721.PubMedPubMedCentralCrossRef Cox, L.M., S. Yamanishi, J. Sohn, et al., Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 2014. 158(4): p. 705-721.PubMedPubMedCentralCrossRef
20.
go back to reference Chung, H., S.J. Pamp, J.A. Hill, et al., Gut immune maturation depends on colonization with a host-specific microbiota. Cell, 2012. 149(7): p. 1578-1593.PubMedPubMedCentralCrossRef Chung, H., S.J. Pamp, J.A. Hill, et al., Gut immune maturation depends on colonization with a host-specific microbiota. Cell, 2012. 149(7): p. 1578-1593.PubMedPubMedCentralCrossRef
21.
go back to reference Walker, W.A., Initial intestinal colonization in the human infant and immune homeostasis. Ann Nutr Metab, 2013. 63(s2): p. 8-15.PubMedCrossRef Walker, W.A., Initial intestinal colonization in the human infant and immune homeostasis. Ann Nutr Metab, 2013. 63(s2): p. 8-15.PubMedCrossRef
22.
go back to reference Borre, Y.E., G.W. O’Keeffe, G. Clarke, et al., Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 2014. 20(9): p. 509-518.PubMedCrossRef Borre, Y.E., G.W. O’Keeffe, G. Clarke, et al., Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 2014. 20(9): p. 509-518.PubMedCrossRef
23.
go back to reference Stilling, R.M., T.G. Dinan, and J.F. Cryan, Microbial genes, brain & behaviour—epigenetic regulation of the gut–brain axis. Genes Brain Behav 2013. 13(1): p. 69-86.PubMedCrossRef Stilling, R.M., T.G. Dinan, and J.F. Cryan, Microbial genes, brain & behaviour—epigenetic regulation of the gut–brain axis. Genes Brain Behav 2013. 13(1): p. 69-86.PubMedCrossRef
24.
go back to reference Spor, A., O. Koren, and R. Ley, Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011. 9(4): p. 279-290.PubMedCrossRef Spor, A., O. Koren, and R. Ley, Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011. 9(4): p. 279-290.PubMedCrossRef
25.
go back to reference Dąbrowska, K. and W. Witkiewicz, Correlations of host genetics and gut microbiome composition. Front Microbiol 2016. 7(1357). Dąbrowska, K. and W. Witkiewicz, Correlations of host genetics and gut microbiome composition. Front Microbiol 2016. 7(1357).
26.
go back to reference Ridaura, V.K., J.J. Faith, F.E. Rey, et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 2013. 341(6150): p. 1079.CrossRef Ridaura, V.K., J.J. Faith, F.E. Rey, et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 2013. 341(6150): p. 1079.CrossRef
27.
go back to reference Sommer, F. and F. Bäckhed, The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 2013. 11: p. 227.PubMedCrossRef Sommer, F. and F. Bäckhed, The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 2013. 11: p. 227.PubMedCrossRef
28.
go back to reference Costello, E., C. Lauber, M. Hamady, et al., Bacterial community variation in human body habitats across space and time. Science, 2009. 326: p. 1694-1697.PubMedPubMedCentralCrossRef Costello, E., C. Lauber, M. Hamady, et al., Bacterial community variation in human body habitats across space and time. Science, 2009. 326: p. 1694-1697.PubMedPubMedCentralCrossRef
29.
go back to reference Costello, E.K., K. Stagaman, L. Dethlefsen, B.J.M. Bohannan, and D.A. Relman, The application of ecological theory toward an understanding of the human microbiome. Science, 2012. 336(6086): p. 1255-1262.PubMedPubMedCentralCrossRef Costello, E.K., K. Stagaman, L. Dethlefsen, B.J.M. Bohannan, and D.A. Relman, The application of ecological theory toward an understanding of the human microbiome. Science, 2012. 336(6086): p. 1255-1262.PubMedPubMedCentralCrossRef
30.
go back to reference David, L.A., C.F. Maurice, R.N. Carmody, et al., Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014. 505(7484): p. 559-563.PubMedCrossRef David, L.A., C.F. Maurice, R.N. Carmody, et al., Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014. 505(7484): p. 559-563.PubMedCrossRef
32.
go back to reference Levy, M., A.A. Kolodziejczyk, C.A. Thaiss, and E. Elinav, Dysbiosis and the immune system. Nat Rev Immunol 2017; 17: 219-232.PubMedCrossRef Levy, M., A.A. Kolodziejczyk, C.A. Thaiss, and E. Elinav, Dysbiosis and the immune system. Nat Rev Immunol 2017; 17: 219-232.PubMedCrossRef
33.
go back to reference Dethlefsen, L., S. Huse, M.L. Sogin, and D.A. Relman, The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLOS Biol, 2008. 6(11): p. e280. Dethlefsen, L., S. Huse, M.L. Sogin, and D.A. Relman, The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLOS Biol, 2008. 6(11): p. e280.
34.
go back to reference Matamoros, S., C. Gras-Leguen, F. Le Vacon, G. Potel, and M.-F. de La Cochetiere, Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 2013. 21(4): p. 167-173.PubMedCrossRef Matamoros, S., C. Gras-Leguen, F. Le Vacon, G. Potel, and M.-F. de La Cochetiere, Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 2013. 21(4): p. 167-173.PubMedCrossRef
35.
go back to reference Samuel, B.S., A. Shaito, T. Motoike, et al., Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A, 2008. 105(43): p. 16767-16772.PubMedPubMedCentralCrossRef Samuel, B.S., A. Shaito, T. Motoike, et al., Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A, 2008. 105(43): p. 16767-16772.PubMedPubMedCentralCrossRef
36.
go back to reference Clemmensen, C., T.D. Müller, S.C. Woods, et al., Gut–brain cross-talk in metabolic control. Cell, 2017. 168(5): p. 758-774.PubMedCrossRef Clemmensen, C., T.D. Müller, S.C. Woods, et al., Gut–brain cross-talk in metabolic control. Cell, 2017. 168(5): p. 758-774.PubMedCrossRef
38.
go back to reference Cryan, J.F. and T.G. Dinan, Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012. 13(10): p. 701-712.PubMedCrossRef Cryan, J.F. and T.G. Dinan, Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012. 13(10): p. 701-712.PubMedCrossRef
39.
go back to reference Foster, J.A. and K.-A.M. Neufeld, Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci, 2013. 36(5): p. 305-312.PubMedCrossRef Foster, J.A. and K.-A.M. Neufeld, Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci, 2013. 36(5): p. 305-312.PubMedCrossRef
40.
go back to reference Bravo, J.A., P. Forsythe, M.V. Chew, et al., Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 2011. 108(38): p. 16050-16055.PubMedPubMedCentralCrossRef Bravo, J.A., P. Forsythe, M.V. Chew, et al., Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 2011. 108(38): p. 16050-16055.PubMedPubMedCentralCrossRef
41.
go back to reference Bercik, P., A.J. Park, D. Sinclair, et al., The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol Motil 2011. 23(12): p. 1132-1139.PubMedPubMedCentralCrossRef Bercik, P., A.J. Park, D. Sinclair, et al., The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol Motil 2011. 23(12): p. 1132-1139.PubMedPubMedCentralCrossRef
42.
go back to reference Kunze, W.A., Y.K. Mao, B. Wang, et al., Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 2009. 13(8b): p. 2261-2270.PubMedCrossRef Kunze, W.A., Y.K. Mao, B. Wang, et al., Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 2009. 13(8b): p. 2261-2270.PubMedCrossRef
43.
go back to reference Bellono, N.W., J.R. Bayrer, D.B. Leitch, et al., Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell, 2017. 170(1): p. 185-198. e16.PubMedCrossRef Bellono, N.W., J.R. Bayrer, D.B. Leitch, et al., Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell, 2017. 170(1): p. 185-198. e16.PubMedCrossRef
44.
go back to reference Brierley, S.M. and D.R. Linden, Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol 2014. 11(10): p. 611-627.PubMedCrossRef Brierley, S.M. and D.R. Linden, Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol 2014. 11(10): p. 611-627.PubMedCrossRef
45.
go back to reference Farup, P.G., K. Rudi, and K. Hestad, Faecal short-chain fatty acids-a diagnostic biomarker for irritable bowel syndrome? BMC Gastroenterol 2016. 16(1): p. 51.PubMedPubMedCentralCrossRef Farup, P.G., K. Rudi, and K. Hestad, Faecal short-chain fatty acids-a diagnostic biomarker for irritable bowel syndrome? BMC Gastroenterol 2016. 16(1): p. 51.PubMedPubMedCentralCrossRef
46.
go back to reference Tanaka, K., M. Budd, M. Efron, and K. Isselbacher, Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sci U S A 1966. 56(1): p. 236-242.PubMedPubMedCentralCrossRef Tanaka, K., M. Budd, M. Efron, and K. Isselbacher, Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sci U S A 1966. 56(1): p. 236-242.PubMedPubMedCentralCrossRef
47.
go back to reference Fujinaga, Y., Y. Sugawara, and T. Matsumura. Uptake of botulinum neurotoxin in the intestine, in botulinum neurotoxins, A. Rummel and T. Binz, Editors. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 45–59. Fujinaga, Y., Y. Sugawara, and T. Matsumura. Uptake of botulinum neurotoxin in the intestine, in botulinum neurotoxins, A. Rummel and T. Binz, Editors. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 45–59.
48.
go back to reference Brown, N. and S. Desai, Infantile botulism: a case report and review. J Emerg Med 2013. 45(6): p. 842-845.PubMedCrossRef Brown, N. and S. Desai, Infantile botulism: a case report and review. J Emerg Med 2013. 45(6): p. 842-845.PubMedCrossRef
49.
go back to reference Sudo, N., Y. Chida, Y. Aiba, et al., Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 2004. 558(1): p. 263-275.PubMedPubMedCentralCrossRef Sudo, N., Y. Chida, Y. Aiba, et al., Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 2004. 558(1): p. 263-275.PubMedPubMedCentralCrossRef
50.
go back to reference Webster Marketon, J. and E. Sternberg, The glucocorticoid receptor: a revisited target for toxins. Vol. 2. 2010. 1357-80. Webster Marketon, J. and E. Sternberg, The glucocorticoid receptor: a revisited target for toxins. Vol. 2. 2010. 1357-80.
51.
go back to reference Reichardt, H.M., T. Umland, A. Bauer, O. Kretz, and G. Schütz, Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock. Mol Cell Biol 2000. 20(23): p. 9009-9017.PubMedPubMedCentralCrossRef Reichardt, H.M., T. Umland, A. Bauer, O. Kretz, and G. Schütz, Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock. Mol Cell Biol 2000. 20(23): p. 9009-9017.PubMedPubMedCentralCrossRef
52.
go back to reference Wang, Y. and L.H. Kasper, The role of microbiome in central nervous system disorders. Brain Behav Immun 2014. 38(C): p. 1-12.PubMedCrossRef Wang, Y. and L.H. Kasper, The role of microbiome in central nervous system disorders. Brain Behav Immun 2014. 38(C): p. 1-12.PubMedCrossRef
53.
go back to reference Ichimura, A., A. Hirasawa, T. Hara, and G. Tsujimoto, Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Other Lipid Mediat, 2009. 89: p. 82-8.PubMedCrossRef Ichimura, A., A. Hirasawa, T. Hara, and G. Tsujimoto, Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostaglandins Other Lipid Mediat, 2009. 89: p. 82-8.PubMedCrossRef
54.
go back to reference Honda, K. and D.R. Littman, The microbiota in adaptive immune homeostasis and disease. Nature, 2016. 535(7610): p. 75-84.PubMedCrossRef Honda, K. and D.R. Littman, The microbiota in adaptive immune homeostasis and disease. Nature, 2016. 535(7610): p. 75-84.PubMedCrossRef
55.
go back to reference Kamada, N., S.-U. Seo, G.Y. Chen, and G. Núñez, Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol, 2013. 13(5): p. 321-335.PubMedCrossRef Kamada, N., S.-U. Seo, G.Y. Chen, and G. Núñez, Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol, 2013. 13(5): p. 321-335.PubMedCrossRef
56.
57.
go back to reference Ivanov, I.I. and D.R. Littman, Segmented filamentous bacteria take the stage. Mucosal Immunol 2010: p. 209–212. Ivanov, I.I. and D.R. Littman, Segmented filamentous bacteria take the stage. Mucosal Immunol 2010: p. 209–212.
58.
go back to reference Atarashi, K.,T. Tanoue, T. Shima, et al., Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011. 331(6015): p. 337-341.PubMedCrossRef Atarashi, K.,T. Tanoue, T. Shima, et al., Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011. 331(6015): p. 337-341.PubMedCrossRef
59.
go back to reference Round, J.L. and S.K. Mazmanian, Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci 2010. 107(27): p. 12204-12209.PubMedPubMedCentralCrossRef Round, J.L. and S.K. Mazmanian, Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci 2010. 107(27): p. 12204-12209.PubMedPubMedCentralCrossRef
61.
go back to reference Robinson, K., R.H. Argent, and J.C. Atherton, The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol 2007. 21(2): p. 237-259.PubMedCrossRef Robinson, K., R.H. Argent, and J.C. Atherton, The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol 2007. 21(2): p. 237-259.PubMedCrossRef
62.
go back to reference Parsot, C. and P.J. Sansonetti, The virulence plasmid of Shigellae: an archipelago of pathogenicity islands?, in Pathogenicity islands and other mobile virulence elements. 1999, American Society of Microbiology. p. 151-165. Parsot, C. and P.J. Sansonetti, The virulence plasmid of Shigellae: an archipelago of pathogenicity islands?, in Pathogenicity islands and other mobile virulence elements. 1999, American Society of Microbiology. p. 151-165.
63.
go back to reference Kaper, J.B., J.L. Mellies, and J.P. Nataro, Pathogenicity islands and other mobile genetic elements of diarrheagenic Escherichia coli, in Pathogenicity islands and other mobile virulence elements. 1999, American Society of Microbiology. p. 33-58. Kaper, J.B., J.L. Mellies, and J.P. Nataro, Pathogenicity islands and other mobile genetic elements of diarrheagenic Escherichia coli, in Pathogenicity islands and other mobile virulence elements. 1999, American Society of Microbiology. p. 33-58.
64.
go back to reference Hill, K.K., G. Xie, B.T. Foley, and T.J. Smith, Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon, 2015. 107(Part A): p. 2-8.PubMedCrossRef Hill, K.K., G. Xie, B.T. Foley, and T.J. Smith, Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon, 2015. 107(Part A): p. 2-8.PubMedCrossRef
66.
go back to reference Louis, P. and H.J. Flint, Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017. 19(1): p. 29-41.PubMedCrossRef Louis, P. and H.J. Flint, Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017. 19(1): p. 29-41.PubMedCrossRef
67.
go back to reference Wong, J.M.W., R. de Souza, C.W.C. Kendall, A. Emam, and D.J.A. Jenkins, Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol, 2006. 40(3): p. 235-43.PubMedCrossRef Wong, J.M.W., R. de Souza, C.W.C. Kendall, A. Emam, and D.J.A. Jenkins, Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol, 2006. 40(3): p. 235-43.PubMedCrossRef
68.
go back to reference Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed, From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 2016. 165(6): p. 1332-1345.PubMedCrossRef Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed, From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 2016. 165(6): p. 1332-1345.PubMedCrossRef
69.
go back to reference Louis, P. and H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett, 2009. 294(1): p. 1-8.PubMedCrossRef Louis, P. and H.J. Flint, Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett, 2009. 294(1): p. 1-8.PubMedCrossRef
70.
go back to reference Erny, D., A.L.H. de Angelis, D. Jaitin, et al., Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015. 18(7): p. 965-977. Erny, D., A.L.H. de Angelis, D. Jaitin, et al., Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015. 18(7): p. 965-977.
71.
go back to reference Chang, P.V., L. Hao, S. Offermanns, and R. Medzhitov, The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci, 2014. 111(6): p. 2247-2252.PubMedPubMedCentralCrossRef Chang, P.V., L. Hao, S. Offermanns, and R. Medzhitov, The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci, 2014. 111(6): p. 2247-2252.PubMedPubMedCentralCrossRef
72.
go back to reference Singh, N., A. Gurav, S. Sivaprakasam, et al., Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 2014. 40(1): p. 128-139.PubMedPubMedCentralCrossRef Singh, N., A. Gurav, S. Sivaprakasam, et al., Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 2014. 40(1): p. 128-139.PubMedPubMedCentralCrossRef
73.
go back to reference Sampson, T.R., J.W. Debelius, T. Thron, et al., Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016. 167(6): p. 1469-1480. e12.PubMedPubMedCentralCrossRef Sampson, T.R., J.W. Debelius, T. Thron, et al., Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016. 167(6): p. 1469-1480. e12.PubMedPubMedCentralCrossRef
74.
go back to reference Prinz, M. and J. Priller, Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 2014. 15(5): p. 300-312.PubMedCrossRef Prinz, M. and J. Priller, Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 2014. 15(5): p. 300-312.PubMedCrossRef
75.
go back to reference Rothhammer, V., I.D. Mascanfroni, L. Bunse, et al., Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and CNS inflammation via the aryl hydrocarbon receptor. Nat Med, 2016. 22(6): p. 586.PubMedPubMedCentralCrossRef Rothhammer, V., I.D. Mascanfroni, L. Bunse, et al., Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and CNS inflammation via the aryl hydrocarbon receptor. Nat Med, 2016. 22(6): p. 586.PubMedPubMedCentralCrossRef
76.
go back to reference Rothhammer, V. and F.J. Quintana, Environmental control of autoimmune inflammation in the central nervous system. Curr Opin Immunol, 2016. 43: p. 46-53.PubMedPubMedCentralCrossRef Rothhammer, V. and F.J. Quintana, Environmental control of autoimmune inflammation in the central nervous system. Curr Opin Immunol, 2016. 43: p. 46-53.PubMedPubMedCentralCrossRef
77.
go back to reference Myint, A.-M., Y.K. Kim, R. Verkerk, et al., Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 2007. 98(1): p. 143-151.PubMedCrossRef Myint, A.-M., Y.K. Kim, R. Verkerk, et al., Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 2007. 98(1): p. 143-151.PubMedCrossRef
78.
go back to reference Clarke, G., S. Grenham, P. Scully, et al., The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 2013. 18(6): p. 666.PubMedCrossRef Clarke, G., S. Grenham, P. Scully, et al., The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 2013. 18(6): p. 666.PubMedCrossRef
79.
go back to reference Desbonnet, L., G. Clarke, A. Traplin, et al., Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun, 2015. 48: p. 165-173.PubMedCrossRef Desbonnet, L., G. Clarke, A. Traplin, et al., Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun, 2015. 48: p. 165-173.PubMedCrossRef
80.
go back to reference Berer, K., M. Mues, M. Koutrolos, et al., Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 2011. 479(7374): p. 538.PubMedCrossRef Berer, K., M. Mues, M. Koutrolos, et al., Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 2011. 479(7374): p. 538.PubMedCrossRef
81.
go back to reference Lee, Y.K., J.S. Menezes, Y. Umesaki, and S.K. Mazmanian, Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A, 2011. 108(Suppl. 1): p. 4615-4622.PubMedCrossRef Lee, Y.K., J.S. Menezes, Y. Umesaki, and S.K. Mazmanian, Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A, 2011. 108(Suppl. 1): p. 4615-4622.PubMedCrossRef
82.
go back to reference Ochoa-Reparaz, J., D.W. Mielcarz, L.E. Ditrio, et al., Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 2009. 183(10): p. 6041-6050.PubMedCrossRef Ochoa-Reparaz, J., D.W. Mielcarz, L.E. Ditrio, et al., Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 2009. 183(10): p. 6041-6050.PubMedCrossRef
83.
go back to reference Yokote, H., S. Miyake, J.L. Croxford, et al., NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 2010. 173(6): p. 1714-1723.CrossRef Yokote, H., S. Miyake, J.L. Croxford, et al., NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 2010. 173(6): p. 1714-1723.CrossRef
84.
go back to reference Colpitts, S.L., E.J. Kasper, A. Keever, et al., A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes, 2017. 137(5): p. 561-573. Colpitts, S.L., E.J. Kasper, A. Keever, et al., A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes, 2017. 137(5): p. 561-573.
85.
go back to reference Alonso, A., Antibiotic use and risk of multiple sclerosis. Am J Epidemiol, 2006. 163(11): p. 997-1002.PubMedCrossRef Alonso, A., Antibiotic use and risk of multiple sclerosis. Am J Epidemiol, 2006. 163(11): p. 997-1002.PubMedCrossRef
86.
go back to reference Norgaard, M., R.B. Nielsen, J.B. Jacobsen, et al., Use of penicillin and other antibiotics and risk of multiple sclerosis: a population-based case-control study. Am J Epidemiol, 2011. 174(8): p. 945-948.PubMedCrossRef Norgaard, M., R.B. Nielsen, J.B. Jacobsen, et al., Use of penicillin and other antibiotics and risk of multiple sclerosis: a population-based case-control study. Am J Epidemiol, 2011. 174(8): p. 945-948.PubMedCrossRef
87.
go back to reference Ren, J., H. Ni, M. Kim, et al., Allergies, antibiotics use, and multiple sclerosis. Curr Med Res Opin 2017. 167: p. 1-6. Ren, J., H. Ni, M. Kim, et al., Allergies, antibiotics use, and multiple sclerosis. Curr Med Res Opin 2017. 167: p. 1-6.
89.
go back to reference Miyake, S., S. Kim, W. Suda, et al., Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLOS ONE, 2015. 10(9): p. e0137429. Miyake, S., S. Kim, W. Suda, et al., Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLOS ONE, 2015. 10(9): p. e0137429.
90.
go back to reference Cantarel, B.L., E. Waubant, C. Chehoud, et al., Gut microbiota in multiple sclerosis. J Invest Med, 2015. 63(5): p. 729-734.CrossRef Cantarel, B.L., E. Waubant, C. Chehoud, et al., Gut microbiota in multiple sclerosis. J Invest Med, 2015. 63(5): p. 729-734.CrossRef
91.
go back to reference Chen, J., N. Chia, K.R. Kalari, et al., Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 2016. 6. Chen, J., N. Chia, K.R. Kalari, et al., Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 2016. 6.
92.
go back to reference van Passel, M.W.J., R. Kant, E.G. Zoetendal, et al., The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLOS ONE, 2011. 6(3): p. e16876. van Passel, M.W.J., R. Kant, E.G. Zoetendal, et al., The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLOS ONE, 2011. 6(3): p. e16876.
93.
go back to reference Everard, A., C. Belzer, L. Geurts, et al., Crosstalk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A, 2013. 110(22): p. 9066-9071.PubMedPubMedCentralCrossRef Everard, A., C. Belzer, L. Geurts, et al., Crosstalk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A, 2013. 110(22): p. 9066-9071.PubMedPubMedCentralCrossRef
94.
go back to reference Derrien, M., E.E. Vaughan, C.M. Plugge, and W.M. de Vos, Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Micr, 2004. 54(5): p. 1469-1476.CrossRef Derrien, M., E.E. Vaughan, C.M. Plugge, and W.M. de Vos, Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Micr, 2004. 54(5): p. 1469-1476.CrossRef
95.
go back to reference Dubourg, G., F. Cornu, S. Edouard, et al., First isolation of Akkermansia muciniphila in a blood-culture sample. Clin Microbiol Infect 2017;23:682-683.PubMedCrossRef Dubourg, G., F. Cornu, S. Edouard, et al., First isolation of Akkermansia muciniphila in a blood-culture sample. Clin Microbiol Infect 2017;23:682-683.PubMedCrossRef
96.
go back to reference Blais Lecours, P., C. Duchaine, M. Taillefer, et al., Immunogenic properties of archaeal species found in bioaerosols. PLOS ONE, 2011. 6(8): p. e23326. Blais Lecours, P., C. Duchaine, M. Taillefer, et al., Immunogenic properties of archaeal species found in bioaerosols. PLOS ONE, 2011. 6(8): p. e23326.
97.
go back to reference Verma, R., A.K. Verma, V. Ahuja, and J. Paul, Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J Clin Microbiol 2010. 48(11): p. 4279-4282.PubMedPubMedCentralCrossRef Verma, R., A.K. Verma, V. Ahuja, and J. Paul, Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J Clin Microbiol 2010. 48(11): p. 4279-4282.PubMedPubMedCentralCrossRef
98.
go back to reference Samuel, B.S., E.E. Hansen, J.K. Manchester, et al., Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 2007. 104(25): p. 10643-10648.PubMedPubMedCentralCrossRef Samuel, B.S., E.E. Hansen, J.K. Manchester, et al., Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 2007. 104(25): p. 10643-10648.PubMedPubMedCentralCrossRef
99.
go back to reference Yamabe, K., H. Maeda, S. Kokeguchi, et al., Distribution of Archaea in Japanese patients with periodontitis and humoral immune response to the components. FEMS Microbiol Lett 2008. 287(1): p. 69-75.PubMedCrossRef Yamabe, K., H. Maeda, S. Kokeguchi, et al., Distribution of Archaea in Japanese patients with periodontitis and humoral immune response to the components. FEMS Microbiol Lett 2008. 287(1): p. 69-75.PubMedCrossRef
100.
go back to reference Krishnan, L., S. Sad, G.B. Patel, and G.D. Sprott, The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo. J Immunol 2001. 166(3): p. 1885-1893.PubMedCrossRef Krishnan, L., S. Sad, G.B. Patel, and G.D. Sprott, The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo. J Immunol 2001. 166(3): p. 1885-1893.PubMedCrossRef
101.
go back to reference Berer, K., L.A. Gerdes, E. Cekanaviciute, et al., Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A, 2017. 114(40): p. 10719-10724.PubMedPubMedCentralCrossRef Berer, K., L.A. Gerdes, E. Cekanaviciute, et al., Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A, 2017. 114(40): p. 10719-10724.PubMedPubMedCentralCrossRef
102.
go back to reference Cekanaviciute, E., B.B. Yoo, T.F. Runia, et al., Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A, 2017: p. 201711235. Cekanaviciute, E., B.B. Yoo, T.F. Runia, et al., Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A, 2017: p. 201711235.
103.
go back to reference Fasano, A., N.P. Visanji, L.W. Liu, A.E. Lang, and R.F. Pfeiffer, Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol 2015. 14(6): p. 625-639.PubMedCrossRef Fasano, A., N.P. Visanji, L.W. Liu, A.E. Lang, and R.F. Pfeiffer, Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol 2015. 14(6): p. 625-639.PubMedCrossRef
104.
go back to reference Houser, M.C. and M.G. Tansey, The gut-brain axis: is intestinal inflammation a silent driver of Parkinson's disease pathogenesis? NPJ Parkinson's Disease, 2017. 3: p. 1.CrossRef Houser, M.C. and M.G. Tansey, The gut-brain axis: is intestinal inflammation a silent driver of Parkinson's disease pathogenesis? NPJ Parkinson's Disease, 2017. 3: p. 1.CrossRef
105.
go back to reference Chen, H., E.J. Zhao, W. Zhang, et al., Meta-analyses on prevalence of selected Parkinson’s nonmotor symptoms before and after diagnosis. Transl Neurodegener, 2015. 4(1): p. 1.PubMedPubMedCentralCrossRef Chen, H., E.J. Zhao, W. Zhang, et al., Meta-analyses on prevalence of selected Parkinson’s nonmotor symptoms before and after diagnosis. Transl Neurodegener, 2015. 4(1): p. 1.PubMedPubMedCentralCrossRef
106.
go back to reference Shannon, K.M., A. Keshavarzian, H.B. Dodiya, S. Jakate, and J.H. Kordower, Is alpha-synuclein in the colon a biomarker for premotor Parkinson's Disease? Evidence from 3 cases. Mov Disord 2012. 27(6): p. 716-719.PubMedCrossRef Shannon, K.M., A. Keshavarzian, H.B. Dodiya, S. Jakate, and J.H. Kordower, Is alpha-synuclein in the colon a biomarker for premotor Parkinson's Disease? Evidence from 3 cases. Mov Disord 2012. 27(6): p. 716-719.PubMedCrossRef
107.
go back to reference Unger, M.M., J. Spiegel, K.-U. Dillmann, et al., Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord 2016. 32: p. 66-72.PubMedCrossRef Unger, M.M., J. Spiegel, K.-U. Dillmann, et al., Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord 2016. 32: p. 66-72.PubMedCrossRef
108.
go back to reference Hasegawa, S., S. Goto, H. Tsuji, et al., Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLOS ONE, 2015. 10(11): p. e0142164. Hasegawa, S., S. Goto, H. Tsuji, et al., Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLOS ONE, 2015. 10(11): p. e0142164.
109.
go back to reference Scheperjans, F., V. Aho, P.A. Pereira, et al., Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord 2015. 30(3): p. 350-358.PubMedCrossRef Scheperjans, F., V. Aho, P.A. Pereira, et al., Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord 2015. 30(3): p. 350-358.PubMedCrossRef
110.
go back to reference Keshavarzian, A., S.J. Green, P.A. Engen, et al., Colonic bacterial composition in Parkinson's disease. Mov Disord 2015. 30(10): p. 1351-1360.PubMedCrossRef Keshavarzian, A., S.J. Green, P.A. Engen, et al., Colonic bacterial composition in Parkinson's disease. Mov Disord 2015. 30(10): p. 1351-1360.PubMedCrossRef
111.
go back to reference Bercik, P., E. Denou, J. Collins, et al., The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011. 141(2): p. 599-609.e3.PubMedCrossRef Bercik, P., E. Denou, J. Collins, et al., The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011. 141(2): p. 599-609.e3.PubMedCrossRef
112.
go back to reference Sylvia, K.E., C.P. Jewell, N.M. Rendon, E.A. St. John, and G.E. Demas, Sex-specific modulation of the gut microbiome and behavior in Siberian hamsters. Brain Behav Immun 2017. 60(Supplement C): p. 51-62.PubMedCrossRef Sylvia, K.E., C.P. Jewell, N.M. Rendon, E.A. St. John, and G.E. Demas, Sex-specific modulation of the gut microbiome and behavior in Siberian hamsters. Brain Behav Immun 2017. 60(Supplement C): p. 51-62.PubMedCrossRef
113.
go back to reference Autism and Development Disabilities Monitoring Network Surveillance Year 2008 Principal Investigators; Centers for Disease Control and Prevention. Prevalence of autism spectrum disorders: autism and developmental disabilities monitoring network, 14 sites, United States, 2008. MMWR Surveill Summ 2012;61:1-19. Autism and Development Disabilities Monitoring Network Surveillance Year 2008 Principal Investigators; Centers for Disease Control and Prevention. Prevalence of autism spectrum disorders: autism and developmental disabilities monitoring network, 14 sites, United States, 2008. MMWR Surveill Summ 2012;61:1-19.
114.
go back to reference Sandler, R.H., S.M. Finegold, E.R. Bolte, et al., Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 2000. 15(7): p. 429-435.PubMedCrossRef Sandler, R.H., S.M. Finegold, E.R. Bolte, et al., Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 2000. 15(7): p. 429-435.PubMedCrossRef
115.
go back to reference Kohane, I.S., A. McMurry, G. Weber, et al., The co-morbidity burden of children and young adults with autism spectrum disorders. PLOS ONE, 2012. 7(4): p. e33224. Kohane, I.S., A. McMurry, G. Weber, et al., The co-morbidity burden of children and young adults with autism spectrum disorders. PLOS ONE, 2012. 7(4): p. e33224.
116.
go back to reference Adams, J.B., L.J. Johansen, L.D. Powell, D. Quig, and R.A. Rubin, Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol, 2011. 11(1): p. 22.PubMedPubMedCentralCrossRef Adams, J.B., L.J. Johansen, L.D. Powell, D. Quig, and R.A. Rubin, Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol, 2011. 11(1): p. 22.PubMedPubMedCentralCrossRef
117.
go back to reference Hsiao, E.Y., S.W. McBride, S. Hsien, et al., Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013: p. 1451-63. Hsiao, E.Y., S.W. McBride, S. Hsien, et al., Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013: p. 1451-63.
118.
go back to reference Mazmanian, S.K., J.L. Round, and D.L. Kasper, A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008. 453(7195): p. 620.PubMedCrossRef Mazmanian, S.K., J.L. Round, and D.L. Kasper, A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008. 453(7195): p. 620.PubMedCrossRef
Metadata
Title
Microbiota Signaling Pathways that Influence Neurologic Disease
Authors
Laura M. Cox
Howard L. Weiner
Publication date
01-01-2018
Publisher
Springer US
Published in
Neurotherapeutics / Issue 1/2018
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-017-0598-8

Other articles of this Issue 1/2018

Neurotherapeutics 1/2018 Go to the issue