Skip to main content
Top
Published in: Neurotherapeutics 2/2016

01-04-2016 | Review

Enhancing Rehabilitative Therapies with Vagus Nerve Stimulation

Author: Seth A. Hays

Published in: Neurotherapeutics | Issue 2/2016

Login to get access

Abstract

Pathological neural activity could be treated by directing specific plasticity to renormalize circuits and restore function. Rehabilitative therapies aim to promote adaptive circuit changes after neurological disease or injury, but insufficient or maladaptive plasticity often prevents a full recovery. The development of adjunctive strategies that broadly support plasticity to facilitate the benefits of rehabilitative interventions has the potential to improve treatment of a wide range of neurological disorders. Recently, stimulation of the vagus nerve in conjunction with rehabilitation has emerged as one such potential targeted plasticity therapy. Vagus nerve stimulation (VNS) drives activation of neuromodulatory nuclei that are associated with plasticity, including the cholinergic basal forebrain and the noradrenergic locus coeruleus. Repeatedly pairing brief bursts of VNS sensory or motor events drives robust, event-specific plasticity in neural circuits. Animal models of chronic tinnitus, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, and post-traumatic stress disorder benefit from delivery of VNS paired with successful trials during rehabilitative training. Moreover, mounting evidence from pilot clinical trials provides an initial indication that VNS-based targeted plasticity therapies may be effective in patients with neurological diseases and injuries. Here, I provide a discussion of the current uses and potential future applications of VNS-based targeted plasticity therapies in animal models and patients, and outline challenges for clinical implementation.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Hays SA, Rennaker RL, II, Kilgard MP. Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res 2013;207:275-299.PubMedPubMedCentralCrossRef Hays SA, Rennaker RL, II, Kilgard MP. Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res 2013;207:275-299.PubMedPubMedCentralCrossRef
4.
go back to reference Flood JF, Smith GE, Morley JE. Modulation of memory processing by cholecystokinin: Dependence on the vagus nerve. Science 1987;236:832-834.PubMedCrossRef Flood JF, Smith GE, Morley JE. Modulation of memory processing by cholecystokinin: Dependence on the vagus nerve. Science 1987;236:832-834.PubMedCrossRef
5.
go back to reference Flood JF, Morley JE. Effects of bombesin and gastrin-releasing peptide on memory processing. Brain Res 1988;460:314-322.PubMedCrossRef Flood JF, Morley JE. Effects of bombesin and gastrin-releasing peptide on memory processing. Brain Res 1988;460:314-322.PubMedCrossRef
6.
go back to reference Williams C, Jensen RA. Effects of vagotomy on Leu-enkephalin-induced changes in memory storage processes. Physiol Behav 1993;54:659-663.PubMedCrossRef Williams C, Jensen RA. Effects of vagotomy on Leu-enkephalin-induced changes in memory storage processes. Physiol Behav 1993;54:659-663.PubMedCrossRef
7.
go back to reference Jensen RA. Modulation of memory storage processes by peripherally acting pharmacological agents. Proc West Pharmacol Soc 1996;39:85-89.PubMed Jensen RA. Modulation of memory storage processes by peripherally acting pharmacological agents. Proc West Pharmacol Soc 1996;39:85-89.PubMed
8.
go back to reference Talley CP, Clayborn H, Jewel E, McCarty R, Gold PE. Vagotomy attenuates effects of L-glucose but not of D-glucose on spontaneous alternation performance. Physiol Behav 2002;77:243-249.PubMedCrossRef Talley CP, Clayborn H, Jewel E, McCarty R, Gold PE. Vagotomy attenuates effects of L-glucose but not of D-glucose on spontaneous alternation performance. Physiol Behav 2002;77:243-249.PubMedCrossRef
9.
go back to reference Nogueira PJ, Tomaz C, Williams CL. Contribution of the vagus nerve in mediating the memory-facilitating effects of substance P. Behav Brain Res 1994;62:165-169.PubMedCrossRef Nogueira PJ, Tomaz C, Williams CL. Contribution of the vagus nerve in mediating the memory-facilitating effects of substance P. Behav Brain Res 1994;62:165-169.PubMedCrossRef
10.
go back to reference Clark K, Krahl S, Smith D, Jensen R. Post-training unilateral vagal stimulation enhances retention performance in the rat. Neurobiol Learn Mem 1994;63:213-216.CrossRef Clark K, Krahl S, Smith D, Jensen R. Post-training unilateral vagal stimulation enhances retention performance in the rat. Neurobiol Learn Mem 1994;63:213-216.CrossRef
11.
go back to reference Foley JO, DuBois FS. Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers. J Comp Neurol 1937;67:49-67.CrossRef Foley JO, DuBois FS. Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers. J Comp Neurol 1937;67:49-67.CrossRef
12.
go back to reference Leslie R, Gwyn D, Hopkins D. The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res Bull 1982;8:37-43.PubMedCrossRef Leslie R, Gwyn D, Hopkins D. The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res Bull 1982;8:37-43.PubMedCrossRef
13.
go back to reference Berthoud H, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 2000;85:1-17.PubMedCrossRef Berthoud H, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 2000;85:1-17.PubMedCrossRef
14.
go back to reference George MS, Sackeim HA, Rush AJ, et al. Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatry 2000;47:287-295.PubMedCrossRef George MS, Sackeim HA, Rush AJ, et al. Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatry 2000;47:287-295.PubMedCrossRef
15.
go back to reference Detari L, Juhasz G, Kukorelli T. Effect of stimulation of vagal and radial nerves on neuronal activity in the basal forebrain area of anaesthetized cats. Acta Physiol Hung 1983;61:147-154.PubMed Detari L, Juhasz G, Kukorelli T. Effect of stimulation of vagal and radial nerves on neuronal activity in the basal forebrain area of anaesthetized cats. Acta Physiol Hung 1983;61:147-154.PubMed
16.
go back to reference Dorr AE, Debonnel G. Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J Pharmacol Exp Ther 2006;318:890-898.PubMedCrossRef Dorr AE, Debonnel G. Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J Pharmacol Exp Ther 2006;318:890-898.PubMedCrossRef
17.
go back to reference Follesa P, Biggio F, Gorini G, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 2007;1179:28-34.PubMedCrossRef Follesa P, Biggio F, Gorini G, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 2007;1179:28-34.PubMedCrossRef
18.
go back to reference Groves DA, Bowman EM, Brown VJ. Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci Lett 2005;379:174-179.PubMedCrossRef Groves DA, Bowman EM, Brown VJ. Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci Lett 2005;379:174-179.PubMedCrossRef
19.
go back to reference Roosevelt RW, Smith DC, Clough RW, Jensen RA, Browning RA. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res 2006;1119:124-132.PubMedPubMedCentralCrossRef Roosevelt RW, Smith DC, Clough RW, Jensen RA, Browning RA. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res 2006;1119:124-132.PubMedPubMedCentralCrossRef
20.
go back to reference Raedt R, Clinckers R, Mollet L, et al. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J Neurochem 2011;117:461-469.PubMedCrossRef Raedt R, Clinckers R, Mollet L, et al. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J Neurochem 2011;117:461-469.PubMedCrossRef
21.
go back to reference Krahl SE, Clark KB, Smith DC, Browning RA. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 1998;39:709-714.PubMedCrossRef Krahl SE, Clark KB, Smith DC, Browning RA. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia 1998;39:709-714.PubMedCrossRef
22.
go back to reference Nichols J, Nichols A, Smirnakis S, Engineer N, Kilgard M, Atzori M. Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience 2011;189:207-214.PubMedCrossRef Nichols J, Nichols A, Smirnakis S, Engineer N, Kilgard M, Atzori M. Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience 2011;189:207-214.PubMedCrossRef
23.
go back to reference Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 2002;111:815-835.PubMedCrossRef Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 2002;111:815-835.PubMedCrossRef
24.
go back to reference Sachdev RN, Lu S, Wiley RG, Ebner FF. Role of the basal forebrain cholinergic projection in somatosensory cortical plasticity. J Neurophysiol 1998;79:3216-3228.PubMed Sachdev RN, Lu S, Wiley RG, Ebner FF. Role of the basal forebrain cholinergic projection in somatosensory cortical plasticity. J Neurophysiol 1998;79:3216-3228.PubMed
25.
go back to reference Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH. Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 2003;38:819-829.PubMedCrossRef Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH. Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 2003;38:819-829.PubMedCrossRef
26.
go back to reference Baskerville K, Schweitzer J, Herron P. Effects of cholinergic depletion on experience-dependent plasticity in the cortex of the rat. Neuroscience 1997;80:1159-1169.PubMedCrossRef Baskerville K, Schweitzer J, Herron P. Effects of cholinergic depletion on experience-dependent plasticity in the cortex of the rat. Neuroscience 1997;80:1159-1169.PubMedCrossRef
27.
go back to reference Kasamatsu T, Shirokawa T. Involvement of β-adrenoreceptors in the shift of ocular dominance after monocular deprivation. Exp Brain Res 1985;59:507-514.PubMedCrossRef Kasamatsu T, Shirokawa T. Involvement of β-adrenoreceptors in the shift of ocular dominance after monocular deprivation. Exp Brain Res 1985;59:507-514.PubMedCrossRef
28.
go back to reference Kasamatsu T, Pettigrew JD, Ary M. Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J Comp Neurol 1979;185:163-181.PubMedCrossRef Kasamatsu T, Pettigrew JD, Ary M. Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J Comp Neurol 1979;185:163-181.PubMedCrossRef
29.
go back to reference Conner JM, Chiba AA, Tuszynski MH. The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 2005;46:173-179.PubMedCrossRef Conner JM, Chiba AA, Tuszynski MH. The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 2005;46:173-179.PubMedCrossRef
30.
go back to reference Ramanathan D, Tuszynski MH, Conner JM. The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity. J Neurosci 2009;29:5992-6000.PubMedCrossRef Ramanathan D, Tuszynski MH, Conner JM. The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity. J Neurosci 2009;29:5992-6000.PubMedCrossRef
31.
go back to reference Boyeson MG, Feeney DM. Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol BiochemBehav 1990;35:497-501.CrossRef Boyeson MG, Feeney DM. Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol BiochemBehav 1990;35:497-501.CrossRef
33.
go back to reference Kilgard MP, Merzenich MM. Cortical map reorganization enabled by nucleus basalis activity. Science 1998;279:1714-1718.PubMedCrossRef Kilgard MP, Merzenich MM. Cortical map reorganization enabled by nucleus basalis activity. Science 1998;279:1714-1718.PubMedCrossRef
34.
go back to reference Shetake JA, Engineer ND, Vrana WA, Wolf JT, Kilgard MP. Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex. Exp Neurol 2011;233:342-349.PubMedCrossRef Shetake JA, Engineer ND, Vrana WA, Wolf JT, Kilgard MP. Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex. Exp Neurol 2011;233:342-349.PubMedCrossRef
35.
go back to reference Engineer CT, Engineer ND, Riley JR, Seale JD, Kilgard MP. Pairing speech sounds with vagus nerve stimulation drives stimulus-specific cortical plasticity. Brain Stimul 2015;8:637-644.PubMedCrossRef Engineer CT, Engineer ND, Riley JR, Seale JD, Kilgard MP. Pairing speech sounds with vagus nerve stimulation drives stimulus-specific cortical plasticity. Brain Stimul 2015;8:637-644.PubMedCrossRef
36.
go back to reference Porter BA, Khodaparast N, Fayyaz T, et al. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex 2011;22:2365-2374.PubMedCrossRef Porter BA, Khodaparast N, Fayyaz T, et al. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb Cortex 2011;22:2365-2374.PubMedCrossRef
37.
go back to reference Hays SA, Khodaparast N, Sloan AM, et al. The bradykinesia assessment task: an automated method to measure forelimb speed in rodents. J Neurosci Methods 2013;214:52-61.PubMedCrossRef Hays SA, Khodaparast N, Sloan AM, et al. The bradykinesia assessment task: an automated method to measure forelimb speed in rodents. J Neurosci Methods 2013;214:52-61.PubMedCrossRef
38.
go back to reference Clark K, Smith D, Hassert D, Browning R, Naritoku D, Jensen R, Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol Learn Mem 1998;70:364-373.PubMedCrossRef Clark K, Smith D, Hassert D, Browning R, Naritoku D, Jensen R, Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol Learn Mem 1998;70:364-373.PubMedCrossRef
39.
go back to reference Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci 1999;2:94-98.PubMedCrossRef Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci 1999;2:94-98.PubMedCrossRef
40.
go back to reference Davis A, El Rafaie A. Epidemiology of tinnitus. Tinnitus handbook. Thomson Learning, San Diego, CA, 2000, pp. 1-23. Davis A, El Rafaie A. Epidemiology of tinnitus. Tinnitus handbook. Thomson Learning, San Diego, CA, 2000, pp. 1-23.
42.
go back to reference Parnes S. Current concepts in the clinical management of patients with tinnitus. Eur Arch Otorhinolaryngol 1997;254:406-409.PubMedCrossRef Parnes S. Current concepts in the clinical management of patients with tinnitus. Eur Arch Otorhinolaryngol 1997;254:406-409.PubMedCrossRef
43.
45.
go back to reference De Ridder D, Vanneste S, Engineer ND, Kilgard MP. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 2014;17:170-179.PubMedCrossRef De Ridder D, Vanneste S, Engineer ND, Kilgard MP. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 2014;17:170-179.PubMedCrossRef
47.
go back to reference De Ridder D, Kilgard M, Engineer N, Vanneste S. Placebo-controlled vagus nerve stimulation paired with tones in a patient with refractory tinnitus: a case report. Otol Neurotol 2015;36:575-580.PubMedCrossRef De Ridder D, Kilgard M, Engineer N, Vanneste S. Placebo-controlled vagus nerve stimulation paired with tones in a patient with refractory tinnitus: a case report. Otol Neurotol 2015;36:575-580.PubMedCrossRef
48.
go back to reference Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995;375:482-484.PubMedCrossRef Flor H, Elbert T, Knecht S, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995;375:482-484.PubMedCrossRef
49.
go back to reference Birbaumer N, Lutzenberger W, Montoya P, et al. Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci 1997;17:5503-5508.PubMed Birbaumer N, Lutzenberger W, Montoya P, et al. Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci 1997;17:5503-5508.PubMed
50.
go back to reference Flor H. Cortical reorganisation and chronic pain: implications for rehabilitation. J Rehabil Med 2003;41(Suppl.):66-72.PubMedCrossRef Flor H. Cortical reorganisation and chronic pain: implications for rehabilitation. J Rehabil Med 2003;41(Suppl.):66-72.PubMedCrossRef
51.
go back to reference Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2012 update a report from the American Heart Association. Circulation 2012;125:e2-e220.PubMedPubMedCentralCrossRef Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2012 update a report from the American Heart Association. Circulation 2012;125:e2-e220.PubMedPubMedCentralCrossRef
54.
go back to reference Lai S, Studenski S, Duncan PW, Perera S. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke 2002;33:1840-1844.PubMedCrossRef Lai S, Studenski S, Duncan PW, Perera S. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke 2002;33:1840-1844.PubMedCrossRef
55.
go back to reference Calautti C, Baron J. Functional neuroimaging studies of motor recovery after stroke in adults a review. Stroke 2003;34:1553-1566.PubMedCrossRef Calautti C, Baron J. Functional neuroimaging studies of motor recovery after stroke in adults a review. Stroke 2003;34:1553-1566.PubMedCrossRef
56.
go back to reference Nudo R, Friel K. Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol 1999;155:713.PubMed Nudo R, Friel K. Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol 1999;155:713.PubMed
57.
go back to reference Zhang J, Meng L, Qin W, Liu N, Shi FD, Yu C. Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke. Stroke 2014;45:788-793.PubMedCrossRef Zhang J, Meng L, Qin W, Liu N, Shi FD, Yu C. Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke. Stroke 2014;45:788-793.PubMedCrossRef
58.
go back to reference Hallett M. Plasticity of the human motor cortex and recovery from stroke. Brain Res Rev 2001;36:169-174.PubMedCrossRef Hallett M. Plasticity of the human motor cortex and recovery from stroke. Brain Res Rev 2001;36:169-174.PubMedCrossRef
59.
go back to reference Khodaparast N, Hays SA, Sloan AM, et al. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke. Neurorehabil Neural Repair 2014;28:698-706.PubMedPubMedCentralCrossRef Khodaparast N, Hays SA, Sloan AM, et al. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke. Neurorehabil Neural Repair 2014;28:698-706.PubMedPubMedCentralCrossRef
60.
go back to reference Khodaparast N, Hays SA, Sloan AM, et al. Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol. Dis 2013;60:80-88.PubMedCrossRef Khodaparast N, Hays SA, Sloan AM, et al. Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke. Neurobiol. Dis 2013;60:80-88.PubMedCrossRef
61.
go back to reference Hays SA, Khodaparast N, Ruiz A, et al. The timing and amount of vagus nerve stimulation during rehabilitative training affect post-stroke recovery of forelimb strength. NeuroReport 2014;25:676-682.PubMedCrossRef Hays SA, Khodaparast N, Ruiz A, et al. The timing and amount of vagus nerve stimulation during rehabilitative training affect post-stroke recovery of forelimb strength. NeuroReport 2014;25:676-682.PubMedCrossRef
62.
go back to reference Kwakkel G, Kollen BK, van der Grond J, Prevo AJH. Probability of Regaining dexterity in the flaccid upper limb impact of severity of paresis and time since onset in acute stroke. Stroke 2003;34:2181-2186.PubMedCrossRef Kwakkel G, Kollen BK, van der Grond J, Prevo AJH. Probability of Regaining dexterity in the flaccid upper limb impact of severity of paresis and time since onset in acute stroke. Stroke 2003;34:2181-2186.PubMedCrossRef
63.
go back to reference Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 2004;24:1245-1254.PubMedCrossRef Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 2004;24:1245-1254.PubMedCrossRef
64.
go back to reference Teasell R, Bitensky J, Salter K, Bayona NA. The role of timing and intensity of rehabilitation therapies. Top Stroke Rehabil 2005;12:46.PubMedCrossRef Teasell R, Bitensky J, Salter K, Bayona NA. The role of timing and intensity of rehabilitation therapies. Top Stroke Rehabil 2005;12:46.PubMedCrossRef
65.
go back to reference Katherine Salter B, Mark Hartley B, Norine Foley B. Impact of early vs delayed admission to rehabilitation on functional outcomes in persons with stroke. J Rehabil Med 2006;38:113-117.PubMedCrossRef Katherine Salter B, Mark Hartley B, Norine Foley B. Impact of early vs delayed admission to rehabilitation on functional outcomes in persons with stroke. J Rehabil Med 2006;38:113-117.PubMedCrossRef
66.
go back to reference Khodaparast N, Kilgard MP, Casavant R, et al. Vagus nerve stimulation during rehabilitative training improves forelimb recovery after chronic ischemic stroke in rats. Neurorehabil Neural Repair 2015 Nov 4 [Epub ahead of print]. Khodaparast N, Kilgard MP, Casavant R, et al. Vagus nerve stimulation during rehabilitative training improves forelimb recovery after chronic ischemic stroke in rats. Neurorehabil Neural Repair 2015 Nov 4 [Epub ahead of print].
67.
go back to reference Dawson J, Dixit A, Pierce D, et al. Safety, feasibility and efficacy of vagus nerve stimulation paired with upper limb rehabilitation following ischaemic stroke. Stroke (in press). Dawson J, Dixit A, Pierce D, et al. Safety, feasibility and efficacy of vagus nerve stimulation paired with upper limb rehabilitation following ischaemic stroke. Stroke (in press).
70.
go back to reference Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med 2001;344:1450-1460.PubMedCrossRef Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med 2001;344:1450-1460.PubMedCrossRef
71.
go back to reference Krishnamurthi RV, Feigin VL, Forouzanfar MH, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Global Health 2013;1:e259-e281.PubMedCrossRef Krishnamurthi RV, Feigin VL, Forouzanfar MH, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Global Health 2013;1:e259-e281.PubMedCrossRef
72.
go back to reference Auriat AM, Wowk S, Colbourne F. Rehabilitation after intracerebral hemorrhage in rats improves recovery with enhanced dendritic complexity but no effect on cell proliferation. Behav Brain Res 2010;214:42-47.PubMedCrossRef Auriat AM, Wowk S, Colbourne F. Rehabilitation after intracerebral hemorrhage in rats improves recovery with enhanced dendritic complexity but no effect on cell proliferation. Behav Brain Res 2010;214:42-47.PubMedCrossRef
73.
go back to reference Santos M, Pagnussat A, Mestriner R, Netto C. Motor skill training promotes sensorimotor recovery and increases microtubule-associated protein-2 (MAP-2) immunoreactivity in the motor cortex after intracerebral hemorrhage in the rat. ISRN Neurol 2013;2013:159184.PubMedPubMedCentralCrossRef Santos M, Pagnussat A, Mestriner R, Netto C. Motor skill training promotes sensorimotor recovery and increases microtubule-associated protein-2 (MAP-2) immunoreactivity in the motor cortex after intracerebral hemorrhage in the rat. ISRN Neurol 2013;2013:159184.PubMedPubMedCentralCrossRef
74.
go back to reference Liang H, Yin Y, Lin T, et al. Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage. Mol Cells 2013;36:17-24.PubMedPubMedCentralCrossRef Liang H, Yin Y, Lin T, et al. Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage. Mol Cells 2013;36:17-24.PubMedPubMedCentralCrossRef
75.
go back to reference Hays SA, Khodaparast N, Hulsey DR, et al. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 2014;45:10-3097-3100.PubMedPubMedCentralCrossRef Hays SA, Khodaparast N, Hulsey DR, et al. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 2014;45:10-3097-3100.PubMedPubMedCentralCrossRef
76.
77.
go back to reference Brown AW, Malec JF, Diehl NN, Englander J, Cifu DX. Impairment at rehabilitation admission and 1 year after moderate-to-severe traumatic brain injury: a prospective multi-centre analysis. Brain Injury 2007;21:673-680.PubMedCrossRef Brown AW, Malec JF, Diehl NN, Englander J, Cifu DX. Impairment at rehabilitation admission and 1 year after moderate-to-severe traumatic brain injury: a prospective multi-centre analysis. Brain Injury 2007;21:673-680.PubMedCrossRef
78.
go back to reference Walker WC, Pickett TC. Motor impairment after severe traumatic brain injury: a longitudinal multicenter study. J Rehab Res Dev 2007;44:975-982.CrossRef Walker WC, Pickett TC. Motor impairment after severe traumatic brain injury: a longitudinal multicenter study. J Rehab Res Dev 2007;44:975-982.CrossRef
79.
go back to reference Nishibe M, Barbay S, Guggenmos D, Nudo RJ. Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery. J Neurotrauma 2010;27:2221-2232.PubMedPubMedCentralCrossRef Nishibe M, Barbay S, Guggenmos D, Nudo RJ. Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery. J Neurotrauma 2010;27:2221-2232.PubMedPubMedCentralCrossRef
80.
go back to reference Axelson HW, Winkler T, Flygt J, Djupsjö A, Hånell A, Marklund N. Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restorative Neurol Neurosci 2013;31:73-85. Axelson HW, Winkler T, Flygt J, Djupsjö A, Hånell A, Marklund N. Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restorative Neurol Neurosci 2013;31:73-85.
81.
go back to reference Jefferson SC, Clayton ER, Donlan NA, Kozlowski DA, Jones TA, Adkins DL. Cortical stimulation concurrent with skilled motor training improves forelimb function and enhances motor cortical reorganization following controlled cortical impact. Neurorehabil Neural Repair 2015 Aug 5 [Epub ahead of print]. Jefferson SC, Clayton ER, Donlan NA, Kozlowski DA, Jones TA, Adkins DL. Cortical stimulation concurrent with skilled motor training improves forelimb function and enhances motor cortical reorganization following controlled cortical impact. Neurorehabil Neural Repair 2015 Aug 5 [Epub ahead of print].
82.
go back to reference Pruitt D, Schmid A, Kim L, et al. Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J Neurotrauma 2015 Aug 5 [Epub ahead of print]. Pruitt D, Schmid A, Kim L, et al. Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J Neurotrauma 2015 Aug 5 [Epub ahead of print].
83.
go back to reference Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2001;2:263-273.PubMedCrossRef Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2001;2:263-273.PubMedCrossRef
84.
go back to reference Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007;82:163-201.PubMedCrossRef Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007;82:163-201.PubMedCrossRef
85.
go back to reference Udina E, Cobianchi S, Allodi I, Navarro X. Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat 2011;193:347-353.PubMedCrossRef Udina E, Cobianchi S, Allodi I, Navarro X. Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat 2011;193:347-353.PubMedCrossRef
86.
go back to reference Brown AR, Hu B, Antle MC, Teskey GC. Neocortical movement representations are reduced and reorganized following bilateral intrastriatal 6-hydroxydopamine infusion and dopamine type-2 receptor antagonism. Exp Neurol 2009;220:162-170.PubMedCrossRef Brown AR, Hu B, Antle MC, Teskey GC. Neocortical movement representations are reduced and reorganized following bilateral intrastriatal 6-hydroxydopamine infusion and dopamine type-2 receptor antagonism. Exp Neurol 2009;220:162-170.PubMedCrossRef
87.
go back to reference Brown AR, Antle MC, Hu B, Teskey GC. High frequency stimulation of the subthalamic nucleus acutely rescues motor deficits and neocortical movement representations following 6-hydroxydopamine administration in rats. Exp Neurol 2011;231:82-90.PubMedCrossRef Brown AR, Antle MC, Hu B, Teskey GC. High frequency stimulation of the subthalamic nucleus acutely rescues motor deficits and neocortical movement representations following 6-hydroxydopamine administration in rats. Exp Neurol 2011;231:82-90.PubMedCrossRef
88.
go back to reference Viaro R, Morari M, Franchi G. Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats. J Neurosci 2011;31:4544-4554.PubMedCrossRef Viaro R, Morari M, Franchi G. Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats. J Neurosci 2011;31:4544-4554.PubMedCrossRef
89.
go back to reference Plowman EK, Maling N, Thomas NJ, Fowler SC, Kleim JA. Targeted motor rehabilitation dissociates corticobulbar versus corticospinal dysfunction in an animal model of Parkinson's disease. Neurorehabil Neural Repair 2014;28:85-95.PubMedCrossRef Plowman EK, Maling N, Thomas NJ, Fowler SC, Kleim JA. Targeted motor rehabilitation dissociates corticobulbar versus corticospinal dysfunction in an animal model of Parkinson's disease. Neurorehabil Neural Repair 2014;28:85-95.PubMedCrossRef
90.
go back to reference Braak H, Del Tredici K, Rüb U, de Vos RA, Steur ENJ, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197-211.PubMedCrossRef Braak H, Del Tredici K, Rüb U, de Vos RA, Steur ENJ, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197-211.PubMedCrossRef
91.
go back to reference Del Tredici K, Braak H. Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson's disease-related dementia. J Neurol Neurosurg Psychiatry 2013;84:774-783.PubMedCrossRef Del Tredici K, Braak H. Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson's disease-related dementia. J Neurol Neurosurg Psychiatry 2013;84:774-783.PubMedCrossRef
92.
go back to reference Hoge CW, Castro CA, Messer SC, McGurk D, Cotting DI, Koffman RL. Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med 2004;351:13-22.PubMedCrossRef Hoge CW, Castro CA, Messer SC, McGurk D, Cotting DI, Koffman RL. Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med 2004;351:13-22.PubMedCrossRef
93.
go back to reference Bremner JD, Elzinga B, Schmahl C, Vermetten E. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res 2007;167:171-186.CrossRef Bremner JD, Elzinga B, Schmahl C, Vermetten E. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res 2007;167:171-186.CrossRef
94.
go back to reference Peña DF, Engineer ND, McIntyre CK. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiatry 2012;73:1071-1077.PubMedPubMedCentralCrossRef Peña DF, Engineer ND, McIntyre CK. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiatry 2012;73:1071-1077.PubMedPubMedCentralCrossRef
96.
go back to reference Foa E, Hembree E, Rothbaum BO. Prolonged exposure therapy for PTSD: emotional processing of traumatic experiences therapist guide. Oxford University Press, Oxford, 2007.CrossRef Foa E, Hembree E, Rothbaum BO. Prolonged exposure therapy for PTSD: emotional processing of traumatic experiences therapist guide. Oxford University Press, Oxford, 2007.CrossRef
97.
go back to reference Powers MB, Halpern JM, Ferenschak MP, Gillihan SJ, Foa EB. A meta-analytic review of prolonged exposure for posttraumatic stress disorder. Clin Psychol Rev 2010;30:635-641.PubMedCrossRef Powers MB, Halpern JM, Ferenschak MP, Gillihan SJ, Foa EB. A meta-analytic review of prolonged exposure for posttraumatic stress disorder. Clin Psychol Rev 2010;30:635-641.PubMedCrossRef
99.
go back to reference Furmaga H, Shah A, Frazer A. Serotonergic and noradrenergic pathways are required for the anxiolytic-like and antidepressant-like behavioral effects of repeated vagal nerve stimulation in rats. Biol Psychiatry 2011;70:937-945.PubMedCrossRef Furmaga H, Shah A, Frazer A. Serotonergic and noradrenergic pathways are required for the anxiolytic-like and antidepressant-like behavioral effects of repeated vagal nerve stimulation in rats. Biol Psychiatry 2011;70:937-945.PubMedCrossRef
100.
go back to reference George MS, Ward HE, Jr, Ninan PT, et al. A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimul 2008;1:112-121.PubMedCrossRef George MS, Ward HE, Jr, Ninan PT, et al. A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimul 2008;1:112-121.PubMedCrossRef
101.
go back to reference Peña DF, Childs JE, Willett S, Vital A, McIntyre CK, Kroener S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front Behav Neurosci 2014;8:327.PubMedPubMedCentral Peña DF, Childs JE, Willett S, Vital A, McIntyre CK, Kroener S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front Behav Neurosci 2014;8:327.PubMedPubMedCentral
102.
go back to reference Marek R, Strobel C, Bredy TW, Sah P. The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol (Lond) 2013;591:2381-2391.CrossRef Marek R, Strobel C, Bredy TW, Sah P. The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol (Lond) 2013;591:2381-2391.CrossRef
103.
go back to reference Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002;420:70-74.PubMedCrossRef Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002;420:70-74.PubMedCrossRef
104.
105.
go back to reference Brunoni AR, Lopes M, Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 2008;11:1169.PubMedCrossRef Brunoni AR, Lopes M, Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 2008;11:1169.PubMedCrossRef
106.
go back to reference Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 2002;99:7746-7750.PubMedPubMedCentralCrossRef Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 2002;99:7746-7750.PubMedPubMedCentralCrossRef
107.
go back to reference Moretti P, Levenson JM, Battaglia F, et al. Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci 2006;26:319-327.PubMedCrossRef Moretti P, Levenson JM, Battaglia F, et al. Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci 2006;26:319-327.PubMedCrossRef
110.
go back to reference Hanks SB. Motor disabilities in the Rett syndrome and physical therapy strategies. Brain Develop 1990;12:157-161.CrossRef Hanks SB. Motor disabilities in the Rett syndrome and physical therapy strategies. Brain Develop 1990;12:157-161.CrossRef
111.
go back to reference Dawson G, Rogers S, Munson J, et al. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics 2010;125:e17-23.PubMedCrossRef Dawson G, Rogers S, Munson J, et al. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics 2010;125:e17-23.PubMedCrossRef
112.
go back to reference Warren Z, McPheeters ML, Sathe N, Foss-Feig JH, Glasser A, Veenstra-Vanderweele J. A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics 2011;127:e1303-e1311.PubMedCrossRef Warren Z, McPheeters ML, Sathe N, Foss-Feig JH, Glasser A, Veenstra-Vanderweele J. A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics 2011;127:e1303-e1311.PubMedCrossRef
113.
go back to reference Sawaki L, Yaseen Z, Kopylev L, Cohen LG. Age‐dependent changes in the ability to encode a novel elementary motor memory. Ann Neurol 2003;53:521-524.PubMedCrossRef Sawaki L, Yaseen Z, Kopylev L, Cohen LG. Age‐dependent changes in the ability to encode a novel elementary motor memory. Ann Neurol 2003;53:521-524.PubMedCrossRef
114.
go back to reference Müller-Dahlhaus JFM, Orekhov Y, Liu Y, Ziemann U. Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res 2008;187:467-475.PubMedCrossRef Müller-Dahlhaus JFM, Orekhov Y, Liu Y, Ziemann U. Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp Brain Res 2008;187:467-475.PubMedCrossRef
115.
go back to reference Pascual-Leone A, Freitas C, Oberman L, et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr 2011;24:302-315.PubMedPubMedCentralCrossRef Pascual-Leone A, Freitas C, Oberman L, et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr 2011;24:302-315.PubMedPubMedCentralCrossRef
117.
go back to reference O'Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 2010;376:112-123.PubMedCrossRef O'Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 2010;376:112-123.PubMedCrossRef
118.
go back to reference Tomlinson B, Irving D, Blessed G. Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 1981;49:419-428.PubMedCrossRef Tomlinson B, Irving D, Blessed G. Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 1981;49:419-428.PubMedCrossRef
119.
go back to reference Yates C, Simpson J, Gordon A, et al. Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down's syndrome. Brain Res 1983;280:119-126.PubMedCrossRef Yates C, Simpson J, Gordon A, et al. Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down's syndrome. Brain Res 1983;280:119-126.PubMedCrossRef
120.
go back to reference German DC, Manaye KF, White CL, et al. Disease‐specific patterns of locus coeruleus cell loss. Ann Neurol 1992;32:667-676.PubMedCrossRef German DC, Manaye KF, White CL, et al. Disease‐specific patterns of locus coeruleus cell loss. Ann Neurol 1992;32:667-676.PubMedCrossRef
121.
go back to reference Zweig R, Cardillo J, Cohen M, Giere S, Hedreen J. The locus ceruleus and dementia in Parkinson's disease. Neurology 1993;43:986-986.PubMedCrossRef Zweig R, Cardillo J, Cohen M, Giere S, Hedreen J. The locus ceruleus and dementia in Parkinson's disease. Neurology 1993;43:986-986.PubMedCrossRef
122.
go back to reference Arango V, Underwood MD, John Mann J. Fewer pigmented neurons in the locus coeruleus of uncomplicated alcoholics. Brain Res 1994;650:1-8.PubMedCrossRef Arango V, Underwood MD, John Mann J. Fewer pigmented neurons in the locus coeruleus of uncomplicated alcoholics. Brain Res 1994;650:1-8.PubMedCrossRef
123.
go back to reference Cullen K, Halliday G. Mechanisms of cell death in cholinergic basal forebrain neurons in chronic alcoholics. Metab Brain Dis 1995;10:81-91.PubMedCrossRef Cullen K, Halliday G. Mechanisms of cell death in cholinergic basal forebrain neurons in chronic alcoholics. Metab Brain Dis 1995;10:81-91.PubMedCrossRef
124.
go back to reference Cohen H, Benjamin J, Geva AB, Matar MA, Kaplan Z, Kotler M. Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks. Psychiatry Res 2000;96:1-13.PubMedCrossRef Cohen H, Benjamin J, Geva AB, Matar MA, Kaplan Z, Kotler M. Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks. Psychiatry Res 2000;96:1-13.PubMedCrossRef
125.
go back to reference Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 2003;60:337.PubMedCrossRef Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 2003;60:337.PubMedCrossRef
126.
go back to reference Bracha HS, Garcia-Rill E, Mrak RE, Skinner R. Postmortem locus coeruleus neuron count in three American veterans with probable or possible war-related PTSD. J Neuropsychiatry Clin Neurosci 2005;17:503-509.PubMedPubMedCentralCrossRef Bracha HS, Garcia-Rill E, Mrak RE, Skinner R. Postmortem locus coeruleus neuron count in three American veterans with probable or possible war-related PTSD. J Neuropsychiatry Clin Neurosci 2005;17:503-509.PubMedPubMedCentralCrossRef
127.
go back to reference Krahl SE, Senanayake SS, Handforth A. Destruction of peripheral C‐fibers does not alter subsequent vagus nerve stimulation‐induced seizure suppression in rats. Epilepsia 2001;42:586-589.PubMedCrossRef Krahl SE, Senanayake SS, Handforth A. Destruction of peripheral C‐fibers does not alter subsequent vagus nerve stimulation‐induced seizure suppression in rats. Epilepsia 2001;42:586-589.PubMedCrossRef
128.
go back to reference Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat 2011;42:288-296.PubMedCrossRef Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat 2011;42:288-296.PubMedCrossRef
129.
go back to reference Evans M, Verma‐Ahuja S, Naritoku D, Espinosa J. Intraoperative human vagus nerve compound action potentials. Acta Neurol Scand 2004;110:232-238.PubMedCrossRef Evans M, Verma‐Ahuja S, Naritoku D, Espinosa J. Intraoperative human vagus nerve compound action potentials. Acta Neurol Scand 2004;110:232-238.PubMedCrossRef
130.
go back to reference Verlinden T, Rijkers K, Hoogland G, Herrler A. Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment. Acta Neurol Scand 2015 Jul 20 [Epub ahead of print]. Verlinden T, Rijkers K, Hoogland G, Herrler A. Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment. Acta Neurol Scand 2015 Jul 20 [Epub ahead of print].
131.
go back to reference Castoro MA, Yoo PB, Hincapie JG, et al. Excitation properties of the right cervical vagus nerve in adult dogs. Exp Neurol 2011;227:62-68.PubMedCrossRef Castoro MA, Yoo PB, Hincapie JG, et al. Excitation properties of the right cervical vagus nerve in adult dogs. Exp Neurol 2011;227:62-68.PubMedCrossRef
132.
go back to reference Mollet L, Raedt R, Delbeke J, et al. Electrophysiological responses from vagus nerve stimulation in rats. Int J Neural Syst 2013;23:1350027.PubMedCrossRef Mollet L, Raedt R, Delbeke J, et al. Electrophysiological responses from vagus nerve stimulation in rats. Int J Neural Syst 2013;23:1350027.PubMedCrossRef
133.
go back to reference Borland MS, Vrana WA, Moreno NA, et al. Cortical map plasticity as a function of vagus nerve stimulation intensity. Brain Stimul 2015 Sep 9 [Epub ahead of print]. Borland MS, Vrana WA, Moreno NA, et al. Cortical map plasticity as a function of vagus nerve stimulation intensity. Brain Stimul 2015 Sep 9 [Epub ahead of print].
134.
go back to reference Robert MY, John D. The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 1908;18:459-482.CrossRef Robert MY, John D. The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 1908;18:459-482.CrossRef
135.
go back to reference Gold PE, van Buskirk R. Posttraining brain norepinephrine concentrations: correlation with retention performance of avoidance training and with peripheral epinephrine modulation of memory processing. Behav Biol 1978;23:509-520.PubMedCrossRef Gold PE, van Buskirk R. Posttraining brain norepinephrine concentrations: correlation with retention performance of avoidance training and with peripheral epinephrine modulation of memory processing. Behav Biol 1978;23:509-520.PubMedCrossRef
136.
go back to reference Oitzl M, Hasenöhrl R, Huston J. Reinforcing effects of peripherally administered substance P and its C-terminal sequence pGlu6-SP6-11 in the rat. Psychopharmacology (Berl) 1990;100:308-315.CrossRef Oitzl M, Hasenöhrl R, Huston J. Reinforcing effects of peripherally administered substance P and its C-terminal sequence pGlu6-SP6-11 in the rat. Psychopharmacology (Berl) 1990;100:308-315.CrossRef
137.
go back to reference Baldi E, Bucherelli C. The inverted “u-shaped” dose-effect relationships in learning and memory: modulation of arousal and consolidation. Nonlinearity Biol Toxicol Med 2005;3:9-21.PubMedPubMedCentralCrossRef Baldi E, Bucherelli C. The inverted “u-shaped” dose-effect relationships in learning and memory: modulation of arousal and consolidation. Nonlinearity Biol Toxicol Med 2005;3:9-21.PubMedPubMedCentralCrossRef
139.
go back to reference Van der Zee E, Luiten P. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 1999;58:409-471.PubMedCrossRef Van der Zee E, Luiten P. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 1999;58:409-471.PubMedCrossRef
140.
go back to reference Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 2004;27:107-144.PubMedCrossRef Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 2004;27:107-144.PubMedCrossRef
141.
go back to reference Ernfors P, Bramham CR. The coupling of a trkB tyrosine residue to LTP. Trends Neurosci 2003;26:171-173.PubMedCrossRef Ernfors P, Bramham CR. The coupling of a trkB tyrosine residue to LTP. Trends Neurosci 2003;26:171-173.PubMedCrossRef
142.
go back to reference Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2004;27:589-594.PubMedCrossRef Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2004;27:589-594.PubMedCrossRef
143.
go back to reference Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005;76:99-125.PubMedCrossRef Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005;76:99-125.PubMedCrossRef
144.
go back to reference Bramham CR, Worley PF, Moore MJ, Guzowski JF. The immediate early gene arc/arg3. 1: regulation, mechanisms, and function. J Neurosci 2008;28:11760-11767.PubMedPubMedCentralCrossRef Bramham CR, Worley PF, Moore MJ, Guzowski JF. The immediate early gene arc/arg3. 1: regulation, mechanisms, and function. J Neurosci 2008;28:11760-11767.PubMedPubMedCentralCrossRef
145.
go back to reference Gottschalk WA, Jiang H, Tartaglia N, Feng L, Figurov A, Lu B. Signaling mechanisms mediating BDNF modulation of synaptic plasticity in the hippocampus. Learn Mem 1999;6:243-256.PubMedPubMedCentral Gottschalk WA, Jiang H, Tartaglia N, Feng L, Figurov A, Lu B. Signaling mechanisms mediating BDNF modulation of synaptic plasticity in the hippocampus. Learn Mem 1999;6:243-256.PubMedPubMedCentral
146.
go back to reference Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 2004;5:173-183.PubMedCrossRef Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 2004;5:173-183.PubMedCrossRef
147.
go back to reference Furmaga H, Carreno FR, Frazer A. Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS One 2012;7:e34844.PubMedPubMedCentralCrossRef Furmaga H, Carreno FR, Frazer A. Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS One 2012;7:e34844.PubMedPubMedCentralCrossRef
148.
149.
150.
go back to reference Zhang J, Zhang J, The influence of vagus nerve stimulation on NMDAR1 mRNA and GABAAR alpha 1 mRNA in thalamic reticular neucus of pentylenetetrazole-induced epileptic rats. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2002;19:566-568.PubMed Zhang J, Zhang J, The influence of vagus nerve stimulation on NMDAR1 mRNA and GABAAR alpha 1 mRNA in thalamic reticular neucus of pentylenetetrazole-induced epileptic rats. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2002;19:566-568.PubMed
151.
go back to reference Zagon A, Kemeny AA. Slow hyperpolarization in cortical neurons: a possible mechanism behind vagus nerve simulation therapy for refractory epilepsy? Epilepsia 2000;41:1382-1389.PubMedCrossRef Zagon A, Kemeny AA. Slow hyperpolarization in cortical neurons: a possible mechanism behind vagus nerve simulation therapy for refractory epilepsy? Epilepsia 2000;41:1382-1389.PubMedCrossRef
152.
go back to reference Valdés-Cruz A, Magdaleno-Madrigal VM, Martínez-Vargas D, Fernández-Mas R, Almazán-Alvarado S. Long-term changes in sleep and electroencephalographic activity by chronic vagus nerve stimulation in cats. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:828-834.PubMedCrossRef Valdés-Cruz A, Magdaleno-Madrigal VM, Martínez-Vargas D, Fernández-Mas R, Almazán-Alvarado S. Long-term changes in sleep and electroencephalographic activity by chronic vagus nerve stimulation in cats. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:828-834.PubMedCrossRef
Metadata
Title
Enhancing Rehabilitative Therapies with Vagus Nerve Stimulation
Author
Seth A. Hays
Publication date
01-04-2016
Publisher
Springer US
Published in
Neurotherapeutics / Issue 2/2016
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-015-0417-z

Other articles of this Issue 2/2016

Neurotherapeutics 2/2016 Go to the issue