Skip to main content
Top
Published in: Neurotherapeutics 2/2015

01-04-2015 | Original Article

Enhanced Retinal Ganglion Cell Survival in Glaucoma by Hypoxic Postconditioning After Disease Onset

Authors: Jeffrey M. Gidday, Lihong Zhang, Chia-Wen Chiang, Yanli Zhu

Published in: Neurotherapeutics | Issue 2/2015

Login to get access

Abstract

The neuroprotective efficacy of adaptive epigenetics, wherein beneficial gene expression changes are induced by nonharmful “conditioning” stimuli, is now well established in several acute, preclinical central nervous system injury models. Recently, in a mouse model of glaucoma, we demonstrated retinal ganglion cell (RGC) protection by repetitively “preconditioning” with hypoxia prior to disease onset, indicating an epigenetic approach may also yield benefits in chronic neurodegenerative disease. Herein, we determined whether presenting the repetitive hypoxic stimulus after disease initiation [repetitive hypoxic “postconditioning” (RH-Post)] could afford similar functional and morphologic protection against glaucomatous RGC injury. Chronic elevations in intraocular pressure (IOP) were induced unilaterally in adult male C57BL/6 mice by episcleral vein ligation. Mice were randomized to an RH-Post [1 h of systemic hypoxia (11 % oxygen) every other day, starting 4 days after IOP elevation] or an untreated control group. After 3 weeks of experimental glaucoma, the 21–27 % reduction and 5–25 % prolongation in flash visual-evoked potential amplitudes and latencies, respectively, and the 30 % impairment in visual acuity were robustly improved in RH-Post–treated mice, as was the 17 % loss in RGC soma number and 20 % reduction in axon integrity. These protective effects were observed without RH-Post affecting IOP. The present findings demonstrate that functional and morphologic protection of RGCs can be realized by stimulating epigenetic responses during the early stages of disease, and thus constitute a new conceptual approach to glaucoma therapeutics.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 2009;8:398-412.PubMedCentralPubMedCrossRef Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 2009;8:398-412.PubMedCentralPubMedCrossRef
5.
go back to reference Roth S, Li B, Rosenbaum PS, et al. Preconditioning provides complete protection against retinal ischemic injury in rats. Invest Ophthalmol Vis Sci 1998;39:777-785.PubMed Roth S, Li B, Rosenbaum PS, et al. Preconditioning provides complete protection against retinal ischemic injury in rats. Invest Ophthalmol Vis Sci 1998;39:777-785.PubMed
6.
go back to reference Zhu Y, Ohlemiller KK, McMahan BK, Gidday JM. Mouse models of retinal ischemic tolerance. Invest Ophthalmol Vis Sci 2002;43:1903-1911.PubMed Zhu Y, Ohlemiller KK, McMahan BK, Gidday JM. Mouse models of retinal ischemic tolerance. Invest Ophthalmol Vis Sci 2002;43:1903-1911.PubMed
7.
go back to reference Roth S, Dreixler JC. Ischemic pre- and post-conditioning in the retina. In: J.M. Gidday et al. (eds) Innate tolerance in the CNS: Translational neuroprotection by pre- and post-conditioning. Springer, New York, 2012, pp. 541-550. Roth S, Dreixler JC. Ischemic pre- and post-conditioning in the retina. In: J.M. Gidday et al. (eds) Innate tolerance in the CNS: Translational neuroprotection by pre- and post-conditioning. Springer, New York, 2012, pp. 541-550.
8.
go back to reference Zhu Y, Zhang Y, Ojwang BA, Brantley MA, Jr., Gidday JM. Long-term tolerance to retinal ischemia by repetitive hypoxic preconditioning: Role of HIF-1alpha and heme oxygenase-1. Invest Ophthalmol Vis Sci 2007;48:1735-1743.PubMedCrossRef Zhu Y, Zhang Y, Ojwang BA, Brantley MA, Jr., Gidday JM. Long-term tolerance to retinal ischemia by repetitive hypoxic preconditioning: Role of HIF-1alpha and heme oxygenase-1. Invest Ophthalmol Vis Sci 2007;48:1735-1743.PubMedCrossRef
9.
go back to reference Zhu Y, Zhang L, Schmidt JF, Gidday JM. Glaucoma-induced degeneration of retinal ganglion cell soma and axons prevented by hypoxic preconditioning: A model of ‘glaucoma tolerance’. Mol Med 2012;18:697-706.PubMedCentralPubMedCrossRef Zhu Y, Zhang L, Schmidt JF, Gidday JM. Glaucoma-induced degeneration of retinal ganglion cell soma and axons prevented by hypoxic preconditioning: A model of ‘glaucoma tolerance’. Mol Med 2012;18:697-706.PubMedCentralPubMedCrossRef
10.
go back to reference Zhu Y, Zhang L, Sasaki Y, Milbrandt J, Gidday JM. Protection of mouse retinal ganglion cell axons and soma from glaucomatous and ischemic injury by cytoplasmic overexpression of Nmnat1. Invest Ophthalmol Vis Sci 2013;54:25-36.PubMedCentralPubMedCrossRef Zhu Y, Zhang L, Sasaki Y, Milbrandt J, Gidday JM. Protection of mouse retinal ganglion cell axons and soma from glaucomatous and ischemic injury by cytoplasmic overexpression of Nmnat1. Invest Ophthalmol Vis Sci 2013;54:25-36.PubMedCentralPubMedCrossRef
11.
go back to reference Zhu Y, Zhang L, Gidday JM. Role of HIF-1α in preconditioning-induced protection of retinal ganglion cells in glaucoma Mol Vis 2013;19:2360-2372.PubMedCentralPubMed Zhu Y, Zhang L, Gidday JM. Role of HIF-1α in preconditioning-induced protection of retinal ganglion cells in glaucoma Mol Vis 2013;19:2360-2372.PubMedCentralPubMed
12.
go back to reference Wang WH, Millar JC, Pang IH, Wax MB, Clark AF. Noninvasive measurement of rodent intraocular pressure with a rebound tonometer. Invest Ophthalmol Vis Sci 2005;46:4617-4621.PubMedCrossRef Wang WH, Millar JC, Pang IH, Wax MB, Clark AF. Noninvasive measurement of rodent intraocular pressure with a rebound tonometer. Invest Ophthalmol Vis Sci 2005;46:4617-4621.PubMedCrossRef
13.
go back to reference Hegedus B, Hughes FW, Garbow JR, et al. Optic nerve dysfunction in a mouse model of neurofibromatosis-1 optic glioma. J Neuropathol Exp Neurol 2009;68:542-551.PubMedCentralPubMedCrossRef Hegedus B, Hughes FW, Garbow JR, et al. Optic nerve dysfunction in a mouse model of neurofibromatosis-1 optic glioma. J Neuropathol Exp Neurol 2009;68:542-551.PubMedCentralPubMedCrossRef
14.
go back to reference You Y, Klistorner A, Graham SL. Visual evoked potential recording in rodents. In: Pilowsky PM (ed.) Stimulation and inhibition of neurons. Neuromethods. Springer, New York, 2013, pp. 275-85. You Y, Klistorner A, Graham SL. Visual evoked potential recording in rodents. In: Pilowsky PM (ed.) Stimulation and inhibition of neurons. Neuromethods. Springer, New York, 2013, pp. 275-85. 
15.
go back to reference Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 2004;45:4611-4616.PubMedCrossRef Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 2004;45:4611-4616.PubMedCrossRef
16.
go back to reference Douglas RM, Alam NM, Silver BD, McGill TJ, Tschetter WW, Prusky GT. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis Neurosci 2005;22:677-684.PubMedCrossRef Douglas RM, Alam NM, Silver BD, McGill TJ, Tschetter WW, Prusky GT. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis Neurosci 2005;22:677-684.PubMedCrossRef
17.
go back to reference Dieterich DC, Trivedi N, Engelmann R, Gundelfinger ED, Gordon-Weeks PR, Kreutz MR. Partial regeneration and long-term survival of rat retinal ganglion cells after optic nerve crush is accompanied by altered expression, phosphorylation and distribution of cytoskeletal proteins. Eur J Neurosci 2002;15:1433-1443.PubMedCrossRef Dieterich DC, Trivedi N, Engelmann R, Gundelfinger ED, Gordon-Weeks PR, Kreutz MR. Partial regeneration and long-term survival of rat retinal ganglion cells after optic nerve crush is accompanied by altered expression, phosphorylation and distribution of cytoskeletal proteins. Eur J Neurosci 2002;15:1433-1443.PubMedCrossRef
18.
go back to reference Jakobs TC, Libby RT, Ben Y, John SWM, Masland RH. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 2005;171:313-325.PubMedCentralPubMedCrossRef Jakobs TC, Libby RT, Ben Y, John SWM, Masland RH. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 2005;171:313-325.PubMedCentralPubMedCrossRef
19.
go back to reference Raymond ID, Pool AL, Vila A, Brecha NC. A Thy1-CFP DBA/2J mouse line with cyan fluorescent protein expression in retinal ganglion cells. Vis Neurosci 2009;26:453-465.PubMedCentralPubMedCrossRef Raymond ID, Pool AL, Vila A, Brecha NC. A Thy1-CFP DBA/2J mouse line with cyan fluorescent protein expression in retinal ganglion cells. Vis Neurosci 2009;26:453-465.PubMedCentralPubMedCrossRef
20.
go back to reference Lin B, Wang SW, Masland RH. Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 2004;43:475-485.PubMedCrossRef Lin B, Wang SW, Masland RH. Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 2004;43:475-485.PubMedCrossRef
21.
go back to reference Coombs J, van der List D, Wang GY, Chalupa LM. Morphological properties of mouse retinal ganglion cells. Neuroscience 2006;140:123-136.PubMedCrossRef Coombs J, van der List D, Wang GY, Chalupa LM. Morphological properties of mouse retinal ganglion cells. Neuroscience 2006;140:123-136.PubMedCrossRef
22.
go back to reference Beirowski B, Babetto E, Coleman MP, Martin KR. The WldS gene delays axonal but not somatic degeneration in a rat glaucoma model. Eur J Neurosci 2008;28:1166-1179.PubMedCrossRef Beirowski B, Babetto E, Coleman MP, Martin KR. The WldS gene delays axonal but not somatic degeneration in a rat glaucoma model. Eur J Neurosci 2008;28:1166-1179.PubMedCrossRef
23.
go back to reference Buckingham BP, Inman DM, Lambert W, et al. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 2008;28:2735-2744.PubMedCrossRef Buckingham BP, Inman DM, Lambert W, et al. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 2008;28:2735-2744.PubMedCrossRef
24.
go back to reference Raymond ID, Vila A, Huynh U-CN, Brecha NC. Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Mol Vis 2008;14:1559-1574.PubMedCentralPubMed Raymond ID, Vila A, Huynh U-CN, Brecha NC. Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Mol Vis 2008;14:1559-1574.PubMedCentralPubMed
25.
go back to reference Wolf HK, Buslei R, Schmidt-Kastner R, et al. NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem 1996;44:1167-1171.PubMedCrossRef Wolf HK, Buslei R, Schmidt-Kastner R, et al. NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem 1996;44:1167-1171.PubMedCrossRef
26.
27.
go back to reference Tsai YW, Yang YR, Chen GH, Chang HC, Wang RY. The time window of intermittent hypoxia intervention after middle cerebral artery occlusion. Chin J Physiol 2008;51:324-328.PubMed Tsai YW, Yang YR, Chen GH, Chang HC, Wang RY. The time window of intermittent hypoxia intervention after middle cerebral artery occlusion. Chin J Physiol 2008;51:324-328.PubMed
28.
go back to reference Tsai Y-W, Yang Y-R, Wang PS, Wang R-Y. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PLoS One 2011;6:e24001.PubMedCentralPubMedCrossRef Tsai Y-W, Yang Y-R, Wang PS, Wang R-Y. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats. PLoS One 2011;6:e24001.PubMedCentralPubMedCrossRef
29.
go back to reference Rybnikova E, Vorobyev M, Pivina S, Samoilov M. Postconditioning by mild hypoxic exposures reduces rat brain injury caused by severe hypoxia. Neurosci Lett 2012;513:100-105.PubMedCrossRef Rybnikova E, Vorobyev M, Pivina S, Samoilov M. Postconditioning by mild hypoxic exposures reduces rat brain injury caused by severe hypoxia. Neurosci Lett 2012;513:100-105.PubMedCrossRef
30.
go back to reference Galle AA, Jones NM. The neuroprotective actions of hypoxic preconditioning and postconditioning in a neonatal rat model of hypoxic-ischemic brain injury. Brain Res 2013;1498:1-8.PubMedCrossRef Galle AA, Jones NM. The neuroprotective actions of hypoxic preconditioning and postconditioning in a neonatal rat model of hypoxic-ischemic brain injury. Brain Res 2013;1498:1-8.PubMedCrossRef
31.
go back to reference Fernandez DC, Bordone MP, Chianelli MS, Rosenstein RE. Retinal neuroprotection against ischemia-reperfusion damage induced by postconditioning. Invest Ophthalmol Vis Sci 2009;50:3922-3930.PubMedCrossRef Fernandez DC, Bordone MP, Chianelli MS, Rosenstein RE. Retinal neuroprotection against ischemia-reperfusion damage induced by postconditioning. Invest Ophthalmol Vis Sci 2009;50:3922-3930.PubMedCrossRef
32.
go back to reference Dreixler JC, Shaikh AR, Alexander M, Savoie B, Roth S. Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic pre-conditioning. Exp Eye Res 2010;91:844-852.PubMedCentralPubMedCrossRef Dreixler JC, Shaikh AR, Alexander M, Savoie B, Roth S. Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic pre-conditioning. Exp Eye Res 2010;91:844-852.PubMedCentralPubMedCrossRef
33.
go back to reference Dreixler JC, Poston JN, Shaikh AR, et al. Delayed post-ischemic conditioning significantly improves the outcome after retinal ischemia. Exp Eye Res 2011;92:521-527.PubMedCrossRef Dreixler JC, Poston JN, Shaikh AR, et al. Delayed post-ischemic conditioning significantly improves the outcome after retinal ischemia. Exp Eye Res 2011;92:521-527.PubMedCrossRef
34.
go back to reference Schallner N, Fuchs M, Schwer CI, et al. Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina. PLoS One 2012;7:e46479.PubMedCentralPubMedCrossRef Schallner N, Fuchs M, Schwer CI, et al. Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina. PLoS One 2012;7:e46479.PubMedCentralPubMedCrossRef
35.
go back to reference Dorfman D, Fernandez DC, Chianelli M, Miranda M, Aranda ML, Rosenstein RE. Post-ischemic environmental enrichment protects the retina from ischemic damage in adult rats. Exp Neurol 2013;240:146-156.PubMedCrossRef Dorfman D, Fernandez DC, Chianelli M, Miranda M, Aranda ML, Rosenstein RE. Post-ischemic environmental enrichment protects the retina from ischemic damage in adult rats. Exp Neurol 2013;240:146-156.PubMedCrossRef
36.
go back to reference Fernandez DC, Sande PH, Chianelli MS, Aldana Marcos HJ, Rosenstein RE. Induction of ischemic tolerance protects the retina from diabetic retinopathy. Am J Pathol 2011;178:2264-2274.PubMedCentralPubMedCrossRef Fernandez DC, Sande PH, Chianelli MS, Aldana Marcos HJ, Rosenstein RE. Induction of ischemic tolerance protects the retina from diabetic retinopathy. Am J Pathol 2011;178:2264-2274.PubMedCentralPubMedCrossRef
37.
go back to reference Liu X, Sha O, Cho EY. Remote ischemic postconditioning promotes the survival of retinal ganglion cells after optic nerve injury. J Mol Neurosci 2013;51:639-646.PubMedCrossRef Liu X, Sha O, Cho EY. Remote ischemic postconditioning promotes the survival of retinal ganglion cells after optic nerve injury. J Mol Neurosci 2013;51:639-646.PubMedCrossRef
39.
go back to reference Ji J, Chang P, Pennesi ME, et al. Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vis Res 2005;45:169-179.PubMedCrossRef Ji J, Chang P, Pennesi ME, et al. Effects of elevated intraocular pressure on mouse retinal ganglion cells. Vis Res 2005;45:169-179.PubMedCrossRef
40.
go back to reference Kim HS, Park CK. Retinal ganglion cell death is delayed by activation of retinal intrinsic cell survival program. Brain Res 2005;1057:17-28.PubMedCrossRef Kim HS, Park CK. Retinal ganglion cell death is delayed by activation of retinal intrinsic cell survival program. Brain Res 2005;1057:17-28.PubMedCrossRef
41.
go back to reference Ruiz-Ederra J, Verkman AS. Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion. Exp Eye Res 2006;82:879-884.PubMedCrossRef Ruiz-Ederra J, Verkman AS. Mouse model of sustained elevation in intraocular pressure produced by episcleral vein occlusion. Exp Eye Res 2006;82:879-884.PubMedCrossRef
42.
go back to reference Mittag TW, Danias J, Pohorenec G, et al. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2000;41:3451-3459.PubMed Mittag TW, Danias J, Pohorenec G, et al. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2000;41:3451-3459.PubMed
43.
go back to reference Yu S, Tanabe T, Yoshimura N. A rat model of glaucoma induced by episcleral vein ligation. Exp Eye Res 2006;83:758-770.PubMedCrossRef Yu S, Tanabe T, Yoshimura N. A rat model of glaucoma induced by episcleral vein ligation. Exp Eye Res 2006;83:758-770.PubMedCrossRef
44.
go back to reference Doh SH, Kim JH, Lee KM, Park HY, Park CK. Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res 2010;1308:158-166.PubMedCrossRef Doh SH, Kim JH, Lee KM, Park HY, Park CK. Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res 2010;1308:158-166.PubMedCrossRef
45.
go back to reference Frankfort BJ, Khan AK, Tse DY, et al. Elevated intraocular pressure causes inner retinal dysfunction before cell loss in a mouse model of experimental glaucoma. Invest Ophthalmol Vis Sci 2013;54:762-770.PubMedCentralPubMedCrossRef Frankfort BJ, Khan AK, Tse DY, et al. Elevated intraocular pressure causes inner retinal dysfunction before cell loss in a mouse model of experimental glaucoma. Invest Ophthalmol Vis Sci 2013;54:762-770.PubMedCentralPubMedCrossRef
46.
go back to reference Della Santina L, Inman DM, Lupien CB, Horner PJ, Wong RO. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci 2013;33:17444-17457.PubMedCentralPubMedCrossRef Della Santina L, Inman DM, Lupien CB, Horner PJ, Wong RO. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci 2013;33:17444-17457.PubMedCentralPubMedCrossRef
47.
go back to reference Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci 2012;53:6939-6946.PubMedCentralPubMedCrossRef Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci 2012;53:6939-6946.PubMedCentralPubMedCrossRef
49.
go back to reference Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 1995;61:379-382.PubMedCrossRef Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 1995;61:379-382.PubMedCrossRef
50.
go back to reference Aihara M, Lindsey JD, Weinreb RN. Experimental mouse ocular hypertension: establishment of the model. Invest Ophthalmol Vis Sci 2003;44:4314-4320.PubMedCrossRef Aihara M, Lindsey JD, Weinreb RN. Experimental mouse ocular hypertension: establishment of the model. Invest Ophthalmol Vis Sci 2003;44:4314-4320.PubMedCrossRef
51.
go back to reference Holcombe DJ, Lengefeld N, Gole GA, Barnett NL. Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br J Ophthalmol 2008;92:683-688.PubMedCrossRef Holcombe DJ, Lengefeld N, Gole GA, Barnett NL. Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br J Ophthalmol 2008;92:683-688.PubMedCrossRef
52.
go back to reference Laquis S, Chaudhary P, Sharma SC. The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res 1998;784:100-104.PubMedCrossRef Laquis S, Chaudhary P, Sharma SC. The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res 1998;784:100-104.PubMedCrossRef
53.
go back to reference Neufeld AH, Sawada A, Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci U S A 1999;96:9944-9948.PubMedCentralPubMedCrossRef Neufeld AH, Sawada A, Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci U S A 1999;96:9944-9948.PubMedCentralPubMedCrossRef
54.
go back to reference Sawada A, Neufeld AH. Confirmation of the rat model of chronic, moderately elevated intraocular pressure. Exp Eye Res 1999;69:525-531.PubMedCrossRef Sawada A, Neufeld AH. Confirmation of the rat model of chronic, moderately elevated intraocular pressure. Exp Eye Res 1999;69:525-531.PubMedCrossRef
55.
go back to reference Ahmed FA, Chaudhary P, Sharma SC. Effects of increased intraocular pressure on rat retinal ganglion cells. Int J Dev Neurosci 2001;19:209-218.PubMedCrossRef Ahmed FA, Chaudhary P, Sharma SC. Effects of increased intraocular pressure on rat retinal ganglion cells. Int J Dev Neurosci 2001;19:209-218.PubMedCrossRef
56.
go back to reference Bayer AU, Danias J, Brodie S, et al. Electroretinographic abnormalities in a rat glaucoma model with chronic elevated intraocular pressure. Exp Eye Res 2001;72:667-677.PubMedCrossRef Bayer AU, Danias J, Brodie S, et al. Electroretinographic abnormalities in a rat glaucoma model with chronic elevated intraocular pressure. Exp Eye Res 2001;72:667-677.PubMedCrossRef
57.
go back to reference Kanamori A, Nakamura M, Nakanishi Y, et al. Akt is activated via insulin/IGF-1 receptor in rat retina with episcleral vein cauterization. Brain Res 2004;1022:195-204.PubMedCrossRef Kanamori A, Nakamura M, Nakanishi Y, et al. Akt is activated via insulin/IGF-1 receptor in rat retina with episcleral vein cauterization. Brain Res 2004;1022:195-204.PubMedCrossRef
58.
go back to reference Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012;31:152-181.PubMedCrossRef Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012;31:152-181.PubMedCrossRef
60.
go back to reference Janssen SF, Gorgels TG, Ramdas WD, et al. The vast complexity of primary open angle glaucoma: disease genes, risks, molecular mechanisms and pathobiology. Prog Retin Eye Res 2013;37:31-67.PubMedCrossRef Janssen SF, Gorgels TG, Ramdas WD, et al. The vast complexity of primary open angle glaucoma: disease genes, risks, molecular mechanisms and pathobiology. Prog Retin Eye Res 2013;37:31-67.PubMedCrossRef
61.
go back to reference Libby RT, Li Y, Savinova OV, et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 2005;1:17-26.PubMedCrossRef Libby RT, Li Y, Savinova OV, et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 2005;1:17-26.PubMedCrossRef
62.
go back to reference Howell GR, Soto I, Libby RT, John SW. Intrinsic axonal degeneration pathways are critical for glaucomatous damage. Exp Neurol 2013;246:54-61.PubMedCrossRef Howell GR, Soto I, Libby RT, John SW. Intrinsic axonal degeneration pathways are critical for glaucomatous damage. Exp Neurol 2013;246:54-61.PubMedCrossRef
64.
go back to reference Leconte C, Tixier E, Freret T, et al. Delayed hypoxic postconditioning protects against cerebral ischemia in the mouse. Stroke 2009;40:3349-3355.PubMedCrossRef Leconte C, Tixier E, Freret T, et al. Delayed hypoxic postconditioning protects against cerebral ischemia in the mouse. Stroke 2009;40:3349-3355.PubMedCrossRef
65.
go back to reference Manukhina EB, Goryacheva AV, Barskov IV, et al. Prevention of neurodegenerative damage to the brain in rats in experimental Alzheimer’s disease by adaptation to hypoxia. Neurosci Behav Physiol 2010;40:737-743.PubMedCrossRef Manukhina EB, Goryacheva AV, Barskov IV, et al. Prevention of neurodegenerative damage to the brain in rats in experimental Alzheimer’s disease by adaptation to hypoxia. Neurosci Behav Physiol 2010;40:737-743.PubMedCrossRef
66.
go back to reference Lovett-Barr MR, Satriotomo I, Muir GD, et al. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci 2012;32:3591-3600.PubMedCentralPubMedCrossRef Lovett-Barr MR, Satriotomo I, Muir GD, et al. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci 2012;32:3591-3600.PubMedCentralPubMedCrossRef
67.
go back to reference Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology 2014;82:104-113.PubMedCentralPubMedCrossRef Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology 2014;82:104-113.PubMedCentralPubMedCrossRef
68.
go back to reference Serebrovskaya TV. Intermittent hypoxia research in the former soviet union and the commonwealth of independent States: history and review of the concept and selected applications. High Alt Med Biol 2002;3:205-221.PubMedCrossRef Serebrovskaya TV. Intermittent hypoxia research in the former soviet union and the commonwealth of independent States: history and review of the concept and selected applications. High Alt Med Biol 2002;3:205-221.PubMedCrossRef
69.
go back to reference Marquez JL, Rubinstein S, Fattor JA, Shah O, Hoffman AR, Friedlander AL. Cyclic hypobaric hypoxia improves markers of glucose metabolism in middle-aged men. High Alt Med Biol 2013;14:263-272.PubMedCrossRef Marquez JL, Rubinstein S, Fattor JA, Shah O, Hoffman AR, Friedlander AL. Cyclic hypobaric hypoxia improves markers of glucose metabolism in middle-aged men. High Alt Med Biol 2013;14:263-272.PubMedCrossRef
70.
go back to reference Basovich SN. Trends in the use of preconditioning to hypoxia for early prevention of future life diseases. Biosci Trends 2013;7:23-32.PubMed Basovich SN. Trends in the use of preconditioning to hypoxia for early prevention of future life diseases. Biosci Trends 2013;7:23-32.PubMed
Metadata
Title
Enhanced Retinal Ganglion Cell Survival in Glaucoma by Hypoxic Postconditioning After Disease Onset
Authors
Jeffrey M. Gidday
Lihong Zhang
Chia-Wen Chiang
Yanli Zhu
Publication date
01-04-2015
Publisher
Springer US
Published in
Neurotherapeutics / Issue 2/2015
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-014-0330-x

Other articles of this Issue 2/2015

Neurotherapeutics 2/2015 Go to the issue