Skip to main content
Top
Published in: Neurotherapeutics 4/2013

01-10-2013 | Review

Epigenetics of Neural Repair Following Spinal Cord Injury

Authors: Elisa M. York, Audrey Petit, A. Jane Roskams

Published in: Neurotherapeutics | Issue 4/2013

Login to get access

Abstract

Spinal cord injury results from an insult inflicted on the spinal cord that usually encompasses its 4 major functions (motor, sensory, autonomic, and reflex). The type of deficits resulting from spinal cord injury arise from primary insult, but their long-term severity is due to a multitude of pathophysiological processes during the secondary phase of injury. The failure of the mammalian spinal cord to regenerate and repair is often attributed to the very feature that makes the central nervous system special—it becomes so highly specialized to perform higher functions that it cannot effectively reactivate developmental programs to re-build novel circuitry to restore function after injury. Added to this is an extensive gliotic and immune response that is essential for clearance of cellular debris, but also lays down many obstacles that are detrimental to regeneration. Here, we discuss how the mature chromatin state of different central nervous system cells (neural, glial, and immune) may contribute to secondary pathophysiology, and how restoring silenced developmental gene expression by altering histone acetylation could stall secondary damage and contribute to novel approaches to stimulate endogenous repair.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008;25:E2.CrossRefPubMed Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008;25:E2.CrossRefPubMed
2.
go back to reference Dumont RJ, Okonkwo DO, Verma S, et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 2001;24:254–264.CrossRefPubMed Dumont RJ, Okonkwo DO, Verma S, et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 2001;24:254–264.CrossRefPubMed
3.
go back to reference Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int 2013;2013:786475.PubMed Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int 2013;2013:786475.PubMed
4.
go back to reference Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 1995;5:407–413.CrossRefPubMed Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 1995;5:407–413.CrossRefPubMed
6.
go back to reference Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return. Mol Neurodegener 2012;7:6.CrossRefPubMed Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return. Mol Neurodegener 2012;7:6.CrossRefPubMed
7.
go back to reference Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma 2004;21:429–440.CrossRefPubMed Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma 2004;21:429–440.CrossRefPubMed
8.
go back to reference Su H, Wu Y, Yuan Q, Guo J, Zhang W, Wu W. Optimal time point for neuronal generation of transplanted neural progenitor cells in injured spinal cord following root avulsion. Cell Transplant 2011;20:167–176.CrossRefPubMed Su H, Wu Y, Yuan Q, Guo J, Zhang W, Wu W. Optimal time point for neuronal generation of transplanted neural progenitor cells in injured spinal cord following root avulsion. Cell Transplant 2011;20:167–176.CrossRefPubMed
9.
go back to reference Anderson DK HE. Pathophysiology of spinal cord trauma. Ann Emerg Med 1993;22:987–992. Anderson DK HE. Pathophysiology of spinal cord trauma. Ann Emerg Med 1993;22:987–992.
10.
go back to reference Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury--a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 1991;324:1829–1838.CrossRefPubMed Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury--a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 1991;324:1829–1838.CrossRefPubMed
11.
go back to reference Lapchak PA, Araujo DM, Song D, Zivin JA. Neuroprotection by the selective cyclooxygenase-2 inhibitor SC-236 results in improvements in behavioral deficits induced by reversible spinal cord ischemia. Stroke 2001;32:1220–1225.CrossRefPubMed Lapchak PA, Araujo DM, Song D, Zivin JA. Neuroprotection by the selective cyclooxygenase-2 inhibitor SC-236 results in improvements in behavioral deficits induced by reversible spinal cord ischemia. Stroke 2001;32:1220–1225.CrossRefPubMed
12.
go back to reference Blight AR, Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. J Neurol Sci 1989;91:15–34.CrossRefPubMed Blight AR, Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. J Neurol Sci 1989;91:15–34.CrossRefPubMed
13.
go back to reference McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 1998;15:731–69.CrossRefPubMed McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 1998;15:731–69.CrossRefPubMed
14.
go back to reference Rhoney DH, Luer MS, Hughes M, Hatton J. New pharmacologic approaches to acute spinal cord injury. Pharmacotherapy 1996;16:382–392.PubMed Rhoney DH, Luer MS, Hughes M, Hatton J. New pharmacologic approaches to acute spinal cord injury. Pharmacotherapy 1996;16:382–392.PubMed
15.
go back to reference Tator CH. Pathophysiology and pathology of spinal cord injury. In Neurosurgery, Wilkins RH RS, editor. Baltimore: Williams & Wilkins, 1996, p. 2847–2859. Tator CH. Pathophysiology and pathology of spinal cord injury. In Neurosurgery, Wilkins RH RS, editor. Baltimore: Williams & Wilkins, 1996, p. 2847–2859.
16.
go back to reference Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006;7:628–643.CrossRefPubMed Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006;7:628–643.CrossRefPubMed
17.
go back to reference Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS. Inflammation & apoptosis in spinal cord injury. Indian J Med Res 2012;135:287–296.PubMed Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS. Inflammation & apoptosis in spinal cord injury. Indian J Med Res 2012;135:287–296.PubMed
18.
19.
go back to reference David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011;12:388–399.CrossRefPubMed David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011;12:388–399.CrossRefPubMed
20.
go back to reference Campbell SJ, Perry VH, Pitossi FJ, et al. Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. Am J Pathol 2005;166:1487–1497.CrossRefPubMed Campbell SJ, Perry VH, Pitossi FJ, et al. Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. Am J Pathol 2005;166:1487–1497.CrossRefPubMed
21.
22.
go back to reference Kakulas BA. A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med 1999;22:119–1124.PubMed Kakulas BA. A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med 1999;22:119–1124.PubMed
23.
go back to reference Deumens R, Koopmans GC, Honig WM, et al. Chronically injured corticospinal axons do not cross large spinal lesion gaps after a multifactorial transplantation strategy using olfactory ensheathing cell/olfactory nerve fibroblast-biomatrix bridges. J Neurosci Res 2006;83:811–820.CrossRefPubMed Deumens R, Koopmans GC, Honig WM, et al. Chronically injured corticospinal axons do not cross large spinal lesion gaps after a multifactorial transplantation strategy using olfactory ensheathing cell/olfactory nerve fibroblast-biomatrix bridges. J Neurosci Res 2006;83:811–820.CrossRefPubMed
24.
go back to reference Failli V, Kopp MA, Gericke C, et al. Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain 2012;135:3238–3250.CrossRefPubMed Failli V, Kopp MA, Gericke C, et al. Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain 2012;135:3238–3250.CrossRefPubMed
25.
go back to reference MacDonald JL, Roskams AJ. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 2009;88:170–183.CrossRefPubMed MacDonald JL, Roskams AJ. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 2009;88:170–183.CrossRefPubMed
27.
28.
go back to reference Maze I, Noh KM, Allis CD. Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology 2013;38:3–22.CrossRefPubMed Maze I, Noh KM, Allis CD. Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology 2013;38:3–22.CrossRefPubMed
29.
30.
33.
go back to reference Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33:245–254.CrossRefPubMed Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33:245–254.CrossRefPubMed
34.
go back to reference Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics 2011;6:539–543.CrossRefPubMed Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics 2011;6:539–543.CrossRefPubMed
36.
38.
go back to reference Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 2000;97:5237–5242.CrossRefPubMed Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 2000;97:5237–5242.CrossRefPubMed
39.
go back to reference Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992;69:915–926.CrossRefPubMed Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992;69:915–926.CrossRefPubMed
40.
go back to reference Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247–257.CrossRefPubMed Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247–257.CrossRefPubMed
41.
go back to reference Nan X, Cross S, Bird A. Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp 1998;214:6–16.PubMed Nan X, Cross S, Bird A. Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp 1998;214:6–16.PubMed
42.
go back to reference Tanner KG, Trievel RC, Kuo MH, et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem 1999;274:18157–18160.CrossRefPubMed Tanner KG, Trievel RC, Kuo MH, et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem 1999;274:18157–18160.CrossRefPubMed
43.
go back to reference Tanner KG, Langer MR, Kim Y, Denu JM. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J Biol Chem 2000;275:22048–22055.CrossRefPubMed Tanner KG, Langer MR, Kim Y, Denu JM. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J Biol Chem 2000;275:22048–22055.CrossRefPubMed
44.
go back to reference Lau OD, Courtney AD, Vassilev A, et al. p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism. J Biol Chem 2000;275:21953–21959.CrossRefPubMed Lau OD, Courtney AD, Vassilev A, et al. p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism. J Biol Chem 2000;275:21953–21959.CrossRefPubMed
45.
go back to reference Tanner KG, Langer MR, Denu JM. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry 2000;39:15652.CrossRefPubMed Tanner KG, Langer MR, Denu JM. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry 2000;39:15652.CrossRefPubMed
46.
go back to reference Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001;13:477–483.CrossRefPubMed Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001;13:477–483.CrossRefPubMed
47.
go back to reference Villar-Garea A, Esteller M. Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer 2004;112:171–178.CrossRefPubMed Villar-Garea A, Esteller M. Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer 2004;112:171–178.CrossRefPubMed
48.
go back to reference de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370:737–749.CrossRefPubMed de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370:737–749.CrossRefPubMed
49.
go back to reference Cai LL, Courtine G, Fong AJ, Burdick JW, Roy RR, Edgerton VR. Plasticity of functional connectivity in the adult spinal cord. Philos Trans R Soc Lond B Biol Sci 2006;361:1635–1646.CrossRefPubMed Cai LL, Courtine G, Fong AJ, Burdick JW, Roy RR, Edgerton VR. Plasticity of functional connectivity in the adult spinal cord. Philos Trans R Soc Lond B Biol Sci 2006;361:1635–1646.CrossRefPubMed
50.
go back to reference Edgerton VR, Roy RR. A new age for rehabilitation. Eur J Phys Rehabil Med 2012;48:99–109.PubMed Edgerton VR, Roy RR. A new age for rehabilitation. Eur J Phys Rehabil Med 2012;48:99–109.PubMed
51.
go back to reference Lorenz DJ, Datta S, Harkema SJ. Longitudinal patterns of functional recovery in patients with incomplete spinal cord injury receiving activity-based rehabilitation. Arch Phys Med Rehabil 2012;93:1541–1552.CrossRefPubMed Lorenz DJ, Datta S, Harkema SJ. Longitudinal patterns of functional recovery in patients with incomplete spinal cord injury receiving activity-based rehabilitation. Arch Phys Med Rehabil 2012;93:1541–1552.CrossRefPubMed
52.
go back to reference Furlan JC, Fehlings MG. The impact of age on mortality, impairment, and disability among adults with acute traumatic spinal cord injury. J Neurotrauma 2009;26:1707–1717.CrossRefPubMed Furlan JC, Fehlings MG. The impact of age on mortality, impairment, and disability among adults with acute traumatic spinal cord injury. J Neurotrauma 2009;26:1707–1717.CrossRefPubMed
53.
go back to reference DeVivo MJ, Kartus PL, Stover SL, Fine PR. Benefits of early admission to an organised spinal cord injury care system. Paraplegia 1990;28:545–555.CrossRefPubMed DeVivo MJ, Kartus PL, Stover SL, Fine PR. Benefits of early admission to an organised spinal cord injury care system. Paraplegia 1990;28:545–555.CrossRefPubMed
54.
go back to reference Krause JS, Crewe NM. Chronologic age, time since injury, and time of measurement: effect on adjustment after spinal cord injury. Arch Phys Med Rehabil 1991;72:91–100.PubMed Krause JS, Crewe NM. Chronologic age, time since injury, and time of measurement: effect on adjustment after spinal cord injury. Arch Phys Med Rehabil 1991;72:91–100.PubMed
55.
go back to reference Scivoletto G, Mancini M, Fiorelli E, Morganti B, Molinari M. A prototype of an adjustable advanced reciprocating gait orthosis (ARGO) for spinal cord injury (SCI). Spinal Cord 2003;41:187–191.CrossRefPubMed Scivoletto G, Mancini M, Fiorelli E, Morganti B, Molinari M. A prototype of an adjustable advanced reciprocating gait orthosis (ARGO) for spinal cord injury (SCI). Spinal Cord 2003;41:187–191.CrossRefPubMed
56.
go back to reference Leung PY, Wrathall JR. Local and distal responses to injury in the rapid functional recovery from spinal cord contusion in rat pups. Exp Neurol 2006;202:225–237.CrossRefPubMed Leung PY, Wrathall JR. Local and distal responses to injury in the rapid functional recovery from spinal cord contusion in rat pups. Exp Neurol 2006;202:225–237.CrossRefPubMed
57.
go back to reference Siegenthaler MM, Berchtold NC, Cotman CW, Keirstead HS. Voluntary running attenuates age-related deficits following SCI. Exp Neurol 2008;210:207–216.CrossRefPubMed Siegenthaler MM, Berchtold NC, Cotman CW, Keirstead HS. Voluntary running attenuates age-related deficits following SCI. Exp Neurol 2008;210:207–216.CrossRefPubMed
58.
go back to reference Gwak YS, Hains BC, Johnson KM, Hulsebosch CE. Locomotor recovery and mechanical hyperalgesia following spinal cord injury depend on age at time of injury in rat. Neurosci Lett 2004;362:232–235.CrossRefPubMed Gwak YS, Hains BC, Johnson KM, Hulsebosch CE. Locomotor recovery and mechanical hyperalgesia following spinal cord injury depend on age at time of injury in rat. Neurosci Lett 2004;362:232–235.CrossRefPubMed
59.
go back to reference Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004;429:457–463.CrossRefPubMed Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004;429:457–463.CrossRefPubMed
60.
go back to reference Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007;447:433–440.CrossRefPubMed Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007;447:433–440.CrossRefPubMed
61.
go back to reference Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron 2008;60:961–974.CrossRefPubMed Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron 2008;60:961–974.CrossRefPubMed
62.
go back to reference Sharma RP, Grayson DR, Guidotti A, Costa E. Chromatin, DNA methylation and neuron gene regulation—the purpose of the package. J Psychiatry Neurosci 2005;30:257–263.PubMed Sharma RP, Grayson DR, Guidotti A, Costa E. Chromatin, DNA methylation and neuron gene regulation—the purpose of the package. J Psychiatry Neurosci 2005;30:257–263.PubMed
63.
go back to reference Grayson DR, Jia X, Chen Y, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 2005;102:9341–9346.CrossRefPubMed Grayson DR, Jia X, Chen Y, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 2005;102:9341–9346.CrossRefPubMed
64.
go back to reference Veldic M, Caruncho HJ, Liu WS, et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 2004;101:348–353.CrossRefPubMed Veldic M, Caruncho HJ, Liu WS, et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 2004;101:348–353.CrossRefPubMed
65.
go back to reference Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 2005;102:2152–2157.CrossRefPubMed Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 2005;102:2152–2157.CrossRefPubMed
66.
go back to reference Yoo AS, Crabtree GR. ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol 2009;19:120–126.CrossRefPubMed Yoo AS, Crabtree GR. ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol 2009;19:120–126.CrossRefPubMed
67.
go back to reference Siegmund KD, Connor CM, Campan M, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2007;2:e895.CrossRefPubMed Siegmund KD, Connor CM, Campan M, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2007;2:e895.CrossRefPubMed
68.
go back to reference Ladd-Acosta C, Pevsner J, Sabunciyan S, et al. DNA methylation signatures within the human brain. Am J Hum Genet 2007;81:1304–1315.CrossRefPubMed Ladd-Acosta C, Pevsner J, Sabunciyan S, et al. DNA methylation signatures within the human brain. Am J Hum Genet 2007;81:1304–1315.CrossRefPubMed
69.
go back to reference Sweatt JD. Experience-dependent epigenetic modifications in the central nervous system. Biol Psychiatry 2009;65:191–197.CrossRefPubMed Sweatt JD. Experience-dependent epigenetic modifications in the central nervous system. Biol Psychiatry 2009;65:191–197.CrossRefPubMed
70.
71.
go back to reference Hsieh J, Gage FH. Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 2005;17:664–671.CrossRefPubMed Hsieh J, Gage FH. Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 2005;17:664–671.CrossRefPubMed
72.
go back to reference Foti SB, Chou A, Moll AD, Roskams AJ. HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain. Int J Dev Neurosci 2013;31(6):437–447. Foti SB, Chou A, Moll AD, Roskams AJ. HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain. Int J Dev Neurosci 2013;31(6):437–447.
73.
go back to reference Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci 2005;6:108–118.CrossRefPubMed Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci 2005;6:108–118.CrossRefPubMed
75.
76.
go back to reference Swank MW, Sweatt JD. Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J Neurosci 2001;21:3383–3391.PubMed Swank MW, Sweatt JD. Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J Neurosci 2001;21:3383–3391.PubMed
77.
go back to reference Chwang WB, O'Riordan KJ, Levenson JM, Sweatt JD. ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 2006;13:322–328.CrossRefPubMed Chwang WB, O'Riordan KJ, Levenson JM, Sweatt JD. ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 2006;13:322–328.CrossRefPubMed
78.
go back to reference Brami-Cherrier K, Valjent E, Herve D, et al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 2005;25:11444–11454.CrossRefPubMed Brami-Cherrier K, Valjent E, Herve D, et al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 2005;25:11444–11454.CrossRefPubMed
79.
go back to reference Chwang WB, Arthur JS, Schumacher A, Sweatt JD. The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci 2007;27:12732–12742.CrossRefPubMed Chwang WB, Arthur JS, Schumacher A, Sweatt JD. The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci 2007;27:12732–12742.CrossRefPubMed
80.
go back to reference Ghasemlou N, Lopez-Vales R, Lachance C, et al. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J Neurosci 2010;30:13750–13759.CrossRefPubMed Ghasemlou N, Lopez-Vales R, Lachance C, et al. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J Neurosci 2010;30:13750–13759.CrossRefPubMed
81.
go back to reference Lubin FD, Sweatt JD. The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 2007;55:942–957.CrossRefPubMed Lubin FD, Sweatt JD. The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 2007;55:942–957.CrossRefPubMed
82.
go back to reference Yeh SH, Lin CH, Gean PW. Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Mol Pharmacol 2004;65:1286–1292.CrossRefPubMed Yeh SH, Lin CH, Gean PW. Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Mol Pharmacol 2004;65:1286–1292.CrossRefPubMed
83.
go back to reference Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002;111:709–720.CrossRefPubMed Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002;111:709–720.CrossRefPubMed
84.
go back to reference Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001;293:1653–1657.CrossRef Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001;293:1653–1657.CrossRef
85.
go back to reference Oliveira AM, Wood MA, McDonough CB, Abel T. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn Mem 2007;14:564–572.CrossRefPubMed Oliveira AM, Wood MA, McDonough CB, Abel T. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn Mem 2007;14:564–572.CrossRefPubMed
86.
go back to reference Kim SY, Levenson JM, Korsmeyer S, Sweatt JD, Schumacher A. Developmental regulation of Eed complex composition governs a switch in global histone modification in brain. J Biol Chem 2007;282:9962–9972.CrossRefPubMed Kim SY, Levenson JM, Korsmeyer S, Sweatt JD, Schumacher A. Developmental regulation of Eed complex composition governs a switch in global histone modification in brain. J Biol Chem 2007;282:9962–9972.CrossRefPubMed
87.
go back to reference Chandramohan Y, Droste SK, Reul JM. Novelty stress induces phospho-acetylation of histone H3 in rat dentate gyrus granule neurons through coincident signalling via the N-methyl-D-aspartate receptor and the glucocorticoid receptor: relevance for c-fos induction. J Neurochem 2007;101:815–828.CrossRefPubMed Chandramohan Y, Droste SK, Reul JM. Novelty stress induces phospho-acetylation of histone H3 in rat dentate gyrus granule neurons through coincident signalling via the N-methyl-D-aspartate receptor and the glucocorticoid receptor: relevance for c-fos induction. J Neurochem 2007;101:815–828.CrossRefPubMed
88.
go back to reference Wu SC, Zhang Y. Minireview: role of protein methylation and demethylation in nuclear hormone signaling. Mol Endocrinol 2009;23:1323–1334.CrossRefPubMed Wu SC, Zhang Y. Minireview: role of protein methylation and demethylation in nuclear hormone signaling. Mol Endocrinol 2009;23:1323–1334.CrossRefPubMed
89.
go back to reference Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 2007;85:614S-620S.PubMed Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 2007;85:614S-620S.PubMed
90.
go back to reference Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol 2011;93:182–203.CrossRefPubMed Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol 2011;93:182–203.CrossRefPubMed
91.
92.
go back to reference Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007;97:1064–1073.CrossRefPubMed Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007;97:1064–1073.CrossRefPubMed
93.
go back to reference Duan W, Ladenheim B, Cutler RG, Kruman, II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. J Neurochem 2002;80:101–110.CrossRefPubMed Duan W, Ladenheim B, Cutler RG, Kruman, II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. J Neurochem 2002;80:101–110.CrossRefPubMed
94.
go back to reference Kruman, II, Kumaravel TS, Lohani A, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. J Neurosci 2002;22:1752–1762.PubMed Kruman, II, Kumaravel TS, Lohani A, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. J Neurosci 2002;22:1752–1762.PubMed
95.
go back to reference Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 2002;346:476–483.CrossRefPubMed Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 2002;346:476–483.CrossRefPubMed
96.
go back to reference Shea TB, Lyons-Weiler J, Rogers E. Homocysteine, folate deprivation and Alzheimer neuropathology. J Alzheimers Dis 2002;4:261–267.PubMed Shea TB, Lyons-Weiler J, Rogers E. Homocysteine, folate deprivation and Alzheimer neuropathology. J Alzheimers Dis 2002;4:261–267.PubMed
97.
go back to reference Kaelin WG, Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013;153:56–69.CrossRefPubMed Kaelin WG, Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013;153:56–69.CrossRefPubMed
98.
go back to reference Jeong MA, Plunet W, Streijger F, et al. Intermittent fasting improves functional recovery after rat thoracic contusion spinal cord injury. J Neurotrauma 2011;28:479–492.CrossRefPubMed Jeong MA, Plunet W, Streijger F, et al. Intermittent fasting improves functional recovery after rat thoracic contusion spinal cord injury. J Neurotrauma 2011;28:479–492.CrossRefPubMed
99.
go back to reference Streijger F, Plunet WT, Plemel JR, Lam CK, Liu J, Tetzlaff W. Intermittent fasting in mice does not improve hindlimb motor performance after spinal cord injury. J Neurotrauma 2011;28:1051–1061.CrossRefPubMed Streijger F, Plunet WT, Plemel JR, Lam CK, Liu J, Tetzlaff W. Intermittent fasting in mice does not improve hindlimb motor performance after spinal cord injury. J Neurotrauma 2011;28:1051–1061.CrossRefPubMed
100.
go back to reference Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55–60.CrossRefPubMed Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55–60.CrossRefPubMed
101.
go back to reference Vogel-Ciernia A, Matheos DP, Barrett RM, et al. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat Neurosci 2013;16:552–561.CrossRefPubMed Vogel-Ciernia A, Matheos DP, Barrett RM, et al. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat Neurosci 2013;16:552–561.CrossRefPubMed
102.
go back to reference Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 2003;22:6537–4659.CrossRefPubMed Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 2003;22:6537–4659.CrossRefPubMed
103.
go back to reference Boutillier AL, Trinh E, Loeffler JP. Selective E2F-dependent gene transcription is controlled by histone deacetylase activity during neuronal apoptosis. J Neurochem 2003;84:814–828.CrossRefPubMed Boutillier AL, Trinh E, Loeffler JP. Selective E2F-dependent gene transcription is controlled by histone deacetylase activity during neuronal apoptosis. J Neurochem 2003;84:814–828.CrossRefPubMed
104.
go back to reference Hou ST, Jiang SX, Smith RA. Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int Rev Cell Mol Biol 2008;267:125–181.CrossRefPubMed Hou ST, Jiang SX, Smith RA. Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int Rev Cell Mol Biol 2008;267:125–181.CrossRefPubMed
105.
go back to reference Doucet G, Petit A. Seeking axon guidance molecules in the adult rat CNS. Prog Brain Res 2002;137:453–465.CrossRefPubMed Doucet G, Petit A. Seeking axon guidance molecules in the adult rat CNS. Prog Brain Res 2002;137:453–465.CrossRefPubMed
106.
go back to reference Gaillard S, Nasarre C, Gonthier B, Bagnard D. [The cellular and molecular basis of axonal growth]. Rev Neurol (Paris) 2005;161:153–172. Gaillard S, Nasarre C, Gonthier B, Bagnard D. [The cellular and molecular basis of axonal growth]. Rev Neurol (Paris) 2005;161:153–172.
107.
go back to reference Huber AB, Kolodkin AL, Ginty DD, Cloutier JF. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 2003;26:509–563.CrossRefPubMed Huber AB, Kolodkin AL, Ginty DD, Cloutier JF. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 2003;26:509–563.CrossRefPubMed
108.
go back to reference Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996;274:1123–1133.CrossRefPubMed Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996;274:1123–1133.CrossRefPubMed
109.
go back to reference DeBellard ME, Tang S, Mukhopadhyay G, Shen YJ, Filbin MT. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol Cell Neurosci 1996;7:89–101.CrossRefPubMed DeBellard ME, Tang S, Mukhopadhyay G, Shen YJ, Filbin MT. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol Cell Neurosci 1996;7:89–101.CrossRefPubMed
110.
go back to reference Moore DL, Goldberg JL. Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 2011;71:1186–1211. Moore DL, Goldberg JL. Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 2011;71:1186–1211.
111.
go back to reference Muramatsu R, Ueno M, Yamashita T. Intrinsic regenerative mechanisms of central nervous system neurons. Biosci Trends 2009;3:179–183.PubMed Muramatsu R, Ueno M, Yamashita T. Intrinsic regenerative mechanisms of central nervous system neurons. Biosci Trends 2009;3:179–183.PubMed
112.
go back to reference Liu K, Tedeschi A, Park KK, He Z. Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 2011;34:131–152. Liu K, Tedeschi A, Park KK, He Z. Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 2011;34:131–152.
113.
go back to reference Trakhtenberg EF, Goldberg JL. Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci 2012;5:24. Trakhtenberg EF, Goldberg JL. Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci 2012;5:24.
114.
go back to reference Macdonald JL, Verster A, Berndt A, Roskams AJ. MBD2 and MeCP2 regulate distinct transitions in the stage-specific differentiation of olfactory receptor neurons. Mol Cell Neurosci 2010;44:55–67.CrossRefPubMed Macdonald JL, Verster A, Berndt A, Roskams AJ. MBD2 and MeCP2 regulate distinct transitions in the stage-specific differentiation of olfactory receptor neurons. Mol Cell Neurosci 2010;44:55–67.CrossRefPubMed
115.
go back to reference Smrt RD, Eaves-Egenes J, Barkho BZ, et al. Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 2007;27:77–89.CrossRefPubMed Smrt RD, Eaves-Egenes J, Barkho BZ, et al. Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 2007;27:77–89.CrossRefPubMed
116.
go back to reference Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010;17:1392–1408.CrossRefPubMed Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010;17:1392–1408.CrossRefPubMed
117.
go back to reference Li S, Overman JJ, Katsman D, et al. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 2010;13:1496–1504.CrossRefPubMed Li S, Overman JJ, Katsman D, et al. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 2010;13:1496–1504.CrossRefPubMed
118.
go back to reference Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455–458.CrossRefPubMed Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455–458.CrossRefPubMed
119.
go back to reference Rivieccio MA, Brochier C, Willis DE, et al. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci U S A 2009;106:19599–19604.CrossRefPubMed Rivieccio MA, Brochier C, Willis DE, et al. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci U S A 2009;106:19599–19604.CrossRefPubMed
120.
go back to reference Kim JY, Shen S, Dietz K, et al. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 2010;13:180–189.CrossRefPubMed Kim JY, Shen S, Dietz K, et al. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 2010;13:180–189.CrossRefPubMed
121.
go back to reference Tapia M, Wandosell F, Garrido JJ. Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development. PLoS One 2010;5:e12908.CrossRefPubMed Tapia M, Wandosell F, Garrido JJ. Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development. PLoS One 2010;5:e12908.CrossRefPubMed
122.
go back to reference Langley B, Gensert JM, Beal MF, Ratan RR. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 2005;4:41–50.CrossRefPubMed Langley B, Gensert JM, Beal MF, Ratan RR. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 2005;4:41–50.CrossRefPubMed
123.
go back to reference Carmichael ST. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr Opin Neurol 2003;16:699–704.CrossRefPubMed Carmichael ST. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr Opin Neurol 2003;16:699–704.CrossRefPubMed
124.
go back to reference Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009;29:13435–13444.CrossRefPubMed Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009;29:13435–13444.CrossRefPubMed
125.
go back to reference Halili MA, Andrews MR, Sweet MJ, Fairlie DP. Histone deacetylase inhibitors in inflammatory disease. Curr Top Med Chem 2009;9:309–319.CrossRefPubMed Halili MA, Andrews MR, Sweet MJ, Fairlie DP. Histone deacetylase inhibitors in inflammatory disease. Curr Top Med Chem 2009;9:309–319.CrossRefPubMed
126.
go back to reference Mullican SE, Gaddis CA, Alenghat T, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev 2011;25:2480–2488.CrossRefPubMed Mullican SE, Gaddis CA, Alenghat T, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev 2011;25:2480–2488.CrossRefPubMed
127.
go back to reference Takeuch O, Akira S. Epigenetic control of macrophage polarization. Eur J Immunol 2011;41:2490–2493.CrossRefPubMed Takeuch O, Akira S. Epigenetic control of macrophage polarization. Eur J Immunol 2011;41:2490–2493.CrossRefPubMed
128.
go back to reference Schomberg D, Olson JK. Immune responses of microglia in the spinal cord: contribution to pain states. Exp Neurol 2012;234:262–270.CrossRefPubMed Schomberg D, Olson JK. Immune responses of microglia in the spinal cord: contribution to pain states. Exp Neurol 2012;234:262–270.CrossRefPubMed
129.
go back to reference Zhang ZY, Zhang Z, Fauser U, Schluesener HJ. Global hypomethylation defines a sub-population of reactive microglia/macrophages in experimental traumatic brain injury. Neurosci Lett 2007;429:1–6.CrossRefPubMed Zhang ZY, Zhang Z, Fauser U, Schluesener HJ. Global hypomethylation defines a sub-population of reactive microglia/macrophages in experimental traumatic brain injury. Neurosci Lett 2007;429:1–6.CrossRefPubMed
130.
go back to reference Zhang ZY, Zhang Z, Schluesener HJ. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience 2010;169:370–377.CrossRefPubMed Zhang ZY, Zhang Z, Schluesener HJ. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience 2010;169:370–377.CrossRefPubMed
131.
132.
go back to reference Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist 2005;11:400–407.CrossRefPubMed Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist 2005;11:400–407.CrossRefPubMed
133.
go back to reference Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 2010;7:494–506.CrossRefPubMed Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 2010;7:494–506.CrossRefPubMed
134.
go back to reference Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA. Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 2008;105:108–120.CrossRefPubMed Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA. Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 2008;105:108–120.CrossRefPubMed
135.
go back to reference Nakashima K, Yanagisawa M, Arakawa H, et al. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 1999;284:479–482.CrossRefPubMed Nakashima K, Yanagisawa M, Arakawa H, et al. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 1999;284:479–482.CrossRefPubMed
136.
go back to reference Liu A, Han YR, Li J, et al. The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. J Neurosci 2007;27:7339–7343.CrossRefPubMed Liu A, Han YR, Li J, et al. The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. J Neurosci 2007;27:7339–7343.CrossRefPubMed
137.
go back to reference Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 2006;127:185–197.CrossRefPubMed Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 2006;127:185–197.CrossRefPubMed
138.
go back to reference Hermanson O, Jepsen K, Rosenfeld MG. N-CoR controls differentiation of neural stem cells into astrocytes. Nature 2002;419:934–939.CrossRefPubMed Hermanson O, Jepsen K, Rosenfeld MG. N-CoR controls differentiation of neural stem cells into astrocytes. Nature 2002;419:934–939.CrossRefPubMed
139.
go back to reference Suh HS, Choi S, Khattar P, Choi N, Lee SC. Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J Neuroimmune Pharmacol 2010;5:521–532.CrossRefPubMed Suh HS, Choi S, Khattar P, Choi N, Lee SC. Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J Neuroimmune Pharmacol 2010;5:521–532.CrossRefPubMed
140.
go back to reference Taniura S, Kamitani H, Watanabe T, Eling TE. Transcriptional regulation of cyclooxygenase-1 by histone deacetylase inhibitors in normal human astrocyte cells. J Biol Chem 2002;277:16823–16830.CrossRefPubMed Taniura S, Kamitani H, Watanabe T, Eling TE. Transcriptional regulation of cyclooxygenase-1 by histone deacetylase inhibitors in normal human astrocyte cells. J Biol Chem 2002;277:16823–16830.CrossRefPubMed
141.
go back to reference Tong X, Yin L, Giardina C. Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem Biophys Res Commun 2004;317:463–471.CrossRefPubMed Tong X, Yin L, Giardina C. Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem Biophys Res Commun 2004;317:463–471.CrossRefPubMed
142.
go back to reference Faraco G, Pittelli M, Cavone L, et al. Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 2009;36:269–279.CrossRefPubMed Faraco G, Pittelli M, Cavone L, et al. Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 2009;36:269–279.CrossRefPubMed
143.
go back to reference Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 2004;66:899–908.CrossRefPubMed Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 2004;66:899–908.CrossRefPubMed
144.
go back to reference Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 2004;141:874–880.CrossRefPubMed Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 2004;141:874–880.CrossRefPubMed
145.
go back to reference Suuronen T, Huuskonen J, Pihlaja R, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by histone deacetylase inhibitors. J Neurochem 2003;87:407–416.CrossRefPubMed Suuronen T, Huuskonen J, Pihlaja R, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by histone deacetylase inhibitors. J Neurochem 2003;87:407–416.CrossRefPubMed
146.
go back to reference Correa F, Mallard C, Nilsson M, Sandberg M. Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: restoring effects of inhibitors of HDACs, p38 MAPK and GSK3beta. Neurobiol Dis 2011;44:142–151.PubMed Correa F, Mallard C, Nilsson M, Sandberg M. Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: restoring effects of inhibitors of HDACs, p38 MAPK and GSK3beta. Neurobiol Dis 2011;44:142–151.PubMed
147.
go back to reference Meshorer E. Chromatin in embryonic stem cell neuronal differentiation. Histol Histopathol 2007;22:311–319.PubMed Meshorer E. Chromatin in embryonic stem cell neuronal differentiation. Histol Histopathol 2007;22:311–319.PubMed
148.
go back to reference Lee S, Lee SK. Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 2010;20:29–36.CrossRefPubMed Lee S, Lee SK. Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 2010;20:29–36.CrossRefPubMed
149.
go back to reference Juliandi B, Abematsu M, Nakashima K. Epigenetic regulation in neural stem cell differentiation. Dev Growth Differ 2010;52:493–504. Juliandi B, Abematsu M, Nakashima K. Epigenetic regulation in neural stem cell differentiation. Dev Growth Differ 2010;52:493–504.
150.
go back to reference Petit A, Sanders AD, Kennedy TE, et al. Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 2011;6:e24538.CrossRefPubMed Petit A, Sanders AD, Kennedy TE, et al. Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 2011;6:e24538.CrossRefPubMed
151.
go back to reference Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 2009;106:7876–7881.CrossRefPubMed Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 2009;106:7876–7881.CrossRefPubMed
152.
go back to reference Asklund T, Appelskog IB, Ammerpohl O, Ekstrom TJ, Almqvist PM. Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J Cancer 2004;40:1073–1081.CrossRefPubMed Asklund T, Appelskog IB, Ammerpohl O, Ekstrom TJ, Almqvist PM. Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J Cancer 2004;40:1073–1081.CrossRefPubMed
153.
go back to reference Song MR, Ghosh A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 2004;7:229–235.CrossRefPubMed Song MR, Ghosh A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 2004;7:229–235.CrossRefPubMed
154.
go back to reference Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004;101:16659–16664.CrossRefPubMed Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004;101:16659–16664.CrossRefPubMed
155.
go back to reference Lyssiotis CA, Walker J, Wu C, Kondo T, Schultz PG, Wu X. Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc Natl Acad Sci U S A 2007;104:14982–14987.CrossRefPubMed Lyssiotis CA, Walker J, Wu C, Kondo T, Schultz PG, Wu X. Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc Natl Acad Sci U S A 2007;104:14982–14987.CrossRefPubMed
156.
go back to reference Laeng P, Pitts RL, Lemire AL, et al. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem 2004;91:238–251.CrossRefPubMed Laeng P, Pitts RL, Lemire AL, et al. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem 2004;91:238–251.CrossRefPubMed
157.
go back to reference Siebzehnrubl FA, Buslei R, Eyupoglu IY, Seufert S, Hahnen E, Blumcke I. Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells. Exp Brain Res 2007;176:672–678.CrossRefPubMed Siebzehnrubl FA, Buslei R, Eyupoglu IY, Seufert S, Hahnen E, Blumcke I. Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells. Exp Brain Res 2007;176:672–678.CrossRefPubMed
158.
go back to reference Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 2005;169:577–589.CrossRefPubMed Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 2005;169:577–589.CrossRefPubMed
159.
go back to reference Chaudhry N, Filbin MT. Myelin-associated inhibitory signaling and strategies to overcome inhibition. J Cereb Blood Flow Metab 2007;27:1096–1107.CrossRefPubMed Chaudhry N, Filbin MT. Myelin-associated inhibitory signaling and strategies to overcome inhibition. J Cereb Blood Flow Metab 2007;27:1096–1107.CrossRefPubMed
160.
go back to reference Giger RJ, Venkatesh K, Chivatakarn O, et al. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restor Neurol Neurosci 2008;26:97–115.PubMed Giger RJ, Venkatesh K, Chivatakarn O, et al. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restor Neurol Neurosci 2008;26:97–115.PubMed
161.
go back to reference Liu J, Casaccia P. Epigenetic regulation of oligodendrocyte identity. Trends Neurosci 2010;33:193–201.CrossRefPubMed Liu J, Casaccia P. Epigenetic regulation of oligodendrocyte identity. Trends Neurosci 2010;33:193–201.CrossRefPubMed
162.
go back to reference Rosenzweig I, Vukadinovic Z, Turner AJ, Catani M. Neuroconnectivity and valproic acid: the myelin hypothesis. Neurosci Biobehav Rev 2012;36:1848–1856.CrossRefPubMed Rosenzweig I, Vukadinovic Z, Turner AJ, Catani M. Neuroconnectivity and valproic acid: the myelin hypothesis. Neurosci Biobehav Rev 2012;36:1848–1856.CrossRefPubMed
163.
go back to reference Roth TL, Sweatt JD. Annual research review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 2011;52:398–408.CrossRefPubMed Roth TL, Sweatt JD. Annual research review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 2011;52:398–408.CrossRefPubMed
164.
go back to reference Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 2008;8:57–64.CrossRefPubMed Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 2008;8:57–64.CrossRefPubMed
165.
go back to reference Lu WH, Wang CY, Chen PS, et al. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 2013;91:694–705.CrossRefPubMed Lu WH, Wang CY, Chen PS, et al. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 2013;91:694–705.CrossRefPubMed
166.
go back to reference Abdanipour A, Schluesener HJ, Tiraihi T. Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 2012;16:90–100.PubMed Abdanipour A, Schluesener HJ, Tiraihi T. Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 2012;16:90–100.PubMed
167.
go back to reference Lv L, Sun Y, Han X, Xu CC, Tang YP, Dong Q. Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition. Brain Res 2011;1396:60–68.CrossRefPubMed Lv L, Sun Y, Han X, Xu CC, Tang YP, Dong Q. Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition. Brain Res 2011;1396:60–68.CrossRefPubMed
168.
go back to reference Abematsu M, Tsujimura K, Yamano M, et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 2010;120:3255–3266.CrossRefPubMed Abematsu M, Tsujimura K, Yamano M, et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 2010;120:3255–3266.CrossRefPubMed
169.
go back to reference Bai G, Wei D, Zou S, Ren K, Dubner R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 2010;6:51.CrossRefPubMed Bai G, Wei D, Zou S, Ren K, Dubner R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 2010;6:51.CrossRefPubMed
170.
go back to reference Shen S, Sandoval J, Swiss VA, et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 2008;11:1024–1034.CrossRefPubMed Shen S, Sandoval J, Swiss VA, et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 2008;11:1024–1034.CrossRefPubMed
Metadata
Title
Epigenetics of Neural Repair Following Spinal Cord Injury
Authors
Elisa M. York
Audrey Petit
A. Jane Roskams
Publication date
01-10-2013
Publisher
Springer US
Published in
Neurotherapeutics / Issue 4/2013
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-013-0228-z

Other articles of this Issue 4/2013

Neurotherapeutics 4/2013 Go to the issue