Skip to main content
Top
Published in: Tumor Biology 9/2016

01-09-2016 | Original Article

DUSP28 links regulation of Mucin 5B and Mucin 16 to migration and survival of AsPC-1 human pancreatic cancer cells

Authors: Jungwhoi Lee, Jungsul Lee, Jeong-Hun Yun, Dae Gwin Jeong, Jae Hoon Kim

Published in: Tumor Biology | Issue 9/2016

Login to get access

Abstract

The prognosis of pancreatic cancer has not improved despite considerable and continuous effort. Dual-specificity phosphatase 28 (DUSP28) is highly expressed in human pancreatic cancers and exerts critical effects. However, knowledge of its function in pancreatic cancers is extremely limited. Here, we demonstrate the peculiar role of DUSP28 in pancreatic cancers. Analysis using the Gene Expression Omnibus public microarray database indicated higher DUSP28, MUC1, MUC4, MUC5B, MUC16 and MUC20 messenger RNA (mRNA) levels in pancreatic cancers compared with normal pancreas tissues. DUSP28 expression in human pancreatic cancer correlated positively with those of MUC1, MUC4, MUC5B, MUC16 and MUC20. In contrast, there were no significant correlations between DUSP28 and mucins in normal pancreas tissues. Decreased DUSP28 expression resulted in down-regulation of MUC5B and MUC16 at both the mRNA and protein levels; furthermore, transfection with small interfering RNA (siRNA) for MUC5B and MUC16 inhibited the migration and survival of AsPC-1 cells. In addition, transfection of siRNA for MUC5B and MUC16 resulted in a significant decrease in phosphorylation of FAK and ERK1/2 compared with transfection with scrambled-siRNA. These results collectively indicate unique links between DUSP28 and MUC5B/MUC16 and their roles in pancreatic cancer; moreover, they strongly support a rationale for targeting DUSP28 to inhibit development of malignant pancreatic cancer.
Appendix
Available only for authorised users
Literature
1.
2.
3.
go back to reference Cano CE, Motoo Y, Iovanna JL. Epithelial-to-mesenchymal transition in pancreatic adenocarcinoma. Scientific WorldJournal. 2010;10:1947–57.CrossRef Cano CE, Motoo Y, Iovanna JL. Epithelial-to-mesenchymal transition in pancreatic adenocarcinoma. Scientific WorldJournal. 2010;10:1947–57.CrossRef
4.
go back to reference Inoue S, Tezel E, Nakao A. Molecular diagnosis of pancreatic cancer. Hepato-Gastroenterology. 2001;48:933–8.PubMed Inoue S, Tezel E, Nakao A. Molecular diagnosis of pancreatic cancer. Hepato-Gastroenterology. 2001;48:933–8.PubMed
5.
go back to reference Singh D, Upadhyay G, Srivastava RK, Shankar S. Recent advances in pancreatic cancer: biology, treatment, and prevention. Biochim Biophys Acta. 1856;2015:13–27. Singh D, Upadhyay G, Srivastava RK, Shankar S. Recent advances in pancreatic cancer: biology, treatment, and prevention. Biochim Biophys Acta. 1856;2015:13–27.
7.
8.
go back to reference Chen WH, Horoszewicz JS, Leong SS, Shimano T, Penetrante R, Sanders WH, et al. Human pancreatic adenocarcinoma: in vitro and in vivo morphology of a new tumor line established from ascites. In vitro. 1982;18:24–34.CrossRefPubMed Chen WH, Horoszewicz JS, Leong SS, Shimano T, Penetrante R, Sanders WH, et al. Human pancreatic adenocarcinoma: in vitro and in vivo morphology of a new tumor line established from ascites. In vitro. 1982;18:24–34.CrossRefPubMed
9.
go back to reference Jonckheere N, Van Seuningen I. The membrane-bound mucins: how large o-glycoproteins play key roles in epithelial cancers and hold promise as biological tools for gene-based and immunotherapies. Crit Rev Oncog. 2008;14:177–96.CrossRefPubMed Jonckheere N, Van Seuningen I. The membrane-bound mucins: how large o-glycoproteins play key roles in epithelial cancers and hold promise as biological tools for gene-based and immunotherapies. Crit Rev Oncog. 2008;14:177–96.CrossRefPubMed
12.
go back to reference Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.CrossRefPubMed Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.CrossRefPubMed
13.
14.
go back to reference Dhillon AS, Hagan S, Rath O, Kolch W. Map kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.CrossRefPubMed Dhillon AS, Hagan S, Rath O, Kolch W. Map kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.CrossRefPubMed
15.
go back to reference Kim EK, Choi EJ. Pathological roles of mapk signaling pathways in human diseases. Biochim Biophys Acta. 1802;2010:396–405. Kim EK, Choi EJ. Pathological roles of mapk signaling pathways in human diseases. Biochim Biophys Acta. 1802;2010:396–405.
16.
go back to reference Wang D, Han S, Peng R, Jiao C, Wang X, Han Z, et al. Dusp28 contributes to human hepatocellular carcinoma via regulation of the p38 mapk signaling. Int J Oncol. 2014;45:2596–604.PubMed Wang D, Han S, Peng R, Jiao C, Wang X, Han Z, et al. Dusp28 contributes to human hepatocellular carcinoma via regulation of the p38 mapk signaling. Int J Oncol. 2014;45:2596–604.PubMed
17.
go back to reference Prabhakar S, Asuthkar S, Lee W, Chigurupati S, Zakharian E, Tsung AJ, et al. Targeting dusps in glioblastomas—wielding a double-edged sword? Cell Biol Int. 2014;38:145–53.CrossRefPubMed Prabhakar S, Asuthkar S, Lee W, Chigurupati S, Zakharian E, Tsung AJ, et al. Targeting dusps in glioblastomas—wielding a double-edged sword? Cell Biol Int. 2014;38:145–53.CrossRefPubMed
18.
go back to reference Rios P, Nunes-Xavier CE, Tabernero L, Kohn M, Pulido R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal. 2014;20:2251–73.CrossRefPubMed Rios P, Nunes-Xavier CE, Tabernero L, Kohn M, Pulido R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal. 2014;20:2251–73.CrossRefPubMed
19.
go back to reference Lee J, Hun Yun J, Lee J, Choi C, Hoon Kim J. Blockade of dual-specificity phosphatase 28 decreases chemo-resistance and migration in human pancreatic cancer cells. Sci Rep. 2015;5:12296.CrossRefPubMedPubMedCentral Lee J, Hun Yun J, Lee J, Choi C, Hoon Kim J. Blockade of dual-specificity phosphatase 28 decreases chemo-resistance and migration in human pancreatic cancer cells. Sci Rep. 2015;5:12296.CrossRefPubMedPubMedCentral
20.
go back to reference Piccolo SR, Withers MR, Francis OE, Bild AH, Johnson WE. Multiplatform single-sample estimates of transcriptional activation. Proc Natl Acad Sci U S A. 2013;110:17778–83.CrossRefPubMedPubMedCentral Piccolo SR, Withers MR, Francis OE, Bild AH, Johnson WE. Multiplatform single-sample estimates of transcriptional activation. Proc Natl Acad Sci U S A. 2013;110:17778–83.CrossRefPubMedPubMedCentral
21.
go back to reference Lee J, Lee J, Kim SJ, Kim JH. Quercetin-3-o-glucoside suppresses pancreatic cancer cell migration induced by tumor-deteriorated growth factors in vitro. Oncol Rep. 2016;35:2473–9 Lee J, Lee J, Kim SJ, Kim JH. Quercetin-3-o-glucoside suppresses pancreatic cancer cell migration induced by tumor-deteriorated growth factors in vitro. Oncol Rep. 2016;35:2473–9
22.
go back to reference Lee J, Han SI, Yun JH, Kim JH. Quercetin 3-o-glucoside suppresses epidermal growth factor-induced migration by inhibiting egfr signaling in pancreatic cancer cells. Tumour Biol. 2015;36:9385–93.CrossRefPubMed Lee J, Han SI, Yun JH, Kim JH. Quercetin 3-o-glucoside suppresses epidermal growth factor-induced migration by inhibiting egfr signaling in pancreatic cancer cells. Tumour Biol. 2015;36:9385–93.CrossRefPubMed
23.
go back to reference Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X, et al. Muc1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A. 2012;109:13787–92.CrossRefPubMedPubMedCentral Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X, et al. Muc1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A. 2012;109:13787–92.CrossRefPubMedPubMedCentral
24.
go back to reference Skrypek N, Duchene B, Hebbar M, Leteurtre E, van Seuningen I, Jonckheere N. The muc4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the concentrative nucleoside transporter family. Oncogene. 2013;32:1714–23.CrossRefPubMed Skrypek N, Duchene B, Hebbar M, Leteurtre E, van Seuningen I, Jonckheere N. The muc4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the concentrative nucleoside transporter family. Oncogene. 2013;32:1714–23.CrossRefPubMed
25.
go back to reference Nagata K, Horinouchi M, Saitou M, Higashi M, Nomoto M, Goto M, et al. Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepato-Biliary-Pancreat Surg. 2007;14:243–54.CrossRef Nagata K, Horinouchi M, Saitou M, Higashi M, Nomoto M, Goto M, et al. Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepato-Biliary-Pancreat Surg. 2007;14:243–54.CrossRef
26.
go back to reference Shukla SK, Gunda V, Abrego J, Haridas D, Mishra A, Souchek J, et al. Muc16-mediated activation of mtor and c-myc reprograms pancreatic cancer metabolism. Oncotarget. 2015;6:19118–31.CrossRefPubMedPubMedCentral Shukla SK, Gunda V, Abrego J, Haridas D, Mishra A, Souchek J, et al. Muc16-mediated activation of mtor and c-myc reprograms pancreatic cancer metabolism. Oncotarget. 2015;6:19118–31.CrossRefPubMedPubMedCentral
27.
go back to reference Hirono S, Yamaue H, Hoshikawa Y, Ina S, Tani M, Kawai M, et al. Molecular markers associated with lymph node metastasis in pancreatic ductal adenocarcinoma by genome-wide expression profiling. Cancer Sci. 2010;101:259–66.CrossRefPubMed Hirono S, Yamaue H, Hoshikawa Y, Ina S, Tani M, Kawai M, et al. Molecular markers associated with lymph node metastasis in pancreatic ductal adenocarcinoma by genome-wide expression profiling. Cancer Sci. 2010;101:259–66.CrossRefPubMed
28.
go back to reference Kato S, Hokari R, Crawley S, Gum J, Ahn DH, Kim JW, et al. Muc5ac mucin gene regulation in pancreatic cancer cells. Int J Oncol. 2006;29:33–40.PubMed Kato S, Hokari R, Crawley S, Gum J, Ahn DH, Kim JW, et al. Muc5ac mucin gene regulation in pancreatic cancer cells. Int J Oncol. 2006;29:33–40.PubMed
29.
go back to reference Hoshi H, Sawada T, Uchida M, Saito H, Iijima H, Toda-Agetsuma M, et al. Tumor-associated muc5ac stimulates in vivo tumorigenicity of human pancreatic cancer. Int J Oncol. 2011;38:619–27.PubMed Hoshi H, Sawada T, Uchida M, Saito H, Iijima H, Toda-Agetsuma M, et al. Tumor-associated muc5ac stimulates in vivo tumorigenicity of human pancreatic cancer. Int J Oncol. 2011;38:619–27.PubMed
30.
go back to reference Chen SH, Hung WC, Wang P, Paul C, Konstantopoulos K. Mesothelin binding to ca125/muc16 promotes pancreatic cancer cell motility and invasion via mmp-7 activation. Sci Rep. 2013;3:1870.PubMedPubMedCentral Chen SH, Hung WC, Wang P, Paul C, Konstantopoulos K. Mesothelin binding to ca125/muc16 promotes pancreatic cancer cell motility and invasion via mmp-7 activation. Sci Rep. 2013;3:1870.PubMedPubMedCentral
32.
go back to reference Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, et al. Roles of the raf/mek/erk and pi3k/pten/akt/mtor pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging. 2011;3:192–222.CrossRefPubMedPubMedCentral Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, et al. Roles of the raf/mek/erk and pi3k/pten/akt/mtor pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging. 2011;3:192–222.CrossRefPubMedPubMedCentral
Metadata
Title
DUSP28 links regulation of Mucin 5B and Mucin 16 to migration and survival of AsPC-1 human pancreatic cancer cells
Authors
Jungwhoi Lee
Jungsul Lee
Jeong-Hun Yun
Dae Gwin Jeong
Jae Hoon Kim
Publication date
01-09-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 9/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5079-x

Other articles of this Issue 9/2016

Tumor Biology 9/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine