Skip to main content
Top
Published in: Tumor Biology 7/2016

01-07-2016 | Original Article

miR-15a and miR-24-1 as putative prognostic microRNA signatures for pediatric pilocytic astrocytomas and ependymomas

Authors: M. Braoudaki, G. I. Lambrou, K. Giannikou, S. A. Papadodima, A. Lykoudi, K. Stefanaki, G. Sfakianos, A. Kolialexi, F. Tzortzatou-Stathopoulou, M. Tzetis, S. Kitsiou-Tzeli, E. Kanavakis

Published in: Tumor Biology | Issue 7/2016

Login to get access

Abstract

In the current setting, we attempted to verify and validate miRNA candidates relevant to pediatric primary brain tumor progression and outcome, in order to provide data regarding the identification of novel prognostic biomarkers. Overall, 26 resected brain tumors were studied from children diagnosed with pilocytic astrocytomas (PAs) (n = 19) and ependymomas (EPs) (n = 7). As controls, deceased children who underwent autopsy and were not present with any brain malignancy were used. The experimental approach included microarrays covering 1211 miRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the expression profiles of miR-15a and miR-24-1. The multiparameter analyses were performed with MATLAB. Matching differentially expressed miRNAs were detected in both PAs and EPs, following distinct comparisons with the control cohort; however, in several cases, they exhibited tissue-specific expression profiles. On correlations between miRNA expression and EP progression or outcome, miR-15a and miR-24-1 were found upregulated in EP relapsed and EP deceased cases when compared to EP clinical remission cases and EP survivors, respectively. Taken together, following several distinct associations between miRNA expression and diverse clinical parameters, the current study repeatedly highlighted miR-15a and miR-24-1 as candidate oncogenic molecules associated with inferior prognosis in children diagnosed with ependymoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ha M, Kim VN. Regulation of microRNA biogenesis. Nature Rev Mol Cell Biol. 2014;15:509–24.CrossRef Ha M, Kim VN. Regulation of microRNA biogenesis. Nature Rev Mol Cell Biol. 2014;15:509–24.CrossRef
4.
go back to reference Braoudaki M, Lambrou GI, Giannikou K, Milionis V, Stefanaki K, Birks DK, et al. MicroRNA expression signatures predict patient progression and disease outcome in pediatric embryonal central nervous system neoplasms. J Hematol Oncol. 2014;7:96.CrossRefPubMedPubMedCentral Braoudaki M, Lambrou GI, Giannikou K, Milionis V, Stefanaki K, Birks DK, et al. MicroRNA expression signatures predict patient progression and disease outcome in pediatric embryonal central nervous system neoplasms. J Hematol Oncol. 2014;7:96.CrossRefPubMedPubMedCentral
5.
go back to reference Arunachalam G, Upadhyay R, Ding H, Triggle CR. MicroRNA signature and cardiovascular dysfunction. J Cardiovascular Pharmacol. 2015;65:419–29.CrossRef Arunachalam G, Upadhyay R, Ding H, Triggle CR. MicroRNA signature and cardiovascular dysfunction. J Cardiovascular Pharmacol. 2015;65:419–29.CrossRef
6.
go back to reference Mohammad AA, Rahbar A, Lui WO, Davoudi B, Catrina A, Stragliotto G, et al. Detection of circulating hcmv-miR-UL112-3p in patients with glioblastoma, rheumatoid arthritis, diabetes mellitus and healthy controls. PLoS One. 2014;9:e113740.CrossRefPubMedPubMedCentral Mohammad AA, Rahbar A, Lui WO, Davoudi B, Catrina A, Stragliotto G, et al. Detection of circulating hcmv-miR-UL112-3p in patients with glioblastoma, rheumatoid arthritis, diabetes mellitus and healthy controls. PLoS One. 2014;9:e113740.CrossRefPubMedPubMedCentral
7.
go back to reference Lycoudi A, Mavreli D, Mavrou A, Papantoniou N, Kolialexi A. MiRNAs in pregnancy-related complications. Expert Rev Mol Diagn. 2015;15:999–1010.CrossRefPubMed Lycoudi A, Mavreli D, Mavrou A, Papantoniou N, Kolialexi A. MiRNAs in pregnancy-related complications. Expert Rev Mol Diagn. 2015;15:999–1010.CrossRefPubMed
8.
go back to reference Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, Foreman NK. Survey of microRNA expression in pediatric brain tumors. Pediatr Blood Cancer. 2011;56:211–6.CrossRefPubMed Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, Foreman NK. Survey of microRNA expression in pediatric brain tumors. Pediatr Blood Cancer. 2011;56:211–6.CrossRefPubMed
9.
go back to reference Braoudaki M, Lambrou GI, Papadodima SA, Stefanaki K, Prodromou N, Kanavakis E. MicroRNA expression profiles in pediatric dysembryoplastic neuroepithelial tumors. Medical Oncol (Northwood, London, England). 2016;33:5.CrossRef Braoudaki M, Lambrou GI, Papadodima SA, Stefanaki K, Prodromou N, Kanavakis E. MicroRNA expression profiles in pediatric dysembryoplastic neuroepithelial tumors. Medical Oncol (Northwood, London, England). 2016;33:5.CrossRef
10.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.CrossRefPubMedPubMedCentral Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.CrossRefPubMedPubMedCentral
11.
go back to reference Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33:W741–8.CrossRefPubMedPubMedCentral Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33:W741–8.CrossRefPubMedPubMedCentral
12.
go back to reference Agarwal V, Bell GW, Nam JW, Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4 Agarwal V, Bell GW, Nam JW, Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4
13.
go back to reference Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM, et al. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 2013;41:D239–45.CrossRefPubMed Paraskevopoulou MD, Georgakilas G, Kostoulas N, Reczko M, Maragkakis M, Dalamagas TM, et al. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 2013;41:D239–45.CrossRefPubMed
14.
go back to reference Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41:W169–73.CrossRefPubMedPubMedCentral Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41:W169–73.CrossRefPubMedPubMedCentral
15.
go back to reference Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, et al. DIANA miRPath v. 2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40:W498–504.CrossRefPubMedPubMedCentral Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, et al. DIANA miRPath v. 2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40:W498–504.CrossRefPubMedPubMedCentral
16.
go back to reference Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M, et al. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov. 2013;3:1302–15.CrossRefPubMed Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M, et al. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov. 2013;3:1302–15.CrossRefPubMed
17.
go back to reference Song G, Gu L, Li J, Tang Z, Liu H, Chen B, et al. Serum microRNA expression profiling predict response to r-chop treatment in diffuse large B cell lymphoma patients. Annals Hematol. 2014;93:1735–43.CrossRef Song G, Gu L, Li J, Tang Z, Liu H, Chen B, et al. Serum microRNA expression profiling predict response to r-chop treatment in diffuse large B cell lymphoma patients. Annals Hematol. 2014;93:1735–43.CrossRef
18.
go back to reference Huang E, Liu R, Chu Y. MiRNA-15a/16: as tumor suppressors and more. Future Oncol(London, England). 2015;11:2351–63.CrossRef Huang E, Liu R, Chu Y. MiRNA-15a/16: as tumor suppressors and more. Future Oncol(London, England). 2015;11:2351–63.CrossRef
19.
go back to reference Kramer K, Wu J, Crowe DL: Tumor suppressor control of the cancer stem cell niche. Oncogene 2015 Kramer K, Wu J, Crowe DL: Tumor suppressor control of the cancer stem cell niche. Oncogene 2015
20.
go back to reference Lan F, Yue X, Ren G, Li H, Ping L, Wang Y, et al. miR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-kappaB signaling pathway. Int J Radiat Oncol, Biol, physics. 2015;91:73–81.CrossRef Lan F, Yue X, Ren G, Li H, Ping L, Wang Y, et al. miR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-kappaB signaling pathway. Int J Radiat Oncol, Biol, physics. 2015;91:73–81.CrossRef
21.
go back to reference Lopez-Bertoni H, Lal B, Li A, Caplan M, Guerrero-Cazares H, Eberhart CG, et al. DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene. 2015;34:3994–4004.CrossRefPubMed Lopez-Bertoni H, Lal B, Li A, Caplan M, Guerrero-Cazares H, Eberhart CG, et al. DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene. 2015;34:3994–4004.CrossRefPubMed
22.
go back to reference Mishra PJ, Song B, Mishra PJ, Wang Y, Humeniuk R, Banerjee D, et al. MiR-24 tumor suppressor activity is regulated independent of p53 and through a target site polymorphism. PLoS One. 2009;4:e8445.CrossRefPubMedPubMedCentral Mishra PJ, Song B, Mishra PJ, Wang Y, Humeniuk R, Banerjee D, et al. MiR-24 tumor suppressor activity is regulated independent of p53 and through a target site polymorphism. PLoS One. 2009;4:e8445.CrossRefPubMedPubMedCentral
23.
go back to reference Tian X, Zhang J, Yan L, Dong JM, Guo Q. MiRNA-15a inhibits proliferation, migration and invasion by targeting TNFAIP1 in human osteosarcoma cells. Int J Clin Exp Pathol. 2015;8:6442–9.PubMedPubMedCentral Tian X, Zhang J, Yan L, Dong JM, Guo Q. MiRNA-15a inhibits proliferation, migration and invasion by targeting TNFAIP1 in human osteosarcoma cells. Int J Clin Exp Pathol. 2015;8:6442–9.PubMedPubMedCentral
24.
go back to reference Tafsiri E, Darbouy M, Shadmehr MB, Zagryazhskaya A, Alizadeh J, Karimipoor M. Expression of miRNAs in non-small-cell lung carcinomas and their association with clinicopathological features. Tumour Biol. 2015;36:1603–12.CrossRefPubMed Tafsiri E, Darbouy M, Shadmehr MB, Zagryazhskaya A, Alizadeh J, Karimipoor M. Expression of miRNAs in non-small-cell lung carcinomas and their association with clinicopathological features. Tumour Biol. 2015;36:1603–12.CrossRefPubMed
25.
go back to reference Yang T, Thakur A, Chen T, Yang L, Lei G, Liang Y, et al. MicroRNA-15a induces cell apoptosis and inhibits metastasis by targeting BCL2L2 in non-small cell lung cancer. Tumour Biol. 2015;36:4357–65.CrossRefPubMed Yang T, Thakur A, Chen T, Yang L, Lei G, Liang Y, et al. MicroRNA-15a induces cell apoptosis and inhibits metastasis by targeting BCL2L2 in non-small cell lung cancer. Tumour Biol. 2015;36:4357–65.CrossRefPubMed
26.
go back to reference Luo Q, Li X, Li J, Kong X, Zhang J, Chen L, et al. Mir-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int J Oncol. 2013;43:1212–8.PubMed Luo Q, Li X, Li J, Kong X, Zhang J, Chen L, et al. Mir-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int J Oncol. 2013;43:1212–8.PubMed
27.
go back to reference Kang W, Tong JH, Lung RW, Dong Y, Zhao J, Liang Q, et al. Targeting of YAP1 by MicroRNA-15a and MicroRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma. Mol Cancer. 2015;14:52.CrossRefPubMedPubMedCentral Kang W, Tong JH, Lung RW, Dong Y, Zhao J, Liang Q, et al. Targeting of YAP1 by MicroRNA-15a and MicroRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma. Mol Cancer. 2015;14:52.CrossRefPubMedPubMedCentral
28.
go back to reference Fallah P, Amirizadeh N, Poopak B, Toogeh G, Arefian E, Kohram F, et al. Expression pattern of key microRNAs in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Int J Lab Hematol. 2015;37:560–8.CrossRefPubMed Fallah P, Amirizadeh N, Poopak B, Toogeh G, Arefian E, Kohram F, et al. Expression pattern of key microRNAs in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Int J Lab Hematol. 2015;37:560–8.CrossRefPubMed
29.
go back to reference Xiao G, Tang H, Wei W, Li J, Ji L, Ge J. Aberrant expression of microRNA-15a and microRNA-16 synergistically associates with tumor progression and prognosis in patients with colorectal cancer. Gastroenterology Res Pract. 2014;2014:364549. Xiao G, Tang H, Wei W, Li J, Ji L, Ge J. Aberrant expression of microRNA-15a and microRNA-16 synergistically associates with tumor progression and prognosis in patients with colorectal cancer. Gastroenterology Res Pract. 2014;2014:364549.
30.
go back to reference de Groen FL, Timmer LM, Menezes RX, Diosdado B, Hooijberg E, Meijer GA, et al. Oncogenic role of miR-15a-3p in 13q amplicon-driven colorectal adenoma-to-carcinoma progression. PLoS One. 2015;10:e0132495.CrossRefPubMedPubMedCentral de Groen FL, Timmer LM, Menezes RX, Diosdado B, Hooijberg E, Meijer GA, et al. Oncogenic role of miR-15a-3p in 13q amplicon-driven colorectal adenoma-to-carcinoma progression. PLoS One. 2015;10:e0132495.CrossRefPubMedPubMedCentral
31.
go back to reference Wu XJ, Pu XM, Zhao ZF, Zhao YN, Kang XJ, Wu WD, et al. The expression profiles of microRNAs in Kaposi’s sarcoma. Tumour Biol. 2015;36:437–46.CrossRefPubMed Wu XJ, Pu XM, Zhao ZF, Zhao YN, Kang XJ, Wu WD, et al. The expression profiles of microRNAs in Kaposi’s sarcoma. Tumour Biol. 2015;36:437–46.CrossRefPubMed
32.
go back to reference Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, et al. Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One. 2011;6:e25114.CrossRefPubMedPubMedCentral Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, et al. Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One. 2011;6:e25114.CrossRefPubMedPubMedCentral
33.
go back to reference Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA, et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 2013;351:85–98.CrossRefPubMed Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA, et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 2013;351:85–98.CrossRefPubMed
34.
go back to reference Inoguchi S, Seki N, Chiyomaru T, Ishihara T, Matsushita R, Mataki H, et al. Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer. FEBS Lett. 2014;588:3170–9.CrossRefPubMed Inoguchi S, Seki N, Chiyomaru T, Ishihara T, Matsushita R, Mataki H, et al. Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer. FEBS Lett. 2014;588:3170–9.CrossRefPubMed
35.
go back to reference Luzi E, Marini F, Giusti F, Galli G, Cavalli L, Brandi ML. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the “Knudson’s Second Hit”. PLoS One. 2012;7:e39767.CrossRefPubMedPubMedCentral Luzi E, Marini F, Giusti F, Galli G, Cavalli L, Brandi ML. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the “Knudson’s Second Hit”. PLoS One. 2012;7:e39767.CrossRefPubMedPubMedCentral
36.
go back to reference Luzi E, Marini F, Tognarini I, Galli G, Falchetti A, Brandi ML. The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases. Nucleic Acid Therapeutics. 2012;22:103–8.PubMed Luzi E, Marini F, Tognarini I, Galli G, Falchetti A, Brandi ML. The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases. Nucleic Acid Therapeutics. 2012;22:103–8.PubMed
37.
go back to reference Nymark P, Guled M, Borze I, Faisal A, Lahti L, Salmenkivi K, et al. Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosom Cancer. 2011;50:585–97.CrossRefPubMed Nymark P, Guled M, Borze I, Faisal A, Lahti L, Salmenkivi K, et al. Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosom Cancer. 2011;50:585–97.CrossRefPubMed
38.
go back to reference Zhao Z, Qin L, Li S: miR-411 contributes the cell proliferation of lung cancer by targeting FOXo1. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine 2015 Zhao Z, Qin L, Li S: miR-411 contributes the cell proliferation of lung cancer by targeting FOXo1. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine 2015
39.
go back to reference Xia K, Zhang Y, Cao S, Wu Y, Guo W, Yuan W, et al. miR-411 regulated ITCH expression and promoted cell proliferation in human hepatocellular carcinoma cells. Biomed Pharmacother. 2015;70:158–63.CrossRefPubMed Xia K, Zhang Y, Cao S, Wu Y, Guo W, Yuan W, et al. miR-411 regulated ITCH expression and promoted cell proliferation in human hepatocellular carcinoma cells. Biomed Pharmacother. 2015;70:158–63.CrossRefPubMed
40.
go back to reference Nadal E, Zhong J, Lin J, Reddy RM, Ramnath N, Orringer MB, et al. A microRNA cluster at 14q32 drives aggressive lung adenocarcinoma. Clin Cancer Res. 2014;20:3107–17.CrossRefPubMed Nadal E, Zhong J, Lin J, Reddy RM, Ramnath N, Orringer MB, et al. A microRNA cluster at 14q32 drives aggressive lung adenocarcinoma. Clin Cancer Res. 2014;20:3107–17.CrossRefPubMed
41.
go back to reference Skalsky RL, Cullen BR. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLoS One. 2011;6:e24248.CrossRefPubMedPubMedCentral Skalsky RL, Cullen BR. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLoS One. 2011;6:e24248.CrossRefPubMedPubMedCentral
42.
go back to reference Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, et al. A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010;38:7219–35.CrossRefPubMedPubMedCentral Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, et al. A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010;38:7219–35.CrossRefPubMedPubMedCentral
43.
go back to reference Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 2008;36:5270–80.CrossRefPubMedPubMedCentral Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 2008;36:5270–80.CrossRefPubMedPubMedCentral
Metadata
Title
miR-15a and miR-24-1 as putative prognostic microRNA signatures for pediatric pilocytic astrocytomas and ependymomas
Authors
M. Braoudaki
G. I. Lambrou
K. Giannikou
S. A. Papadodima
A. Lykoudi
K. Stefanaki
G. Sfakianos
A. Kolialexi
F. Tzortzatou-Stathopoulou
M. Tzetis
S. Kitsiou-Tzeli
E. Kanavakis
Publication date
01-07-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 7/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-4903-7

Other articles of this Issue 7/2016

Tumor Biology 7/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine