Skip to main content
Top
Published in: Tumor Biology 5/2016

01-05-2016 | Original Article

Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway

Authors: Maoxi Liu, Zhongxue Fu, Xingye Wu, Kunli Du, Shouru Zhang, Li Zeng

Published in: Tumor Biology | Issue 5/2016

Login to get access

Abstract

Hypoxia is a common feature of solid tumor, and is a direct stress that triggers apoptosis in many human cell types. As one of solid cancer, hypoxia exists in the whole course of colon cancer occurrence and progression. Our previous studies shown that hypoxia induce high expression of phospholipase D2 (PLD2) and survivin in colon cancer cells. However, the correlation between PLD2 and survivin in hypoxic colon cancer cells remains unknown. In this study, we observed significantly elevated PLD2 and survivin expression levels in colon cancer tissues and cells. This is a positive correlation between of them, and co-expression of PLD2 and survivin has a positive correlation with the clinicpatholic features including tumor size, TNM stage, and lymph node metastasis. We also found that hypoxia induced the activity of PLD increased significant mainly caused by PLD2 in colon cancer cells. However, inhibition the activity of PLD2 induced by hypoxia promotes the apoptosis of human colon cancer cells, as well as decreased the expression of apoptosis markers including survivin and bcl2. Moreover, the pharmacological inhibition of PI3K/AKT supported the hypothesis that promotes the apoptosis of hypoxic colon cancer cells by PLD2 activity inhibition may through inactivation of the PI3K/AKT signaling pathway. Furthermore, interference the PLD2 gene expression leaded to the apoptosis of hypoxic colon cancer cells increased and also decreased the expression level of survivin and bcl2 may through inactivation of PI3K/AKT signaling pathway. These results indicated that PLD2 play antiapoptotic role in colon cancer under hypoxic conditions, inhibition of the activity, or interference of PLD2 gene expression will benefit for the treatment of colon cancer patients.
Literature
1.
3.
go back to reference Igney FH, Krammer PH. Death and anti-death: tumor resistance to apoptosis. Nat Rev Cancer. 2002;2:277–88.CrossRefPubMed Igney FH, Krammer PH. Death and anti-death: tumor resistance to apoptosis. Nat Rev Cancer. 2002;2:277–88.CrossRefPubMed
4.
go back to reference Nakashima S, Nozawa Y. Possible role of phospholipase D in cellular differentiation and apoptosis. Chem Phys Lipids. 1999;98:153–64.CrossRefPubMed Nakashima S, Nozawa Y. Possible role of phospholipase D in cellular differentiation and apoptosis. Chem Phys Lipids. 1999;98:153–64.CrossRefPubMed
5.
go back to reference Uchida N, Okamura S, Kuwano H. Phospholipase D activity in human gastric carcinoma. Anticancer Res. 1999;19:77–86. Uchida N, Okamura S, Kuwano H. Phospholipase D activity in human gastric carcinoma. Anticancer Res. 1999;19:77–86.
6.
go back to reference Ahn MJ, Park SY, Kim WK, Cho JH, Chang BJ, Kim DJ, et al. A single nucleotide polymorphism in the phospholipase D1 gene is associated with risk of non-small lung cancer. Int J Biomed Sci. 2012;8:121–8.PubMedPubMedCentral Ahn MJ, Park SY, Kim WK, Cho JH, Chang BJ, Kim DJ, et al. A single nucleotide polymorphism in the phospholipase D1 gene is associated with risk of non-small lung cancer. Int J Biomed Sci. 2012;8:121–8.PubMedPubMedCentral
7.
go back to reference Toschi A, Edelstein J, Rockwell P, Ohh M, Foster DA. HIF alpha expression in VHL-deficient renal cancer cells is dependent on phospholipase D. Oncogene. 2008;27:2746–53.CrossRefPubMed Toschi A, Edelstein J, Rockwell P, Ohh M, Foster DA. HIF alpha expression in VHL-deficient renal cancer cells is dependent on phospholipase D. Oncogene. 2008;27:2746–53.CrossRefPubMed
8.
go back to reference Noh DY, Ahn SJ, Lee RA, Park IA, Kim JH, Suh PG, et al. Overexpression of phospholipase D in human breast cancer tissues. Cancer Lett. 2000;161:207–14.CrossRefPubMed Noh DY, Ahn SJ, Lee RA, Park IA, Kim JH, Suh PG, et al. Overexpression of phospholipase D in human breast cancer tissues. Cancer Lett. 2000;161:207–14.CrossRefPubMed
9.
go back to reference Cho JH, Hong S-K, Kim E-Y, Park S-Y, Park C-H, et al. Overexpression of phospholipase D suppress taxotere-induced cell death in stomach cancer cells. Biochim Biophys Acta. 2008;1783:912–3.CrossRefPubMed Cho JH, Hong S-K, Kim E-Y, Park S-Y, Park C-H, et al. Overexpression of phospholipase D suppress taxotere-induced cell death in stomach cancer cells. Biochim Biophys Acta. 2008;1783:912–3.CrossRefPubMed
10.
go back to reference Kim K-OK, Lee K-H, Kim Y-H, Park S-K, Han J-S. Anti-apoptotic role of phospholipase D isozymes in the glutamate-induced cell death. Exp Mol Med. 2003;35:38–45.CrossRefPubMed Kim K-OK, Lee K-H, Kim Y-H, Park S-K, Han J-S. Anti-apoptotic role of phospholipase D isozymes in the glutamate-induced cell death. Exp Mol Med. 2003;35:38–45.CrossRefPubMed
11.
go back to reference Zhong M, Shen Y, Yang Z, Joseph T, Jackson D, et al. Phospholipase D prevent apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun. 2003;302:615–9.CrossRefPubMed Zhong M, Shen Y, Yang Z, Joseph T, Jackson D, et al. Phospholipase D prevent apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun. 2003;302:615–9.CrossRefPubMed
12.
go back to reference Peng JHF, Feng Y, Rhodes PG. Down-regulation of phospholipase D2 mRNA in neonatal rat brainstem and cerebellum after hypoxia-ischemia. Neurochem Res. 2006;31:1191–6.CrossRefPubMed Peng JHF, Feng Y, Rhodes PG. Down-regulation of phospholipase D2 mRNA in neonatal rat brainstem and cerebellum after hypoxia-ischemia. Neurochem Res. 2006;31:1191–6.CrossRefPubMed
13.
go back to reference Mozzicato S, Joshi BV, Jacobson KA, Liang BT. Role of direct RhoA phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J. 2004;18:406–8.PubMed Mozzicato S, Joshi BV, Jacobson KA, Liang BT. Role of direct RhoA phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J. 2004;18:406–8.PubMed
14.
go back to reference Lee SD, Lee BD, Han JM, Kim JH, Kim Y, et al. Phospholipase D2 activity suppresses hydrogen peroxide-induced apoptosis in PC12 cells. J Neurochem. 2000;75:1053–9.CrossRefPubMed Lee SD, Lee BD, Han JM, Kim JH, Kim Y, et al. Phospholipase D2 activity suppresses hydrogen peroxide-induced apoptosis in PC12 cells. J Neurochem. 2000;75:1053–9.CrossRefPubMed
15.
go back to reference Yamakawa H, Banno Y, Nakashima S, Sawada M, Yamada J, Yoshimura S, et al. Increased phospholipase D2 activity during hypoxia-induced death of PC12 cells: its possible anti-apoptotic role. Neurol Rep. 2000;16:3647–50. Yamakawa H, Banno Y, Nakashima S, Sawada M, Yamada J, Yoshimura S, et al. Increased phospholipase D2 activity during hypoxia-induced death of PC12 cells: its possible anti-apoptotic role. Neurol Rep. 2000;16:3647–50.
16.
go back to reference Ghim J, Moon JS, Lee CS, Lee J, Song P, Lee A. Endothelial deletion of phospholipase D2 reduces hypoxic response and pathological angiogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1697–703.CrossRefPubMed Ghim J, Moon JS, Lee CS, Lee J, Song P, Lee A. Endothelial deletion of phospholipase D2 reduces hypoxic response and pathological angiogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1697–703.CrossRefPubMed
17.
go back to reference Oshimoto H, Okamura S, Yoshida M, Mori M. Increased activity and expression of phospholipase D2 in human colorectal cancer. Oncol Res. 2003;14:31–7.CrossRefPubMed Oshimoto H, Okamura S, Yoshida M, Mori M. Increased activity and expression of phospholipase D2 in human colorectal cancer. Oncol Res. 2003;14:31–7.CrossRefPubMed
18.
go back to reference Saito M, Iwadate M, Higashimoto M, Ono K. Expression of phospholipase D2 in human colorectal carcinoma. Oncol Rep. 2007;18:1329–34.PubMed Saito M, Iwadate M, Higashimoto M, Ono K. Expression of phospholipase D2 in human colorectal carcinoma. Oncol Rep. 2007;18:1329–34.PubMed
19.
go back to reference Yamada Y, Hamajima N, Kato T, Iwata H. Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. J Mol Med. 2003;81:126–31.CrossRefPubMed Yamada Y, Hamajima N, Kato T, Iwata H. Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. J Mol Med. 2003;81:126–31.CrossRefPubMed
20.
go back to reference Wu XY, Fu ZX, Wang XH, et al. Identification of differential proteins in colon cancer SW480 cells with HIF1-alpha silence by proteome analysis. Neoplasma. 2010;57:299–305.CrossRefPubMed Wu XY, Fu ZX, Wang XH, et al. Identification of differential proteins in colon cancer SW480 cells with HIF1-alpha silence by proteome analysis. Neoplasma. 2010;57:299–305.CrossRefPubMed
21.
go back to reference Maoxi L, Kunli D, Zhongxue F, Shouru Z, Xingye W. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions. Med Oncol. 2015;32:394.CrossRef Maoxi L, Kunli D, Zhongxue F, Shouru Z, Xingye W. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions. Med Oncol. 2015;32:394.CrossRef
22.
go back to reference Zhang S, Liu B, Zhang B, Fan Z. The effect of survivin expression on the apoptosis and proliferation of hypoxic human pulmonary arterial smooth muscle cells. Zhonghua jiehe he huxi zazi. 2015;38:45–9. Zhang S, Liu B, Zhang B, Fan Z. The effect of survivin expression on the apoptosis and proliferation of hypoxic human pulmonary arterial smooth muscle cells. Zhonghua jiehe he huxi zazi. 2015;38:45–9.
23.
go back to reference Wu X, Zhongxue F, Wang X. Effect of hypoxia-inducible factor 1-α on surviving in colorectal cancer. Mol Med Rep. 2010;3:409–15.PubMed Wu X, Zhongxue F, Wang X. Effect of hypoxia-inducible factor 1-α on surviving in colorectal cancer. Mol Med Rep. 2010;3:409–15.PubMed
24.
go back to reference K.J.Oh, S.C. Lee, H.j. Choi, D.Y.Oh, S.C. Kim, D.S. Min, J.M. Kim, K.S. Lee, J.S. Han. Role of phospholipase D2 in anti-apoptotic signaling through increased expression of Bcl2 and Bcl-xL.J. Cell. Biochem. 2007. K.J.Oh, S.C. Lee, H.j. Choi, D.Y.Oh, S.C. Kim, D.S. Min, J.M. Kim, K.S. Lee, J.S. Han. Role of phospholipase D2 in anti-apoptotic signaling through increased expression of Bcl2 and Bcl-xL.J. Cell. Biochem. 2007.
25.
go back to reference Song H, Han l-Y, Kim Y, Kim Young H, Cho l-W, et al. The NADPH oxidase inhibitor DPI can abolish hypoxia-induced apoptosis of human kidney proximal tubular epithelial cells through Bcl2 up-regulation via ERK activation without ROS reduction. Life Sci. 2015;126:69–75.CrossRefPubMed Song H, Han l-Y, Kim Y, Kim Young H, Cho l-W, et al. The NADPH oxidase inhibitor DPI can abolish hypoxia-induced apoptosis of human kidney proximal tubular epithelial cells through Bcl2 up-regulation via ERK activation without ROS reduction. Life Sci. 2015;126:69–75.CrossRefPubMed
26.
go back to reference Vivanco L, Sawyers C. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.CrossRefPubMed Vivanco L, Sawyers C. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.CrossRefPubMed
27.
go back to reference Momoko YAMADA, Banno Y, Yoh TAKUWA, Masahiro KODA, Yoshinori NOZAWA. Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signaling pathway in Chinese-hamster ovary cells. Biochem J. 2004;378:649–56.CrossRef Momoko YAMADA, Banno Y, Yoh TAKUWA, Masahiro KODA, Yoshinori NOZAWA. Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signaling pathway in Chinese-hamster ovary cells. Biochem J. 2004;378:649–56.CrossRef
28.
go back to reference Yuhong C, Vanessa R, Foster DA. Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene. 2005;24:672–9.CrossRef Yuhong C, Vanessa R, Foster DA. Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene. 2005;24:672–9.CrossRef
29.
go back to reference Wittekind C, Compton CC, Greene FL, Sobin LH. TNM residual tumor classification revised. Cancer. 2002;94:2511–6.CrossRefPubMed Wittekind C, Compton CC, Greene FL, Sobin LH. TNM residual tumor classification revised. Cancer. 2002;94:2511–6.CrossRefPubMed
30.
go back to reference Yu C, Zhang Z, Liao W, Zhao X, Liu L, Wu Y, et al. The tumor-suppressor gene NKX2-8 suppresses bladder cancer proliferation through upregulation of FOXO3a and inhibition of the MEK/ERK signaling pathway. Carcinogenesis. 2012;33:678–86.CrossRefPubMed Yu C, Zhang Z, Liao W, Zhao X, Liu L, Wu Y, et al. The tumor-suppressor gene NKX2-8 suppresses bladder cancer proliferation through upregulation of FOXO3a and inhibition of the MEK/ERK signaling pathway. Carcinogenesis. 2012;33:678–86.CrossRefPubMed
31.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta DeltaC(T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta DeltaC(T)) method. Methods. 2001;25:402–8.CrossRefPubMed
32.
go back to reference Oh JW, Kim EY, koo BS, Lee HB, Kim KS, Han JS. Der f 2 activates phospholipase D in human T lymphocytes from Dermatophagoides farinae specific allergic individuals: involvement of protein kinase C-α. Exp Mol Med. 2004;36:486–92.CrossRefPubMed Oh JW, Kim EY, koo BS, Lee HB, Kim KS, Han JS. Der f 2 activates phospholipase D in human T lymphocytes from Dermatophagoides farinae specific allergic individuals: involvement of protein kinase C-α. Exp Mol Med. 2004;36:486–92.CrossRefPubMed
33.
go back to reference Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.CrossRefPubMed Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.CrossRefPubMed
34.
go back to reference Thomas P. Mathews, Salisha Hill,Kristie L. Rose,Pavlina T. Ivanova,Craig W. Lindsley and H. Alex Brown, Human phospholipase D activity transiently regulates pyrimidine biosynthesis in malignant gliomas. ACS Chemical Biology. 2015. PMID:25646564. Thomas P. Mathews, Salisha Hill,Kristie L. Rose,Pavlina T. Ivanova,Craig W. Lindsley and H. Alex Brown, Human phospholipase D activity transiently regulates pyrimidine biosynthesis in malignant gliomas. ACS Chemical Biology. 2015. PMID:25646564.
35.
go back to reference Kang DW, Min DS. Positive feedback regulation between phospholipase D and Wnt signaling promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. Plos One. 2010;5:2109.CrossRef Kang DW, Min DS. Positive feedback regulation between phospholipase D and Wnt signaling promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. Plos One. 2010;5:2109.CrossRef
36.
go back to reference Kang DW, Choi KY, Mindo S. Phospholipase D meets Wnt signaling a new target for cancer therapy. Cancer Res. 2011;71:293–7.CrossRefPubMed Kang DW, Choi KY, Mindo S. Phospholipase D meets Wnt signaling a new target for cancer therapy. Cancer Res. 2011;71:293–7.CrossRefPubMed
37.
go back to reference Jones D, Morgan C, Cockcroft S. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophys Acta. 1999;1439:229–44.CrossRefPubMed Jones D, Morgan C, Cockcroft S. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophys Acta. 1999;1439:229–44.CrossRefPubMed
38.
go back to reference Su W, Chen Q, Frohman M. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol. 2009;5:1477–86.CrossRefPubMedPubMedCentral Su W, Chen Q, Frohman M. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol. 2009;5:1477–86.CrossRefPubMedPubMedCentral
39.
go back to reference Lee YH, Bae YS. Phospholipase D2 downregulation reduces cellular senescence through a reactive oxygen species P53-P21 pathway. FEBS Lett. 2014;588:3251–8.CrossRefPubMed Lee YH, Bae YS. Phospholipase D2 downregulation reduces cellular senescence through a reactive oxygen species P53-P21 pathway. FEBS Lett. 2014;588:3251–8.CrossRefPubMed
40.
go back to reference Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289:22557–66.CrossRefPubMedPubMedCentral Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289:22557–66.CrossRefPubMedPubMedCentral
41.
go back to reference Saito M, Manabu I, Masahi H, Koichiro O, et al. Expression of phospholipase D2 in human colorectal carcinoma. Oncol Rep. 2007;18:1329–34.PubMed Saito M, Manabu I, Masahi H, Koichiro O, et al. Expression of phospholipase D2 in human colorectal carcinoma. Oncol Rep. 2007;18:1329–34.PubMed
42.
go back to reference Liu L, Li F, Cardeui JA, et al. Rapamycin inhibits cell mobility by suppression of mTOR-mediated S6K1 and 4E-BPI pathways. Oncogene. 2006;25:7029–40.CrossRefPubMed Liu L, Li F, Cardeui JA, et al. Rapamycin inhibits cell mobility by suppression of mTOR-mediated S6K1 and 4E-BPI pathways. Oncogene. 2006;25:7029–40.CrossRefPubMed
44.
go back to reference Lin J, Guan Z, Wang C, et al. Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-kappaB/survivin and phosphoionositide 3-kinase/Akt signaling pathways. Clin Cancer Res. 2010;16:77–87.CrossRefPubMed Lin J, Guan Z, Wang C, et al. Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-kappaB/survivin and phosphoionositide 3-kinase/Akt signaling pathways. Clin Cancer Res. 2010;16:77–87.CrossRefPubMed
45.
go back to reference Li W, Wang H, Kuang CY, et al. An essential role for the Id1/PI3K/Akt/NFκB/surviving signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro. Mol Cell Biochem. 2012;363:135–45.CrossRefPubMed Li W, Wang H, Kuang CY, et al. An essential role for the Id1/PI3K/Akt/NFκB/surviving signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro. Mol Cell Biochem. 2012;363:135–45.CrossRefPubMed
46.
go back to reference Yang X-C, Wang X, Luo L, Dong DH, Yu QC, Wang XS, et al. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-κB dependent MMP-2 and bcl2 pathway. Eur Rev Med Pharmacol Sci. 2013;17:1669–80.PubMed Yang X-C, Wang X, Luo L, Dong DH, Yu QC, Wang XS, et al. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-κB dependent MMP-2 and bcl2 pathway. Eur Rev Med Pharmacol Sci. 2013;17:1669–80.PubMed
47.
go back to reference Mi Hee P, Bong-Hyun A, Yong-Kil H, Do Sik M. Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase a/NF-κB/SP1-mdiated signaling pathways. Carcinogenesis. 2009;30:356–65. Mi Hee P, Bong-Hyun A, Yong-Kil H, Do Sik M. Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase a/NF-κB/SP1-mdiated signaling pathways. Carcinogenesis. 2009;30:356–65.
48.
go back to reference Dong Woo K, Do Sik M. Platelet derived growth factor increases phospholipase D1 but not phospholipase D2 expression via NFκB signaling pathway and enhances invasion of breast cancer cells. Cancer Lett. 2010;294:125–33.CrossRef Dong Woo K, Do Sik M. Platelet derived growth factor increases phospholipase D1 but not phospholipase D2 expression via NFκB signaling pathway and enhances invasion of breast cancer cells. Cancer Lett. 2010;294:125–33.CrossRef
49.
go back to reference Thomas RP, Farrow BJ, Kim S, May MJ, Hellmich MR, Evers BM. Selective targeting of the nuclear factor-kappaB pathway enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated pancreatic cancer cell death. Surgery. 2002;132:127–34.CrossRefPubMed Thomas RP, Farrow BJ, Kim S, May MJ, Hellmich MR, Evers BM. Selective targeting of the nuclear factor-kappaB pathway enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated pancreatic cancer cell death. Surgery. 2002;132:127–34.CrossRefPubMed
Metadata
Title
Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway
Authors
Maoxi Liu
Zhongxue Fu
Xingye Wu
Kunli Du
Shouru Zhang
Li Zeng
Publication date
01-05-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4348-4

Other articles of this Issue 5/2016

Tumor Biology 5/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine