Skip to main content
Top
Published in: Tumor Biology 12/2015

01-12-2015 | Research Article

Integrative functional genetic-epigenetic approach for selecting genes as urine biomarkers for bladder cancer diagnosis

Authors: Sanaa Eissa, Marwa Matboli, Nada O. E. Essawy, Youssef M. Kotb

Published in: Tumor Biology | Issue 12/2015

Login to get access

Abstract

Early screening for bladder cancer (BC) holds the key to combat and control the increasing global burden of BC mortality. We presented a simple approach to characterize, analyze, and validate a panel of biomarkers in BC and their relationship to bilharziasis. We investigated voided urine and blood samples from patients with bladder cancer (n = 94), benign bladder lesions (n = 60), and age-matched normal controls (n = 56). This study was divided into the following phases. (1) We analyzed the expression of urinary Hyaluronoglucosaminidase 1 (HYAL1) protein in BC and control samples by zymography. (2) We performed bioinformatics analysis to retrieve a set of epigenetic regulators of HYAL1. (3) This set of three selected genes [long non-coding RNA-urothelial cancer associated 1(lncRNA-UCA1), microRNA-210, and microRNA-96] was then analyzed in the same urine samples used in phase I by quantitative real-time PCR. (4) A high reproducibility of gene selection results was also determined from statistical validation. The urinary expression of HYAL1 protein and its epigenetic regulators were higher in BC patients (P < .001). The receiver-operating characteristic curve analyses demonstrated that each one had good sensitivity and specificity for distinguishing BC patients from non-BC ones (HYAL1, 89.4 and 91.2 %; miR-210, 76.6 and 93 %; miR-96, 76.6 and 89.4 %; and lncRNA-UCA1, 91.5 and 96.5 %). There was a significant positive correlation between HYAL1 and the selected epigenetic biomarkers. The performance of this urine biomarker panel reached 100 % sensitivity and 89.5 % specificity for bladder cancer diagnosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel R, Jiemin M, Zhaohui Z, Jemal A. Cancer statistics 2014. A Cancer Journal for Clinicians. 2014;64(1):15422–4863.CrossRef Siegel R, Jiemin M, Zhaohui Z, Jemal A. Cancer statistics 2014. A Cancer Journal for Clinicians. 2014;64(1):15422–4863.CrossRef
2.
go back to reference Sanchez C, Lachaize C, Janody F, Bellon B, Roder L, et al. Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res. 1999;27:89–94.CrossRefPubMedPubMedCentral Sanchez C, Lachaize C, Janody F, Bellon B, Roder L, et al. Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res. 1999;27:89–94.CrossRefPubMedPubMedCentral
3.
go back to reference Lancashire LJ, Lemetre C, Ball GR. An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies. Brief Bioinform. 2009;10:315–29.CrossRefPubMed Lancashire LJ, Lemetre C, Ball GR. An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies. Brief Bioinform. 2009;10:315–29.CrossRefPubMed
4.
go back to reference Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242:27–33.CrossRefPubMed Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242:27–33.CrossRefPubMed
5.
go back to reference Eissa S, Shehata H, Mansour A, Esmat M, El-Ahmady O. Detection of hyaluronidase RNA and activity in urine of schistosomal and non-schistosomal bladder cancer. Med Oncol. 2012;29:3345–51.CrossRefPubMed Eissa S, Shehata H, Mansour A, Esmat M, El-Ahmady O. Detection of hyaluronidase RNA and activity in urine of schistosomal and non-schistosomal bladder cancer. Med Oncol. 2012;29:3345–51.CrossRefPubMed
7.
go back to reference Han Y, Liu Y, Nie L, et al. Inducing cell proliferation inhibition, apoptosis, and motility reduction by silencing long noncoding ribonucleic acid metastasis-associated lung adenocarcinoma transcript 1 in urothelial carcinoma of the bladder. Urology. 2013;81(209):e1–7. Han Y, Liu Y, Nie L, et al. Inducing cell proliferation inhibition, apoptosis, and motility reduction by silencing long noncoding ribonucleic acid metastasis-associated lung adenocarcinoma transcript 1 in urothelial carcinoma of the bladder. Urology. 2013;81(209):e1–7.
8.
go back to reference Noon AP, Catto JW. Noncoding RNA in bladder cancer: a specific focus upon high-risk nonmuscle invasive disease. Curr Opin Urol. 2014;24(5):506–11.CrossRefPubMed Noon AP, Catto JW. Noncoding RNA in bladder cancer: a specific focus upon high-risk nonmuscle invasive disease. Curr Opin Urol. 2014;24(5):506–11.CrossRefPubMed
9.
go back to reference Srivastava AK, Singh PK, Rath SK, Dalela D, Goel MM, Bhatt ML. Appraisal of diagnostic ability of UCA1 as a biomarker of carcinoma of the urinary bladder. Tumour Biol. 2014;15. Srivastava AK, Singh PK, Rath SK, Dalela D, Goel MM, Bhatt ML. Appraisal of diagnostic ability of UCA1 as a biomarker of carcinoma of the urinary bladder. Tumour Biol. 2014;15.
11.
go back to reference Wang Y, Luo H, Li Y, Chen T, Wu S, Yang L. hsa-miR-96 up-regulates (MAP4K1 and IRS1 and may function as a promising diagnostic marker in human bladder urothelial carcinomas. Mol Med. 2012;5(1):260–5. Wang Y, Luo H, Li Y, Chen T, Wu S, Yang L. hsa-miR-96 up-regulates (MAP4K1 and IRS1 and may function as a promising diagnostic marker in human bladder urothelial carcinomas. Mol Med. 2012;5(1):260–5.
12.
go back to reference Jamshidian H, Hashemi M, Nowroozi MR, Ayati M, Bonyadi M, NajjaranTousi V. Sensitivity and specificity of urinary hyaluronic acid and hyaluronidase in detection of bladder transitional cell carcinoma. Urol J. 2014;11(1):1232–7.PubMed Jamshidian H, Hashemi M, Nowroozi MR, Ayati M, Bonyadi M, NajjaranTousi V. Sensitivity and specificity of urinary hyaluronic acid and hyaluronidase in detection of bladder transitional cell carcinoma. Urol J. 2014;11(1):1232–7.PubMed
13.
go back to reference Edge SB, Byrd DR, Compton CC, et al. AJCC cancer staging manual. 7th ed. New York: Springer; 2010. p. 497–505. Edge SB, Byrd DR, Compton CC, et al. AJCC cancer staging manual. 7th ed. New York: Springer; 2010. p. 497–505.
15.
go back to reference Eble JN, Sauter G, Epstein JI, Sesterhenn I, editors. World Health Organization classification of tumors pathology and genetics: tumors of the urinary system and male genital organs. Lyon: IARC Press; 2004. Eble JN, Sauter G, Epstein JI, Sesterhenn I, editors. World Health Organization classification of tumors pathology and genetics: tumors of the urinary system and male genital organs. Lyon: IARC Press; 2004.
16.
go back to reference Gui M, Idris MA, Shi YE, Muhling A, Ruppel A. Reactivity of Schistosoma japonicum and S. mansoni antigen preparations in indirect haemagglutination (IHA) with sera of patients with homologous and heterogonous schistosomiasis. Ann Trop Med Parasitol. 1991;85:599–604.CrossRefPubMed Gui M, Idris MA, Shi YE, Muhling A, Ruppel A. Reactivity of Schistosoma japonicum and S. mansoni antigen preparations in indirect haemagglutination (IHA) with sera of patients with homologous and heterogonous schistosomiasis. Ann Trop Med Parasitol. 1991;85:599–604.CrossRefPubMed
17.
go back to reference Papageorgakopoulou N, Vynios DH, Karayanni K, Maras A, Papapetropoulou M. Electrophoretic analysis of hydrolytic enzymes of Escherichia coli cells starved in seawater and drinking water: comparison of gelatinolytic, caseinolytic, phosphohydrolytic and hyaluronolytic activities. Microbiol Res. 1997;152:299–305.CrossRefPubMed Papageorgakopoulou N, Vynios DH, Karayanni K, Maras A, Papapetropoulou M. Electrophoretic analysis of hydrolytic enzymes of Escherichia coli cells starved in seawater and drinking water: comparison of gelatinolytic, caseinolytic, phosphohydrolytic and hyaluronolytic activities. Microbiol Res. 1997;152:299–305.CrossRefPubMed
19.
go back to reference Thompson JD, Higgins DG, Gibson TJ. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. CLUSTAL W.CrossRefPubMedPubMedCentral Thompson JD, Higgins DG, Gibson TJ. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. CLUSTAL W.CrossRefPubMedPubMedCentral
20.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C (T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C (T)) method. Methods. 2001;25:402–8.CrossRefPubMed
Metadata
Title
Integrative functional genetic-epigenetic approach for selecting genes as urine biomarkers for bladder cancer diagnosis
Authors
Sanaa Eissa
Marwa Matboli
Nada O. E. Essawy
Youssef M. Kotb
Publication date
01-12-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 12/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3722-6

Other articles of this Issue 12/2015

Tumor Biology 12/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine