Skip to main content
Top
Published in: Tumor Biology 11/2015

01-11-2015 | Research Article

Robo1 promotes angiogenesis in hepatocellular carcinoma through the Rho family of guanosine triphosphatases’ signaling pathway

Authors: Jian-Yang Ao, Zong-Tao Chai, Yuan-Yuan Zhang, Xiao-Dong Zhu, Ling-Qun Kong, Ning Zhang, Bo-Gen Ye, Hao Cai, Dong-mei Gao, Hui-Chuan Sun

Published in: Tumor Biology | Issue 11/2015

Login to get access

Abstract

Robo1 is a member of the Robo immunoglobulin superfamily of proteins, and it plays an important role in angiogenesis and cancer. In this study, we investigate the role of roundabout 1 (Robo1) in tumor angiogenesis in hepatocellular carcinoma (HCC). Firstly, the relationship between Robo1 expression on tumors and patient’s survival and endothelial cells in tumor blood vessels and patient’s survival was studied. Secondly, Robo1 was overexpressed or knocked down in human umbilical vein endothelial cells (HUVECs). Cell proliferation, motility, and tube formation were compared in HUVEC with different Robo1 expression. Also, HUVECs with different Robo1 expression were mixed with HCCLM3 and HepG2 hepatoma cells and then implanted in a nude mouse model to examine the effects of Robo1 in endothelial cells on tumor growth and angiogenesis. Cell motility-related molecules were studied to investigate the potential mechanism how Robo1 promoted tumor angiogenesis in HCC. The disease-free survival of the patients with high Robo1 expression in tumoral endothelial cells was significantly shorter than that of those with low expression (P = 0.021). Overexpression of Robo1 in HUVECs resulted in increased proliferation, motility, and tube formation in vitro. In the implanted mixture of tumor cells and HUVECs with an increased Robo1 expression, tumor growth and microvessel density were enhanced compared with controls. Robo1 promoted cell division cycle 42 (Cdc42) expression in HUVECs, and a distorted actin cytoskeleton in HUVECs was observed when Robo1 expression was suppressed. In conclusion, Robo1 promoted angiogenesis in HCC mediated by Cdc42.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA. 2011;61:69–90.PubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA. 2011;61:69–90.PubMed
2.
go back to reference Poon RT, Ng IO, Lau C, Zhu LX, Yu WC, Lo CM, et al. Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study. Ann Surg. 2001;233:227–35.CrossRefPubMedPubMedCentral Poon RT, Ng IO, Lau C, Zhu LX, Yu WC, Lo CM, et al. Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study. Ann Surg. 2001;233:227–35.CrossRefPubMedPubMedCentral
3.
go back to reference Sugimachi K, Tanaka S, Terashi T, Taguchi K, Rikimaru T, Sugimachi K. The mechanisms of angiogenesis in hepatocellular carcinoma: angiogenic switch during tumor progression. Surgery. 2002;131:S135–41.CrossRefPubMed Sugimachi K, Tanaka S, Terashi T, Taguchi K, Rikimaru T, Sugimachi K. The mechanisms of angiogenesis in hepatocellular carcinoma: angiogenic switch during tumor progression. Surgery. 2002;131:S135–41.CrossRefPubMed
4.
go back to reference Tanigawa N, Lu C, Mitsui T, Miura S. Quantitation of sinusoid-like vessels in hepatocellular carcinoma: its clinical and prognostic significance. Hepatology. 1997;26:1216–23.PubMed Tanigawa N, Lu C, Mitsui T, Miura S. Quantitation of sinusoid-like vessels in hepatocellular carcinoma: its clinical and prognostic significance. Hepatology. 1997;26:1216–23.PubMed
5.
go back to reference Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res. 2014;20:2072–9.CrossRefPubMed Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res. 2014;20:2072–9.CrossRefPubMed
6.
go back to reference Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet. 2003;4:710–20.CrossRefPubMed Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet. 2003;4:710–20.CrossRefPubMed
7.
go back to reference Eichmann A, Le Noble F, Autiero M, Carmeliet P. Guidance of vascular and neural network formation. Curr Opin Neurobiol. 2005;15:108–15.CrossRefPubMed Eichmann A, Le Noble F, Autiero M, Carmeliet P. Guidance of vascular and neural network formation. Curr Opin Neurobiol. 2005;15:108–15.CrossRefPubMed
8.
go back to reference Alpar A, Tortoriello G, Calvigioni D, Niphakis MJ, Milenkovic I, Bakker J, et al. Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat Commun. 2014;5:4421.CrossRefPubMedPubMedCentral Alpar A, Tortoriello G, Calvigioni D, Niphakis MJ, Milenkovic I, Bakker J, et al. Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat Commun. 2014;5:4421.CrossRefPubMedPubMedCentral
9.
go back to reference Borrell V, Cardenas A, Ciceri G, Galceran J, Flames N, Pla R, et al. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron. 2012;76:338–52.CrossRefPubMedPubMedCentral Borrell V, Cardenas A, Ciceri G, Galceran J, Flames N, Pla R, et al. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron. 2012;76:338–52.CrossRefPubMedPubMedCentral
10.
go back to reference Mehlen P, Delloye-Bourgeois C, Chedotal A. Novel roles for slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer. 2011;11:188–97.CrossRefPubMed Mehlen P, Delloye-Bourgeois C, Chedotal A. Novel roles for slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer. 2011;11:188–97.CrossRefPubMed
11.
go back to reference Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell. 2003;4:19–29.CrossRefPubMed Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell. 2003;4:19–29.CrossRefPubMed
12.
go back to reference Chang PH, Hwang-Verslues WW, Chang YC, Chen CC, Hsiao M, Jeng YM, et al. Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3k/Akt/beta-catenin pathway. Cancer Res. 2012;72:4652–61.CrossRefPubMedPubMedCentral Chang PH, Hwang-Verslues WW, Chang YC, Chen CC, Hsiao M, Jeng YM, et al. Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3k/Akt/beta-catenin pathway. Cancer Res. 2012;72:4652–61.CrossRefPubMedPubMedCentral
13.
go back to reference Parray A, Siddique HR, Kuriger JK, Mishra SK, Rhim JS, Nelson HH, et al. Robo1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models. Int J Cancer (Journal International du Cancer). 2014;135:2493–506.CrossRef Parray A, Siddique HR, Kuriger JK, Mishra SK, Rhim JS, Nelson HH, et al. Robo1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models. Int J Cancer (Journal International du Cancer). 2014;135:2493–506.CrossRef
14.
go back to reference Je EM, Gwak M, Oh H, Choi MR, Choi YJ, Lee SH, et al. Frameshift mutations of axon guidance genes Robo1 and Robo2 in gastric and colorectal cancers with microsatellite instability. Pathology. 2013;45:645–50.CrossRefPubMed Je EM, Gwak M, Oh H, Choi MR, Choi YJ, Lee SH, et al. Frameshift mutations of axon guidance genes Robo1 and Robo2 in gastric and colorectal cancers with microsatellite instability. Pathology. 2013;45:645–50.CrossRefPubMed
15.
go back to reference Qi C, Lan H, Ye J, Li W, Wei P, Yang Y, et al. Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis. Lab Investig. 2014;94:766–76.CrossRefPubMed Qi C, Lan H, Ye J, Li W, Wei P, Yang Y, et al. Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis. Lab Investig. 2014;94:766–76.CrossRefPubMed
16.
go back to reference Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, et al. MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res. 2011;71:2381–91.CrossRefPubMed Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J, et al. MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res. 2011;71:2381–91.CrossRefPubMed
17.
go back to reference Shao Y, Zhou Y, Hou Y, He J, Hu L, Zhang Y, et al. Prognostic implications of SLIT and ROBO1 expression in gallbladder cancer. Cell Biochem Biophys. 2014;70:747–58.CrossRefPubMed Shao Y, Zhou Y, Hou Y, He J, Hu L, Zhang Y, et al. Prognostic implications of SLIT and ROBO1 expression in gallbladder cancer. Cell Biochem Biophys. 2014;70:747–58.CrossRefPubMed
18.
go back to reference Ito H, Funahashi S, Yamauchi N, Shibahara J, Midorikawa Y, Kawai S, et al. Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin Cancer Res. 2006;12:3257–64.CrossRefPubMed Ito H, Funahashi S, Yamauchi N, Shibahara J, Midorikawa Y, Kawai S, et al. Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin Cancer Res. 2006;12:3257–64.CrossRefPubMed
19.
go back to reference Roayaie S, Blume IN, Thung SN, Guido M, Fiel MI, Hiotis S, et al. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma. Gastroenterology. 2009;137:850–5.CrossRefPubMedPubMedCentral Roayaie S, Blume IN, Thung SN, Guido M, Fiel MI, Hiotis S, et al. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma. Gastroenterology. 2009;137:850–5.CrossRefPubMedPubMedCentral
20.
go back to reference Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol. 2008;26:2707–16.CrossRefPubMed Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol. 2008;26:2707–16.CrossRefPubMed
21.
go back to reference Xiong YQ, Sun HC, Zhang W, Zhu XD, Zhuang PY, Zhang JB, et al. Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res. 2009;15:4838–46.CrossRefPubMed Xiong YQ, Sun HC, Zhang W, Zhu XD, Zhuang PY, Zhang JB, et al. Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res. 2009;15:4838–46.CrossRefPubMed
22.
go back to reference Kong J, Kong J, Pan B, Ke S, Dong S, Li X, et al. Insufficient radiofrequency ablation promotes angiogenesis of residual hepatocellular carcinoma via HIF-1alpha/VEGFA. PLoS One. 2012;7:e37266.CrossRefPubMedPubMedCentral Kong J, Kong J, Pan B, Ke S, Dong S, Li X, et al. Insufficient radiofrequency ablation promotes angiogenesis of residual hepatocellular carcinoma via HIF-1alpha/VEGFA. PLoS One. 2012;7:e37266.CrossRefPubMedPubMedCentral
23.
go back to reference Strohmaier AR, Porwol T, Acker H, Spiess E. Tomography of cells by confocal laser scanning microscopy and computer-assisted three-dimensional image reconstruction: localization of cathepsin B in tumor cells penetrating collagen gels in vitro. J Histochem Cytochem. 1997;45:975–83.CrossRefPubMed Strohmaier AR, Porwol T, Acker H, Spiess E. Tomography of cells by confocal laser scanning microscopy and computer-assisted three-dimensional image reconstruction: localization of cathepsin B in tumor cells penetrating collagen gels in vitro. J Histochem Cytochem. 1997;45:975–83.CrossRefPubMed
24.
go back to reference Yang YH, Manning Fox JE, Zhang KL, MacDonald PE, Johnson JD. Intraislet SLIT-ROBO signaling is required for beta-cell survival and potentiates insulin secretion. Proc Natl Acad Sci U S A. 2013;110:16480–5.CrossRefPubMedPubMedCentral Yang YH, Manning Fox JE, Zhang KL, MacDonald PE, Johnson JD. Intraislet SLIT-ROBO signaling is required for beta-cell survival and potentiates insulin secretion. Proc Natl Acad Sci U S A. 2013;110:16480–5.CrossRefPubMedPubMedCentral
25.
go back to reference Geutskens SB, Hordijk PL, van Hennik PB. The chemorepellent Slit3 promotes monocyte migration. J Immunol. 2010;185:7691–8.CrossRefPubMed Geutskens SB, Hordijk PL, van Hennik PB. The chemorepellent Slit3 promotes monocyte migration. J Immunol. 2010;185:7691–8.CrossRefPubMed
26.
go back to reference Valtcheva N, Primorac A, Jurisic G, Hollmen M, Detmar M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and CDC42. J Biol Chem. 2013;288:35736–48.CrossRefPubMedPubMedCentral Valtcheva N, Primorac A, Jurisic G, Hollmen M, Detmar M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and CDC42. J Biol Chem. 2013;288:35736–48.CrossRefPubMedPubMedCentral
27.
go back to reference Ni S, Hu J, Duan Y, Shi S, Li R, Wu H, et al. Down expression of LRP1B promotes cell migration via RhoA/Cdc42 pathway and actin cytoskeleton remodeling in renal cell cancer. Cancer Sci. 2013;104:817–25.CrossRefPubMed Ni S, Hu J, Duan Y, Shi S, Li R, Wu H, et al. Down expression of LRP1B promotes cell migration via RhoA/Cdc42 pathway and actin cytoskeleton remodeling in renal cell cancer. Cancer Sci. 2013;104:817–25.CrossRefPubMed
29.
go back to reference Wang LJ, Zhao Y, Han B, Ma YG, Zhang J, Yang DM, et al. Targeting slit-roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis. Cancer Sci. 2008;99:510–7.CrossRefPubMed Wang LJ, Zhao Y, Han B, Ma YG, Zhang J, Yang DM, et al. Targeting slit-roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis. Cancer Sci. 2008;99:510–7.CrossRefPubMed
30.
go back to reference Huang L, Xu Y, Yu W, Li X, Liqun C, He X, et al. Robo1: a potential role in ocular angiogenesis. Curr Eye Res. 2009;34:1019–29.CrossRefPubMed Huang L, Xu Y, Yu W, Li X, Liqun C, He X, et al. Robo1: a potential role in ocular angiogenesis. Curr Eye Res. 2009;34:1019–29.CrossRefPubMed
31.
32.
34.
go back to reference Wakayama Y, Fukuhara S, Ando K, Matsuda M, Mochizuki N. Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell. 2015;32:109–22.CrossRefPubMed Wakayama Y, Fukuhara S, Ando K, Matsuda M, Mochizuki N. Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell. 2015;32:109–22.CrossRefPubMed
35.
go back to reference Zheng F, Liao YJ, Cai MY, Liu TH, Chen SP, Wu PH, et al. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets. PLoS Genet. 2015;11:e1004873.CrossRefPubMedPubMedCentral Zheng F, Liao YJ, Cai MY, Liu TH, Chen SP, Wu PH, et al. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets. PLoS Genet. 2015;11:e1004873.CrossRefPubMedPubMedCentral
36.
go back to reference Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell. 2001;107:209–21.CrossRefPubMed Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell. 2001;107:209–21.CrossRefPubMed
37.
go back to reference Legg JA, Herbert JM, Clissold P, Bicknell R. Slits and roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis. 2008;11:13–21.CrossRefPubMed Legg JA, Herbert JM, Clissold P, Bicknell R. Slits and roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis. 2008;11:13–21.CrossRefPubMed
38.
go back to reference Avci ME, Konu O, Yagci T. Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression. BMC Cancer. 2008;8:392.CrossRefPubMedPubMedCentral Avci ME, Konu O, Yagci T. Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression. BMC Cancer. 2008;8:392.CrossRefPubMedPubMedCentral
Metadata
Title
Robo1 promotes angiogenesis in hepatocellular carcinoma through the Rho family of guanosine triphosphatases’ signaling pathway
Authors
Jian-Yang Ao
Zong-Tao Chai
Yuan-Yuan Zhang
Xiao-Dong Zhu
Ling-Qun Kong
Ning Zhang
Bo-Gen Ye
Hao Cai
Dong-mei Gao
Hui-Chuan Sun
Publication date
01-11-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 11/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3601-1

Other articles of this Issue 11/2015

Tumor Biology 11/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine