Skip to main content
Top
Published in: Tumor Biology 12/2014

01-12-2014 | Research Article

Interplay of VEGFa and MMP2 regulates invasion of glioblastoma

Authors: Jie Gong, Shugan Zhu, Yuan Zhang, Jiangang Wang

Published in: Tumor Biology | Issue 12/2014

Login to get access

Abstract

Neovascularization plays a substantial role in the regulation of invasion of glioblastoma. However, the underlying molecular basis remains largely unknown. Both vascular endothelial growth factor a (VEGFa) and matrix metalloproteinases 2 (MMP2) are essential for cancer neovascularization and cancer invasion in that they promote endothelial mitogenesis and permeability, and promote extracellular matrix degradation, respectively. In the current study, we found strong positive correlation of VEGFa and phosphorylated MMP2 levels in the glioblastoma from the patients. Thus, we used a human glioblastoma line, A-172, to examine the interaction of VEGFa and MMP2. We found that overexpression of VEGFa in A-172 cells increased MMP2 levels, while inhibition of VEGFa in A-172 cells decreased MMP2 levels. On the other hand, forced changes in MMP2 levels in A-172 cells did not affect VEGFa levels. These data suggest that VEGFa may regulate MMP2 in glioblastoma, while MMP2 did not appear to affect VEGFa levels. We then examined the signaling pathways involved in the regulation of MMP2 levels by VEGFa. Application of a specific extracellular-related kinase 1/2 (ERK1/2) inhibitor, but not application of either an protein kinase B (Akt) inhibitor, or a Jun N-terminal kinase (JNK) inhibitor to VEGFa-overexpressing A-172 cells substantially abolished the effect of VEGFa on MMP2 activation, suggesting that VEGFa may increase MMP2 levels via ERK/mitogen-activated protein kinase (MAPK), but not phosphatidylinositol 3-kinase (PI3K) or JNK signaling pathways in glioblastoma. Moreover, adapted VEGFa levels were found to directly and positively affect the glioblastoma development in an intracranial glioblastoma implantation model. Taken together, our data suggest that anti-VEGFa treatment in glioblastoma may inhibit neovascularization not only by VEGFa itself but also by its regulatory effect on MMP2.
Literature
1.
go back to reference Schonberg DL, Bao S, Rich JN. Genomics informs glioblastoma biology. Nat Genet. 2013;45:1105–7.CrossRef Schonberg DL, Bao S, Rich JN. Genomics informs glioblastoma biology. Nat Genet. 2013;45:1105–7.CrossRef
2.
go back to reference Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108:3749–54.CrossRef Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108:3749–54.CrossRef
3.
go back to reference Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, et al. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw. 2011;9:414–27.CrossRef Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, et al. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw. 2011;9:414–27.CrossRef
4.
go back to reference Robles Irizarry L, Hambardzumyan D, Nakano I, Gladson CL, Ahluwalia MS. Therapeutic targeting of VEGF in the treatment of glioblastoma. Expert Opin Ther Targets. 2012;16:973–84.CrossRef Robles Irizarry L, Hambardzumyan D, Nakano I, Gladson CL, Ahluwalia MS. Therapeutic targeting of VEGF in the treatment of glioblastoma. Expert Opin Ther Targets. 2012;16:973–84.CrossRef
5.
go back to reference Oka N, Soeda A, Inagaki A, Onodera M, Maruyama H, Hara A, et al. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem Biophys Res Commun. 2007;360:553–9.CrossRef Oka N, Soeda A, Inagaki A, Onodera M, Maruyama H, Hara A, et al. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem Biophys Res Commun. 2007;360:553–9.CrossRef
6.
go back to reference Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.CrossRef Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.CrossRef
7.
go back to reference Bagri A, Kouros-Mehr H, Leong KG, Plowman GD. Use of anti-VEGF adjuvant therapy in cancer: challenges and rationale. Trends Mol Med. 2010;16:122–32.CrossRef Bagri A, Kouros-Mehr H, Leong KG, Plowman GD. Use of anti-VEGF adjuvant therapy in cancer: challenges and rationale. Trends Mol Med. 2010;16:122–32.CrossRef
8.
go back to reference Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.CrossRef Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.CrossRef
9.
go back to reference Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.CrossRef Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.CrossRef
10.
go back to reference Davidson B, Reich R, Risberg B, Nesland JM. The biological role and regulation of matrix metalloproteinases (MMP) in cancer. Arkh Patol. 2002;64:47–53.PubMed Davidson B, Reich R, Risberg B, Nesland JM. The biological role and regulation of matrix metalloproteinases (MMP) in cancer. Arkh Patol. 2002;64:47–53.PubMed
11.
go back to reference Rhee JS, Coussens LM. Recking MMP function: implications for cancer development. Trends Cell Biol. 2002;12:209–11.CrossRef Rhee JS, Coussens LM. Recking MMP function: implications for cancer development. Trends Cell Biol. 2002;12:209–11.CrossRef
12.
go back to reference Lu KV, Jong KA, Rajasekaran AK, Cloughesy TF, Mischel PS. Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Lab Invest. 2004;84:8–20.CrossRef Lu KV, Jong KA, Rajasekaran AK, Cloughesy TF, Mischel PS. Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Lab Invest. 2004;84:8–20.CrossRef
13.
go back to reference Li Z, Du L, Li C, Wu W. Human chorionic gonadotropin beta induces cell motility via ERK1/2 and MMP-2 activation in human glioblastoma U87MG cells. J Neurooncol. 2013;111:237–44.CrossRef Li Z, Du L, Li C, Wu W. Human chorionic gonadotropin beta induces cell motility via ERK1/2 and MMP-2 activation in human glioblastoma U87MG cells. J Neurooncol. 2013;111:237–44.CrossRef
14.
go back to reference Enloe BM, Jay DG. Inhibition of Necl-5 (CD155/PVR) reduces glioblastoma dispersal and decreases MMP-2 expression and activity. J Neurooncol. 2011;102:225–35.CrossRef Enloe BM, Jay DG. Inhibition of Necl-5 (CD155/PVR) reduces glioblastoma dispersal and decreases MMP-2 expression and activity. J Neurooncol. 2011;102:225–35.CrossRef
15.
go back to reference Chintala SK, Ali-Osman F, Mohanam S, Rayford A, Go Y, Gokaslan ZL, et al. Effect of cisplatin and BCNU on MMP-2 levels in human glioblastoma cell lines in vitro. Clin Exp Metastasis. 1997;15:361–7.CrossRef Chintala SK, Ali-Osman F, Mohanam S, Rayford A, Go Y, Gokaslan ZL, et al. Effect of cisplatin and BCNU on MMP-2 levels in human glioblastoma cell lines in vitro. Clin Exp Metastasis. 1997;15:361–7.CrossRef
16.
go back to reference Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.CrossRef Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.CrossRef
17.
go back to reference Wang YQ, Guo X, Qiu MH, Feng XY, Sun FY. VEGF overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion. J Neurosci Res. 2007;85:73–82.CrossRef Wang YQ, Guo X, Qiu MH, Feng XY, Sun FY. VEGF overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion. J Neurosci Res. 2007;85:73–82.CrossRef
18.
go back to reference Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.CrossRef Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.CrossRef
19.
go back to reference Huang JL, Wu SY, Xie XJ, Wang MX, Zhu S, Gu JR. Inhibiting effects of leflunomide metabolite on overexpression of CD147, MMP-2 and MMP-9 in PMA differentiated THP-1 cells. Eur J Pharmacol. 2011;670:304–10.CrossRef Huang JL, Wu SY, Xie XJ, Wang MX, Zhu S, Gu JR. Inhibiting effects of leflunomide metabolite on overexpression of CD147, MMP-2 and MMP-9 in PMA differentiated THP-1 cells. Eur J Pharmacol. 2011;670:304–10.CrossRef
20.
go back to reference Biggs 3rd WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A. 1999;96:7421–6.CrossRef Biggs 3rd WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A. 1999;96:7421–6.CrossRef
21.
go back to reference Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, et al. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2. Tumour Biol. 2014;35:5593–8.CrossRef Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, et al. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2. Tumour Biol. 2014;35:5593–8.CrossRef
Metadata
Title
Interplay of VEGFa and MMP2 regulates invasion of glioblastoma
Authors
Jie Gong
Shugan Zhu
Yuan Zhang
Jiangang Wang
Publication date
01-12-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 12/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2438-3

Other articles of this Issue 12/2014

Tumor Biology 12/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine