Skip to main content
Top
Published in: Tumor Biology 6/2014

01-06-2014 | Review

Genetic unraveling of colorectal cancer

Authors: Sabha Rasool, Vamiq Rasool, Tahira Naqvi, Bashir A. Ganai, Bhahwal Ali Shah

Published in: Tumor Biology | Issue 6/2014

Login to get access

Abstract

Colorectal cancer is a common disease in both men and women (being the third most common cancer in men and the second most common among women) and thus represents an important and serious public health issue, especially in the western world. Although it is a well-established fact that cancers of the large intestine produce symptoms relatively earlier at a stage that can be easily cured by resection, a large number of people lose their lives to this deadly disease each year. Recent times have seen an important change in the incidence of colorectal cancer in different parts of the world. The etiology of colorectal cancer is multifactorial and is likely to involve the actions of genes at multiple levels along the multistage carcinogenesis process. Exhaustive efforts have been made out in the direction of unraveling the role of various environmental factors, gene mutations, and polymorphisms worldwide (as well as in Kashmir—“a valley of gastrointestinal cancers”) that have got a role to play in the development of this disease so that antitumor drugs could be developed against this cancer, first, and, finally, the responsiveness or resistance to these agents could be understood for combating this global issue.
Literature
1.
go back to reference Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMed Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMed
2.
go back to reference Boyle P, Elena M. Epidemiology of colorectal cancer. British Med Bull. 2002;64:1–25. Boyle P, Elena M. Epidemiology of colorectal cancer. British Med Bull. 2002;64:1–25.
3.
go back to reference World Health Organization (February 2006). Retrieved 24 May 2007. World Health Organization (February 2006). Retrieved 24 May 2007.
4.
go back to reference Paula MC, Harold F. The genetics of CRC. Ann Intern Med. 2002;137:603–12. Paula MC, Harold F. The genetics of CRC. Ann Intern Med. 2002;137:603–12.
5.
go back to reference Umar A, Greenwald P. Alarming colorectal cancer incidence trends: a case for early detection and prevention. Cancer Epidemiol Biomarkers Prev. 2009;18:1672–3.PubMed Umar A, Greenwald P. Alarming colorectal cancer incidence trends: a case for early detection and prevention. Cancer Epidemiol Biomarkers Prev. 2009;18:1672–3.PubMed
6.
go back to reference Levin B, Lieberman DA, McFarland B, Smith RA, Brooks D, Andrews KS, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin. 2008;58:130–60.PubMed Levin B, Lieberman DA, McFarland B, Smith RA, Brooks D, Andrews KS, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin. 2008;58:130–60.PubMed
7.
go back to reference Fatemi SR, Shivarani S, Malek FN, Vahedi M, Maserat E, Iranpour Y, et al. Colonoscopy screening results in at risk Iranian population. Asian Pac J Cancer Prev. 2010;11:1801–4.PubMed Fatemi SR, Shivarani S, Malek FN, Vahedi M, Maserat E, Iranpour Y, et al. Colonoscopy screening results in at risk Iranian population. Asian Pac J Cancer Prev. 2010;11:1801–4.PubMed
8.
go back to reference Moghimi-Dehkordi B, Safaee A. An overview of colorectal cancer survival rates and prognosis in Asia. World J Gastrointest Oncol. 2012;4(4):71–5.PubMedCentralPubMed Moghimi-Dehkordi B, Safaee A. An overview of colorectal cancer survival rates and prognosis in Asia. World J Gastrointest Oncol. 2012;4(4):71–5.PubMedCentralPubMed
9.
go back to reference Sameer AS, Shah ZA, Syeed N, Banday MZ, Bashir SM, Bhat BA, et al. TP53 Pro47Ser and Arg72Pro polymorphisms and colorectal cancer predisposition in an ethnic Kashmiri population. Genet Mol Res. 2010;9:651–60.PubMed Sameer AS, Shah ZA, Syeed N, Banday MZ, Bashir SM, Bhat BA, et al. TP53 Pro47Ser and Arg72Pro polymorphisms and colorectal cancer predisposition in an ethnic Kashmiri population. Genet Mol Res. 2010;9:651–60.PubMed
10.
go back to reference Sameer AS, ul Rehman S, Pandith AA, Syeed N, Shah ZA, Chowdhri NA, et al. Molecular gate keepers succumb to gene aberrations in colorectal cancer in Kashmiri population, revealing a high incidence area. Saudi J Gastroenterol. 2009;15:244–52.PubMedCentralPubMed Sameer AS, ul Rehman S, Pandith AA, Syeed N, Shah ZA, Chowdhri NA, et al. Molecular gate keepers succumb to gene aberrations in colorectal cancer in Kashmiri population, revealing a high incidence area. Saudi J Gastroenterol. 2009;15:244–52.PubMedCentralPubMed
11.
go back to reference Rasool S, Ganai BA, Sameer AS, Masood A. Esophageal cancer: associated factors with special reference to the Kashmir Valley. Tumori. 2012;98:191–203.PubMed Rasool S, Ganai BA, Sameer AS, Masood A. Esophageal cancer: associated factors with special reference to the Kashmir Valley. Tumori. 2012;98:191–203.PubMed
12.
go back to reference Jenkins TD, Rustgi AK: Genetics of colorectal carcinoma. In: cancer of the lower gastrointestinal tract. Ed. Willet C.G. London 2001;33–44. Jenkins TD, Rustgi AK: Genetics of colorectal carcinoma. In: cancer of the lower gastrointestinal tract. Ed. Willet C.G. London 2001;33–44.
13.
go back to reference Young GP, Hu Y, Le Leu RK, Nyskohus L. Dietary fibre and colorectal cancer: a model for environment–gene interactions. Mol Nutr Food Res. 2005;49(6):571–84.PubMed Young GP, Hu Y, Le Leu RK, Nyskohus L. Dietary fibre and colorectal cancer: a model for environment–gene interactions. Mol Nutr Food Res. 2005;49(6):571–84.PubMed
14.
go back to reference Kinzler KW, Vogelstein B. Colorectal tumors. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. 2nd ed. New York: McGraw-Hill; 2002. p. 583–612. Kinzler KW, Vogelstein B. Colorectal tumors. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. 2nd ed. New York: McGraw-Hill; 2002. p. 583–612.
15.
go back to reference Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol Mech Dis. 2011;6:479–507. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol Mech Dis. 2011;6:479–507.
16.
go back to reference Kupfer SS, Anderson JR, Hooker S, Skol A, Kittles RA, Keku TO, Sandler RS, Ellis NA. Genetic heterogeneity in colorectal cancer associations between African and European Americans. Gastroenterol. 2010;139(5):1677--85. Kupfer SS, Anderson JR, Hooker S, Skol A, Kittles RA, Keku TO, Sandler RS, Ellis NA. Genetic heterogeneity in colorectal cancer associations between African and European Americans. Gastroenterol. 2010;139(5):1677--85.
17.
go back to reference Kang GH. Four molecular subtypes of colorectal cancer and their precursor lesions. Arch Pathol Lab Med. 2011;135(6):698–703.PubMed Kang GH. Four molecular subtypes of colorectal cancer and their precursor lesions. Arch Pathol Lab Med. 2011;135(6):698–703.PubMed
18.
go back to reference Lee AJX, Endesfelder D, Rowan A, Walther A, Birkbak NJ, Futreal PA, et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 2011;71:1858–70.PubMedCentralPubMed Lee AJX, Endesfelder D, Rowan A, Walther A, Birkbak NJ, Futreal PA, et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 2011;71:1858–70.PubMedCentralPubMed
20.
go back to reference Arends JW. Molecular interactions in the Vogelstein model of colorectal carcinoma. J Pathol. 2000;190(4):412–6.PubMed Arends JW. Molecular interactions in the Vogelstein model of colorectal carcinoma. J Pathol. 2000;190(4):412–6.PubMed
21.
go back to reference Lenglauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–7. Lenglauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–7.
22.
go back to reference Benatti P, Gafà R, Barana D, Marino M, Scarselli A, Pedroni M, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res. 2005;11(23):8332–40.PubMed Benatti P, Gafà R, Barana D, Marino M, Scarselli A, Pedroni M, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res. 2005;11(23):8332–40.PubMed
23.
go back to reference Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248.PubMed Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248.PubMed
24.
go back to reference World Cancer Research Fund and American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: American Institute for Cancer Research; 2007. World Cancer Research Fund and American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: American Institute for Cancer Research; 2007.
25.
go back to reference Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994;263(5153):1625–9.PubMed Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994;263(5153):1625–9.PubMed
26.
go back to reference Wilmink ABM. Overview of the epidemiology of colorectal cancer. Dis Colon Rectum. 1997;40(4):483–93.PubMed Wilmink ABM. Overview of the epidemiology of colorectal cancer. Dis Colon Rectum. 1997;40(4):483–93.PubMed
27.
go back to reference Jeter JM, Kohlmann W, Gruber SB. Genetics of colorectal cancer. Oncology. 2006;20(3):269–76.PubMed Jeter JM, Kohlmann W, Gruber SB. Genetics of colorectal cancer. Oncology. 2006;20(3):269–76.PubMed
28.
go back to reference Ruschoff J, Dietmaier W, Luttges J, et al. Poorly differentiated colonic adenocarcinoma, medullary type: clinical, phenotypic, and molecular characteristics. Am J Pathol. 1997;150:1815–25.PubMedCentralPubMed Ruschoff J, Dietmaier W, Luttges J, et al. Poorly differentiated colonic adenocarcinoma, medullary type: clinical, phenotypic, and molecular characteristics. Am J Pathol. 1997;150:1815–25.PubMedCentralPubMed
29.
go back to reference Cederquist, K. (2005). Genetic and epidemiological studies of hereditary colorectal cancer. Norrlands Universitetssjukhus Cederquist, K. (2005). Genetic and epidemiological studies of hereditary colorectal cancer. Norrlands Universitetssjukhus
30.
go back to reference Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260:812–6.PubMed Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260:812–6.PubMed
31.
go back to reference Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352:1851–60.PubMed Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352:1851–60.PubMed
32.
go back to reference Vilar E & Gruber SB. Microsatellite instability in colorectal cancer—the stable evidence Nat Rev Clin Oncol. 2010;7(3):153--62. Vilar E & Gruber SB. Microsatellite instability in colorectal cancer—the stable evidence Nat Rev Clin Oncol. 2010;7(3):153--62.
33.
go back to reference Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988–93.PubMed Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988–93.PubMed
34.
go back to reference Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev. 2004;23:29–39.PubMed Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev. 2004;23:29–39.PubMed
35.
go back to reference Ang PW, Loh M, Liem N, Lim PL, Grieu F, Vaithilingam A, et al. Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer. 2010;10:227.PubMedCentralPubMed Ang PW, Loh M, Liem N, Lim PL, Grieu F, Vaithilingam A, et al. Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer. 2010;10:227.PubMedCentralPubMed
36.
go back to reference Toyota M, Ahuja N, Ohe-Toyota M, Herman J, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96:8681–6.PubMedCentralPubMed Toyota M, Ahuja N, Ohe-Toyota M, Herman J, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96:8681–6.PubMedCentralPubMed
37.
go back to reference Nosho K, Irahara N, Shima K, et al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One. 2008;3(11):e3698.PubMedCentralPubMed Nosho K, Irahara N, Shima K, et al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One. 2008;3(11):e3698.PubMedCentralPubMed
38.
go back to reference Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.PubMed Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.PubMed
39.
go back to reference Barault L, Charon-Barra C, Jooste V, de la Vega MF, Martin L, Roignot P, et al. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 2008;68(20):8541–6.PubMed Barault L, Charon-Barra C, Jooste V, de la Vega MF, Martin L, Roignot P, et al. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 2008;68(20):8541–6.PubMed
40.
go back to reference Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, et al. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 2002;122(5):1376–87.PubMed Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, et al. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 2002;122(5):1376–87.PubMed
41.
go back to reference Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725–35. Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725–35.
42.
go back to reference Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21:2525–38.PubMed Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21:2525–38.PubMed
43.
go back to reference Ahnen DJ. The genetic basis of colorectal cancer risk. Adv Intern Med. 1996;41:531–52.PubMed Ahnen DJ. The genetic basis of colorectal cancer risk. Adv Intern Med. 1996;41:531–52.PubMed
44.
go back to reference Yeatman TJ: Colon cancer. Encyclopedia of Life Sciences; 2001. Macmillan Publishers. p. 1–6. Yeatman TJ: Colon cancer. Encyclopedia of Life Sciences; 2001. Macmillan Publishers. p. 1–6.
45.
go back to reference Pappou EP and Ahuja N. The role of oncogenes in gastrointestinal cancer. Gastrointest. Cancer Res. 2010;2(Suppl 1):S2–S15. Pappou EP and Ahuja N. The role of oncogenes in gastrointestinal cancer. Gastrointest. Cancer Res. 2010;2(Suppl 1):S2–S15.
46.
go back to reference Renkonen ET. Genetic basis of hereditary colorectal cancers. Helsinki University Biomedical Dissertations #75,9–12. Renkonen ET. Genetic basis of hereditary colorectal cancers. Helsinki University Biomedical Dissertations #75,9–12.
47.
go back to reference Klingelhutz AJ, Hedrick L, Cho KR, McDougall JK. The DCC gene suppresses the malignant phenotype of transformed human epithelial cells. Oncogene. 1995;10:1581–6.PubMed Klingelhutz AJ, Hedrick L, Cho KR, McDougall JK. The DCC gene suppresses the malignant phenotype of transformed human epithelial cells. Oncogene. 1995;10:1581–6.PubMed
48.
go back to reference Bishop JM. The enemies within: the genesis of retrovirus oncogenes. Cell. 1982;23:5–7. Bishop JM. The enemies within: the genesis of retrovirus oncogenes. Cell. 1982;23:5–7.
49.
go back to reference Olivero M, Valente G, Bardelli A, Longati P, Ferrero N, Cracco C, et al. Novel mutation in the ATP-binding site of the MET oncogene tyrosine kinase in a HPRCC family. Int J Cancer. 1999;82:640–3.PubMed Olivero M, Valente G, Bardelli A, Longati P, Ferrero N, Cracco C, et al. Novel mutation in the ATP-binding site of the MET oncogene tyrosine kinase in a HPRCC family. Int J Cancer. 1999;82:640–3.PubMed
50.
go back to reference Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM. Homogenously staining chromosomal regions contain amplified copies of an abundant expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci U S A. 1983;80:1707.PubMedCentralPubMed Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM. Homogenously staining chromosomal regions contain amplified copies of an abundant expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci U S A. 1983;80:1707.PubMedCentralPubMed
51.
go back to reference Boxer LM, Dang CV. Translocations involving c-myc and c-myc function. Oncogene. 2001;20:5595–610.PubMed Boxer LM, Dang CV. Translocations involving c-myc and c-myc function. Oncogene. 2001;20:5595–610.PubMed
52.
go back to reference Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994;372:143.PubMed Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994;372:143.PubMed
53.
go back to reference Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.PubMed Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.PubMed
54.
go back to reference Forrester K, Almoguera C, Han K, et al. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature. 1987;327:298–303.PubMed Forrester K, Almoguera C, Han K, et al. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature. 1987;327:298–303.PubMed
55.
go back to reference Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science. 1993;260:85–8.PubMed Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science. 1993;260:85–8.PubMed
56.
go back to reference Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y. Colorectal cancer: genetics of development and metastasis. J Gastroenterol. 2006;41(3):185–92.PubMed Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y. Colorectal cancer: genetics of development and metastasis. J Gastroenterol. 2006;41(3):185–92.PubMed
57.
go back to reference Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.PubMed Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.PubMed
58.
go back to reference Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.PubMed Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.PubMed
59.
go back to reference Chan TL, Zhao W, Leung SY, Yuen ST. Cancer Genome Project. BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 2003;63:4878–81.PubMed Chan TL, Zhao W, Leung SY, Yuen ST. Cancer Genome Project. BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 2003;63:4878–81.PubMed
60.
go back to reference Lorentz O, Cadoret A, Duluc I, et al. Downregulation of the colon tumour-suppressor homeobox gene Cdx-2 by oncogenic ras. Oncogene. 1999;18:87–92.PubMed Lorentz O, Cadoret A, Duluc I, et al. Downregulation of the colon tumour-suppressor homeobox gene Cdx-2 by oncogenic ras. Oncogene. 1999;18:87–92.PubMed
61.
go back to reference Guan RJ, Fu Y, Holt PR, Pardee AB. Association of Kras mutations with p16 methylation in human colon cancer. Gastroenterology. 1999;116:1063–71.PubMed Guan RJ, Fu Y, Holt PR, Pardee AB. Association of Kras mutations with p16 methylation in human colon cancer. Gastroenterology. 1999;116:1063–71.PubMed
62.
go back to reference Sameer AS, Chowdri NA, Abdullah S, Shah ZA, Siddiqi MA. Mutation pattern of K-ras gene in colorectal cancer patients of Kashmir: a report. Indian J Cancer. 2009;46:219–25.PubMed Sameer AS, Chowdri NA, Abdullah S, Shah ZA, Siddiqi MA. Mutation pattern of K-ras gene in colorectal cancer patients of Kashmir: a report. Indian J Cancer. 2009;46:219–25.PubMed
63.
go back to reference Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.PubMed Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.PubMed
64.
go back to reference Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst. 2009;101:1308–24.PubMedCentralPubMed Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst. 2009;101:1308–24.PubMedCentralPubMed
65.
go back to reference Calistri D, Rengucci C, Seymour I, Leonardi E, Truini M, Malacarne D, et al. KRAS, p53 and BRAF gene mutations and aneuploidy in sporadic colorectal cancer progression. Anal Cell Pathol. 2006;28(4):161–6. Calistri D, Rengucci C, Seymour I, Leonardi E, Truini M, Malacarne D, et al. KRAS, p53 and BRAF gene mutations and aneuploidy in sporadic colorectal cancer progression. Anal Cell Pathol. 2006;28(4):161–6.
66.
go back to reference Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65(14):6063.PubMed Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65(14):6063.PubMed
67.
go back to reference Sameer AS. Colorectal cancer: a researcher’s perspective of the molecular angel’s gone eccentric in the Vale of Kashmir. Tumor Biol. 2013;34(3):1301–15. Sameer AS. Colorectal cancer: a researcher’s perspective of the molecular angel’s gone eccentric in the Vale of Kashmir. Tumor Biol. 2013;34(3):1301–15.
69.
go back to reference Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.PubMed Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.PubMed
70.
go back to reference Carson JD, AllerG V, Lehr R, Sinnamon RH, Kirkpatrick RB, et al. Effects of oncogenic p110α subunit mutations on the lipid kinase activity of phosphoinositide 3-kinase. J Biochem. 2008;409:519–24. Carson JD, AllerG V, Lehr R, Sinnamon RH, Kirkpatrick RB, et al. Effects of oncogenic p110α subunit mutations on the lipid kinase activity of phosphoinositide 3-kinase. J Biochem. 2008;409:519–24.
71.
go back to reference Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.PubMed Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.PubMed
72.
go back to reference Gardner L, Lee L, and Dang C. The c-Myc oncogenic transcription factor. Encyclopedia of Cancer. p. 1–13. Gardner L, Lee L, and Dang C. The c-Myc oncogenic transcription factor. Encyclopedia of Cancer. p. 1–13.
73.
go back to reference De Pinho R et al. Myc family of cellular oncogenes. J Cell Biochem. 1987;33(4):257–66. De Pinho R et al. Myc family of cellular oncogenes. J Cell Biochem. 1987;33(4):257–66.
74.
go back to reference Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18(19):3004–16.PubMed Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18(19):3004–16.PubMed
75.
go back to reference Dang CV et al. The c-Myc target gene network. Semin Cancer Biol. 2006;16(4):253–64.PubMed Dang CV et al. The c-Myc target gene network. Semin Cancer Biol. 2006;16(4):253–64.PubMed
77.
go back to reference Erisman MD et al. Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol. 1985;5(8):1969–76.PubMedCentralPubMed Erisman MD et al. Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol. 1985;5(8):1969–76.PubMedCentralPubMed
78.
go back to reference Sikora K et al. c-myc oncogene expression in colorectal cancer. Cancer. 1987;59(7):1289–95.PubMed Sikora K et al. c-myc oncogene expression in colorectal cancer. Cancer. 1987;59(7):1289–95.PubMed
79.
go back to reference Monnat M et al. Prognostic implications of expression of the cellular genes myc, fos, Ha-ras and Ki-ras in colon carcinoma. Int J Cancer. 1987;40(3):293–9.PubMed Monnat M et al. Prognostic implications of expression of the cellular genes myc, fos, Ha-ras and Ki-ras in colon carcinoma. Int J Cancer. 1987;40(3):293–9.PubMed
80.
go back to reference Yokota J et al. Alterations of myc, myb, and rasHa proto-oncogenes in cancers are frequent and show clinical correlation. Science. 1986;231(4735):261–5.PubMed Yokota J et al. Alterations of myc, myb, and rasHa proto-oncogenes in cancers are frequent and show clinical correlation. Science. 1986;231(4735):261–5.PubMed
81.
go back to reference He TC et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–12.PubMed He TC et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–12.PubMed
82.
go back to reference Stewart J et al. Detection of the c-myc oncogene product in colonic polyps and carcinomas. Br J Cancer. 1986;53(1):1–6.PubMedCentralPubMed Stewart J et al. Detection of the c-myc oncogene product in colonic polyps and carcinomas. Br J Cancer. 1986;53(1):1–6.PubMedCentralPubMed
83.
go back to reference Pavelic ZP et al. High c-myc protein expression in benign colorectal lesions correlates with the degree of dysplasia. Anticancer Res. 1992;12(1):171–5.PubMed Pavelic ZP et al. High c-myc protein expression in benign colorectal lesions correlates with the degree of dysplasia. Anticancer Res. 1992;12(1):171–5.PubMed
84.
go back to reference Sundaresan V et al. Abnormal distribution of c-myc oncogene product in familial adenomatous polyposis. J Clin Pathol. 1987;40(11):1274–81.PubMedCentralPubMed Sundaresan V et al. Abnormal distribution of c-myc oncogene product in familial adenomatous polyposis. J Clin Pathol. 1987;40(11):1274–81.PubMedCentralPubMed
85.
go back to reference Rochlitz CF, Herrmann R, de Kant E. Overexpression and amplification of c-myc during progression of human colorectal cancer. Oncology. 1996;53(6):448–54.PubMed Rochlitz CF, Herrmann R, de Kant E. Overexpression and amplification of c-myc during progression of human colorectal cancer. Oncology. 1996;53(6):448–54.PubMed
86.
go back to reference Heerdt BG et al. Aggressive subtypes of human colorectal tumors frequently exhibit amplification of the c-myc gene. Oncogene. 1991;6(1):125–9.PubMed Heerdt BG et al. Aggressive subtypes of human colorectal tumors frequently exhibit amplification of the c-myc gene. Oncogene. 1991;6(1):125–9.PubMed
87.
go back to reference Alao JP. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer. 2007;6:24.PubMedCentralPubMed Alao JP. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer. 2007;6:24.PubMedCentralPubMed
88.
go back to reference Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7.PubMedCentralPubMed Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7.PubMedCentralPubMed
89.
go back to reference Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.PubMed Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.PubMed
90.
go back to reference Arber N et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology. 1996;110(3):669–74.PubMed Arber N et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology. 1996;110(3):669–74.PubMed
91.
go back to reference Mc Kay JA et al. Cyclin D1 protein expression and gene polymorphism in colorectal cancer. Aberdeen Colorectal Initiative. Int J Cancer. 2000;88(1):77–81. Mc Kay JA et al. Cyclin D1 protein expression and gene polymorphism in colorectal cancer. Aberdeen Colorectal Initiative. Int J Cancer. 2000;88(1):77–81.
92.
go back to reference Nosho K et al. Cyclin D1 is frequently overexpressed in microsatellite unstable colorectal cancer, independent of CpG island methylator phenotype. Histopathology. 2008;53(5):588–98.PubMedCentralPubMed Nosho K et al. Cyclin D1 is frequently overexpressed in microsatellite unstable colorectal cancer, independent of CpG island methylator phenotype. Histopathology. 2008;53(5):588–98.PubMedCentralPubMed
93.
go back to reference Ogino S et al. A cohort study of cyclin D1 expression and prognosis in 602 colon cancer cases. Clin Cancer Res. 2009;15(13):4431–8.PubMedCentralPubMed Ogino S et al. A cohort study of cyclin D1 expression and prognosis in 602 colon cancer cases. Clin Cancer Res. 2009;15(13):4431–8.PubMedCentralPubMed
94.
go back to reference Sameer AS, Parray FQ, Dar MA, Nissar S, Banday MZ, Rasool S, GM Gulzar, Chowdri NA and Siddiqi MA. Cyclin D1 G870A polymorphism and risk of colorectal cancer: a case control study. Mol Med Reports; 2013;7(3):811--5. Sameer AS, Parray FQ, Dar MA, Nissar S, Banday MZ, Rasool S, GM Gulzar, Chowdri NA and Siddiqi MA. Cyclin D1 G870A polymorphism and risk of colorectal cancer: a case control study. Mol Med Reports; 2013;7(3):811--5.
95.
go back to reference Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984;309(5967):418–25.PubMed Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984;309(5967):418–25.PubMed
96.
go back to reference Brand TM, Iida M, Li C, Wheeler DL. The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discovery Medicine, 2011;12(66):419--32 Brand TM, Iida M, Li C, Wheeler DL. The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discovery Medicine, 2011;12(66):419--32
97.
go back to reference Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;22:337–45. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;22:337–45.
98.
go back to reference Saltz LB, Meropol NJ, Loehrer PJ, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004;22:1201–8.PubMed Saltz LB, Meropol NJ, Loehrer PJ, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004;22:1201–8.PubMed
99.
go back to reference Goldstein NS, Armin M. Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer. 2001;92:1331–46.PubMed Goldstein NS, Armin M. Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer. 2001;92:1331–46.PubMed
100.
go back to reference Sirvent A, Benistant C, Roche S. Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer. Am J Cancer Res. 2012;2(4):357–71.PubMedCentralPubMed Sirvent A, Benistant C, Roche S. Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer. Am J Cancer Res. 2012;2(4):357–71.PubMedCentralPubMed
101.
go back to reference Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 1997;13:513–609.PubMed Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 1997;13:513–609.PubMed
102.
go back to reference Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003;22:337–58.PubMed Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003;22:337–58.PubMed
103.
go back to reference Han NM, Curley SA, Gallick GE. Differential activation of pp 60(c-src) and pp62(c-yes) in human colorectal carcinoma liver metastases. Clin Cancer Res. 1996;2:1397–404.PubMed Han NM, Curley SA, Gallick GE. Differential activation of pp 60(c-src) and pp62(c-yes) in human colorectal carcinoma liver metastases. Clin Cancer Res. 1996;2:1397–404.PubMed
104.
go back to reference Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE. Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer. 2002;94:344–51.PubMed Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE. Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer. 2002;94:344–51.PubMed
105.
go back to reference Park WS, Oh RR, Park JY, Kim PJ, Shin MS, Lee JH, et al. Nuclear localization of beta-catenin is an important prognostic factor in hepatoblastoma. J Pathol. 2001;193:483–90.PubMed Park WS, Oh RR, Park JY, Kim PJ, Shin MS, Lee JH, et al. Nuclear localization of beta-catenin is an important prognostic factor in hepatoblastoma. J Pathol. 2001;193:483–90.PubMed
106.
go back to reference Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280:596–9.PubMed Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science. 1998;280:596–9.PubMed
107.
go back to reference Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;8:573–81.PubMed Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;8:573–81.PubMed
108.
go back to reference Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998;17:1371–84.PubMedCentralPubMed Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998;17:1371–84.PubMedCentralPubMed
109.
go back to reference Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 1996;10:1443–54.PubMed Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 1996;10:1443–54.PubMed
110.
go back to reference Fevr T, Robine S, Louvard D, Huelsken J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol. 2007;27:7551–9.PubMedCentralPubMed Fevr T, Robine S, Louvard D, Huelsken J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol. 2007;27:7551–9.PubMedCentralPubMed
111.
go back to reference Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275:1787–90.PubMed Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275:1787–90.PubMed
112.
go back to reference Wagenaar RA, Crawford HC, Matrisian LM. Stabilized beta-catenin immortalizes colonic epithelial cells. Cancer Res. 2001;61:2097–104.PubMed Wagenaar RA, Crawford HC, Matrisian LM. Stabilized beta-catenin immortalizes colonic epithelial cells. Cancer Res. 2001;61:2097–104.PubMed
113.
go back to reference Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998;58:1130–4.PubMed Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998;58:1130–4.PubMed
114.
go back to reference Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.PubMed Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.PubMed
115.
116.
go back to reference Sameer AS, Shah ZA, Abdullah S, Chowdri NA, Siddiqi MA. Analysis of molecular aberrations of Wnt pathway gladiators in colorectal cancer in the Kashmiri population. Hum Genomics. 2011;5(5):441–52.PubMedCentral Sameer AS, Shah ZA, Abdullah S, Chowdri NA, Siddiqi MA. Analysis of molecular aberrations of Wnt pathway gladiators in colorectal cancer in the Kashmiri population. Hum Genomics. 2011;5(5):441–52.PubMedCentral
117.
go back to reference Payne SR, Kemp CJ. Tumor suppressor genetics. Carcinogenesis. 2005;26:2031–45.PubMed Payne SR, Kemp CJ. Tumor suppressor genetics. Carcinogenesis. 2005;26:2031–45.PubMed
118.
go back to reference Knudson AG. Hereditary cancer, oncogenes and antioncogenes. Cancer Res. 1985;45:1437–43.PubMed Knudson AG. Hereditary cancer, oncogenes and antioncogenes. Cancer Res. 1985;45:1437–43.PubMed
119.
go back to reference Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci U S A. 1993;90(109):14–21. Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci U S A. 1993;90(109):14–21.
120.
go back to reference Levitt NC, Hickson ID. Caretaker tumour suppressor genes that defend genome integrity. Trends Mol Med. 2002;8:179–86.PubMed Levitt NC, Hickson ID. Caretaker tumour suppressor genes that defend genome integrity. Trends Mol Med. 2002;8:179–86.PubMed
121.
go back to reference Goss KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol. 2000;18:1967–79.PubMed Goss KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol. 2000;18:1967–79.PubMed
122.
go back to reference Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007;17:45–51.PubMed Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007;17:45–51.PubMed
123.
go back to reference Brocardo M, Henderson S. APC shuttling to the membrane, nucleus, and beyond. Trends Cell Biol. 2009;18:587–96. Brocardo M, Henderson S. APC shuttling to the membrane, nucleus, and beyond. Trends Cell Biol. 2009;18:587–96.
124.
go back to reference Lynch HT, De La Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–32.PubMed Lynch HT, De La Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–32.PubMed
125.
go back to reference Worthley DL, Whitehall VL, Spring KJ, Leggett BA. Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol. 2007;13:3784–91.PubMed Worthley DL, Whitehall VL, Spring KJ, Leggett BA. Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol. 2007;13:3784–91.PubMed
126.
go back to reference Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249:912–25.PubMed Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249:912–25.PubMed
127.
go back to reference Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008;7:979–87.PubMed Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008;7:979–87.PubMed
128.
go back to reference Baker SJ, Fearon ER, Nigro JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989;244:217–21.PubMed Baker SJ, Fearon ER, Nigro JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989;244:217–21.PubMed
129.
go back to reference Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogenes. 2005;24:2899–908. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogenes. 2005;24:2899–908.
130.
go back to reference Hung J, Anderson R. p53: functions, mutations and sarcomas. Acta Orthop Scand Suppl. 1997;273:68–73.PubMed Hung J, Anderson R. p53: functions, mutations and sarcomas. Acta Orthop Scand Suppl. 1997;273:68–73.PubMed
131.
go back to reference Sameer AS, ul Rehman AA, Pandith AA, Syeed N, Shah ZA, Chowdhri NA, et al. Molecular gate keepers succumb to gene aberrations in colorectal cancer in Kashmiri population, revealing a high incidence area. Saudi J Gastroenterol. 2009;15(4):244–52.PubMedCentralPubMed Sameer AS, ul Rehman AA, Pandith AA, Syeed N, Shah ZA, Chowdhri NA, et al. Molecular gate keepers succumb to gene aberrations in colorectal cancer in Kashmiri population, revealing a high incidence area. Saudi J Gastroenterol. 2009;15(4):244–52.PubMedCentralPubMed
132.
go back to reference Molecular mechanisms involved in colorectal cancer initiation and progression. Oncology Programme 2007 Scientific Report, pp. 118–121. Molecular mechanisms involved in colorectal cancer initiation and progression. Oncology Programme 2007 Scientific Report, pp. 118–121.
133.
go back to reference Muñoz NM, Upton M, Rojas A, Washington MK, Lin L, Chytil A, et al. Transforming growth factor beta receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by APC mutation. Cancer Res. 2006;66(20):9837–44.PubMed Muñoz NM, Upton M, Rojas A, Washington MK, Lin L, Chytil A, et al. Transforming growth factor beta receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by APC mutation. Cancer Res. 2006;66(20):9837–44.PubMed
134.
go back to reference Massagué J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.PubMed Massagué J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.PubMed
135.
go back to reference Grady WM, Rajput A, Myeroff L, Liu DF, Kwon K, Willis J, et al. Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res. 1998;58(14):3101–4.PubMed Grady WM, Rajput A, Myeroff L, Liu DF, Kwon K, Willis J, et al. Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res. 1998;58(14):3101–4.PubMed
136.
go back to reference Samanta D, Datta PK. Alterations in the Smad pathway in human cancers. Front Biosci. 2012;17:1281–93. Samanta D, Datta PK. Alterations in the Smad pathway in human cancers. Front Biosci. 2012;17:1281–93.
137.
go back to reference Engel ME, Datta PK, Moses HL. Signal transduction by transforming growth factor-beta: a cooperative paradigm with extensive negative regulation. J Cell Biochem Suppl. 1998;30–31:111–22.PubMed Engel ME, Datta PK, Moses HL. Signal transduction by transforming growth factor-beta: a cooperative paradigm with extensive negative regulation. J Cell Biochem Suppl. 1998;30–31:111–22.PubMed
138.
go back to reference Zhang B, Halder SK, Kashikar ND, Cho YJ, Datta A, Gorden DL, et al. Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology. 2010;138(3):969–80.PubMedCentralPubMed Zhang B, Halder SK, Kashikar ND, Cho YJ, Datta A, Gorden DL, et al. Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology. 2010;138(3):969–80.PubMedCentralPubMed
139.
go back to reference Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Jarvinen H, Mecklin JP, et al. SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res. 2005;11:2606–11.PubMed Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Jarvinen H, Mecklin JP, et al. SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res. 2005;11:2606–11.PubMed
140.
go back to reference Sameer AS, Chowdri NA, Syeed N, Banday MZ, Shah ZA, Siddiqi MA. SMAD4—molecular gladiator of the TGF-beta signaling is trampled upon by mutational insufficiency in colorectal carcinoma of Kashmiri population: an analysis with relation to KRAS proto-oncogene. BMC Cancer. 2010;10:300.PubMedCentralPubMed Sameer AS, Chowdri NA, Syeed N, Banday MZ, Shah ZA, Siddiqi MA. SMAD4—molecular gladiator of the TGF-beta signaling is trampled upon by mutational insufficiency in colorectal carcinoma of Kashmiri population: an analysis with relation to KRAS proto-oncogene. BMC Cancer. 2010;10:300.PubMedCentralPubMed
141.
go back to reference Morán A, Ortega P, de Juan C, Fernández-Marcelo T, Frías C, Sánchez-Pernaute A, et al. Differential colorectal carcinogenesis: molecular basis and clinical relevance. World J Gastrointest Oncol. 2010;2(3):151–8.PubMedCentralPubMed Morán A, Ortega P, de Juan C, Fernández-Marcelo T, Frías C, Sánchez-Pernaute A, et al. Differential colorectal carcinogenesis: molecular basis and clinical relevance. World J Gastrointest Oncol. 2010;2(3):151–8.PubMedCentralPubMed
142.
go back to reference Akkiprik M, Ataizi-Çelikel Ç, Düşünceli F, Sönmez Ö, Güllüoglu BM, Sav A, et al. Clinical significance of p53 K-ras and DCC gene alterations in the stage I–II colorectal cancers. J Gastrointest Liver Dis. 2007;16:11–7. Akkiprik M, Ataizi-Çelikel Ç, Düşünceli F, Sönmez Ö, Güllüoglu BM, Sav A, et al. Clinical significance of p53 K-ras and DCC gene alterations in the stage I–II colorectal cancers. J Gastrointest Liver Dis. 2007;16:11–7.
143.
go back to reference Itoh F, Hinoda Y, Ohe M, et al. Decreased expression of DCC mRNA in human colorectal cancers. Int J Cancer. 1993;53:260–3.PubMed Itoh F, Hinoda Y, Ohe M, et al. Decreased expression of DCC mRNA in human colorectal cancers. Int J Cancer. 1993;53:260–3.PubMed
144.
go back to reference Iino H, Fukayama M, Maeda Y, et al. Molecular genetics for clinical management of colorectal carcinoma. Cancer. 1994;73:1324–31.PubMed Iino H, Fukayama M, Maeda Y, et al. Molecular genetics for clinical management of colorectal carcinoma. Cancer. 1994;73:1324–31.PubMed
145.
go back to reference Saito M, Yamaguchi A, Goi T, et al. Expression of DCC protein in colorectal tumors and its relationship to tumor progression and metastasis. Oncology. 1999;56:134–41.PubMed Saito M, Yamaguchi A, Goi T, et al. Expression of DCC protein in colorectal tumors and its relationship to tumor progression and metastasis. Oncology. 1999;56:134–41.PubMed
146.
go back to reference Gotley DC, Reeder JA, Fawcett J, et al. The deleted in colon cancer (DCC) gene is consistently expressed in colorectal cancers and metastases. Oncogene. 1996;13:787–95.PubMed Gotley DC, Reeder JA, Fawcett J, et al. The deleted in colon cancer (DCC) gene is consistently expressed in colorectal cancers and metastases. Oncogene. 1996;13:787–95.PubMed
147.
go back to reference Tanaka K, Oshimura M, Kikuchi R, Seki M, Hayashi T, Miyaki M. Suppression of tumourigenicity in human colon carcinoma cells by introduction of normal chromosome 5 or 18. Nature. 1991;349:340–2.PubMed Tanaka K, Oshimura M, Kikuchi R, Seki M, Hayashi T, Miyaki M. Suppression of tumourigenicity in human colon carcinoma cells by introduction of normal chromosome 5 or 18. Nature. 1991;349:340–2.PubMed
148.
go back to reference Kathleen RC, Jonathan DO, Jonathan WS, Lora H, Eric RF, Antonette CP, et al. The DCC gene: structural analysis and mutations in colorectal carcinoma. Genomics. 1994;19:525–31. Kathleen RC, Jonathan DO, Jonathan WS, Lora H, Eric RF, Antonette CP, et al. The DCC gene: structural analysis and mutations in colorectal carcinoma. Genomics. 1994;19:525–31.
149.
go back to reference Christelle F, Xin Y, Laure G, Ve'ronique C, Hwain S, Dale EB, et al. The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. PNAS. 2001;98:3416–21. Christelle F, Xin Y, Laure G, Ve'ronique C, Hwain S, Dale EB, et al. The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. PNAS. 2001;98:3416–21.
150.
go back to reference Adrienne VD, Joseph S, Ellen F, Molly DS. The Drosophila netrin receptor frazzled/DCC functions as an invasive tumor suppressor. BMC Dev Biol. 2011;11:41. Adrienne VD, Joseph S, Ellen F, Molly DS. The Drosophila netrin receptor frazzled/DCC functions as an invasive tumor suppressor. BMC Dev Biol. 2011;11:41.
151.
go back to reference Meimei L, Peiling L, Baoxin L, Changmin L, Rujin Z, Chunjie H. Lost expression of DCC gene in ovarian cancer and its inhibition in ovarian cancer cells. Med. Oncol. 2011;28(1):282–9. Meimei L, Peiling L, Baoxin L, Changmin L, Rujin Z, Chunjie H. Lost expression of DCC gene in ovarian cancer and its inhibition in ovarian cancer cells. Med. Oncol. 2011;28(1):282–9.
152.
go back to reference Mustafa A, Çigdem A, Fikret D, Özgür S, Bahadýr MG, Aydin S, et al. Clinical significance of p53, K-ras and DCC gene alterations in the stage I–II colorectal cancers. J Gastrointest Liver Dis. 2007;16:11–7. Mustafa A, Çigdem A, Fikret D, Özgür S, Bahadýr MG, Aydin S, et al. Clinical significance of p53, K-ras and DCC gene alterations in the stage I–II colorectal cancers. J Gastrointest Liver Dis. 2007;16:11–7.
153.
go back to reference Shekarabi M, Kennedy TE. The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol Cell Neurosci. 2002;19:1–17.PubMed Shekarabi M, Kennedy TE. The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol Cell Neurosci. 2002;19:1–17.PubMed
154.
go back to reference Khan NP, Pandith AA, Hussain MU, Yousuf A, Khan MS, Siddiqi MA, et al. Loss of heterozygosity (LOH) of deleted in colorectal cancer (DCC) gene and predisposition to colorectal cancer: significant association in colorectal cancer patients of Kashmir. J Cancer Res Exp Oncol. 2011;3(8):88–94. Khan NP, Pandith AA, Hussain MU, Yousuf A, Khan MS, Siddiqi MA, et al. Loss of heterozygosity (LOH) of deleted in colorectal cancer (DCC) gene and predisposition to colorectal cancer: significant association in colorectal cancer patients of Kashmir. J Cancer Res Exp Oncol. 2011;3(8):88–94.
155.
go back to reference Naguib A, Cooke JC, Happerfield L, Kerr L, Gay LJ, Luben RN, et al. Alterations in PTEN and PIK3CA in colorectal cancers in the EPIC Norfolk Study: associations with clinicopathological and dietary factors. BMC Cancer. 2011;11:123.PubMedCentralPubMed Naguib A, Cooke JC, Happerfield L, Kerr L, Gay LJ, Luben RN, et al. Alterations in PTEN and PIK3CA in colorectal cancers in the EPIC Norfolk Study: associations with clinicopathological and dietary factors. BMC Cancer. 2011;11:123.PubMedCentralPubMed
156.
go back to reference Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.PubMed Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.PubMed
157.
go back to reference Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15:356–62.PubMed Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15:356–62.PubMed
158.
go back to reference Li DM, Sun H. TEP1 encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor β. Cancer Res. 1997;57:2124–9.PubMed Li DM, Sun H. TEP1 encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor β. Cancer Res. 1997;57:2124–9.PubMed
159.
go back to reference Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16:64–7.PubMed Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16:64–7.PubMed
160.
go back to reference Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ, et al. Germline mutations in PTEN are present in Bannayan–Zonana syndrome. Nat Genet. 1997;16:333–4.PubMed Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ, et al. Germline mutations in PTEN are present in Bannayan–Zonana syndrome. Nat Genet. 1997;16:333–4.PubMed
161.
go back to reference Chang JG, Chen YJ, Perng LI, Wang NM, Kao MC, Yang TY, et al. Mutation analysis of the PTEN/MMAC1 gene in cancers of the digestive tract. Eur J Cancer. 1999;35(4):647–51.PubMed Chang JG, Chen YJ, Perng LI, Wang NM, Kao MC, Yang TY, et al. Mutation analysis of the PTEN/MMAC1 gene in cancers of the digestive tract. Eur J Cancer. 1999;35(4):647–51.PubMed
162.
go back to reference Danielsen SA, Lind GE, Bjornslett M, Meling GI, Rognum TO, Heim S, Lothe RA: Novel mutations of the suppressor gene PTEN in colorectal carcinomas stratified by microsatellite instability- and TP53 mutation status. Hum Mutat. 2008;29(11):E252--62. Danielsen SA, Lind GE, Bjornslett M, Meling GI, Rognum TO, Heim S, Lothe RA: Novel mutations of the suppressor gene PTEN in colorectal carcinomas stratified by microsatellite instability- and TP53 mutation status. Hum Mutat. 2008;29(11):E252--62.
163.
go back to reference Dicuonzo G, Angeletti S, Garcia-Foncillas J, Brugarolas A, Okrouzhnov Y, Santini D, et al. Colorectal carcinomas and PTEN/MMAC1 gene mutations. Clin Cancer Res. 2001;7(12):4049–53.PubMed Dicuonzo G, Angeletti S, Garcia-Foncillas J, Brugarolas A, Okrouzhnov Y, Santini D, et al. Colorectal carcinomas and PTEN/MMAC1 gene mutations. Clin Cancer Res. 2001;7(12):4049–53.PubMed
164.
go back to reference Goel A, Arnold CN, Niedzwiecki D, Carethers JM, Dowell JM, Wasserman L, et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res. 2004;64(9):3014–21.PubMed Goel A, Arnold CN, Niedzwiecki D, Carethers JM, Dowell JM, Wasserman L, et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res. 2004;64(9):3014–21.PubMed
165.
go back to reference Nassif NT, Lobo GP, Wu X, Henderson CJ, Morrison CD, Eng C, et al. PTEN mutations are common in sporadic microsatellite stable colorectal cancer. Oncogene. 2004;23(2):617–28.PubMed Nassif NT, Lobo GP, Wu X, Henderson CJ, Morrison CD, Eng C, et al. PTEN mutations are common in sporadic microsatellite stable colorectal cancer. Oncogene. 2004;23(2):617–28.PubMed
166.
go back to reference Wang ZJ, Taylor F, Churchman M, Norbury G, Tomlinson I. Genetic pathways of colorectal carcinogenesis rarely involve the PTEN and LKB1 genes outside the inherited hamartoma syndromes. Am J Pathol. 1998;153(2):363–6.PubMedCentralPubMed Wang ZJ, Taylor F, Churchman M, Norbury G, Tomlinson I. Genetic pathways of colorectal carcinogenesis rarely involve the PTEN and LKB1 genes outside the inherited hamartoma syndromes. Am J Pathol. 1998;153(2):363–6.PubMedCentralPubMed
167.
go back to reference Guanti G, Resta N, Simone C, Cariola F, Demma I, Fiorente P, et al. Involvement of PTEN mutations in the genetic pathways of colorectal cancerogenesis. Hum Mol Genet. 2000;9(2):283–7.PubMed Guanti G, Resta N, Simone C, Cariola F, Demma I, Fiorente P, et al. Involvement of PTEN mutations in the genetic pathways of colorectal cancerogenesis. Hum Mol Genet. 2000;9(2):283–7.PubMed
168.
go back to reference Zhou XP, Loukola A, Salovaara R, Nystrom-Lahti M, Peltomaki P, de la Chapelle A, et al. PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers. Am J Pathol. 2002;161(2):439–47.PubMedCentralPubMed Zhou XP, Loukola A, Salovaara R, Nystrom-Lahti M, Peltomaki P, de la Chapelle A, et al. PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers. Am J Pathol. 2002;161(2):439–47.PubMedCentralPubMed
170.
go back to reference Chiou SK, Jones MK, Tarnawski AS. Survivin—an anti-apoptosis protein: its biological roles and implications for cancer and beyond. Med Sci Monit. 2003;9(4):143–7. Chiou SK, Jones MK, Tarnawski AS. Survivin—an anti-apoptosis protein: its biological roles and implications for cancer and beyond. Med Sci Monit. 2003;9(4):143–7.
171.
go back to reference Miller L. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 1999;9:323–8.PubMed Miller L. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 1999;9:323–8.PubMed
172.
go back to reference O’Connor DS, Grossman D, Plescia J, et al. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A. 2000;97:13103–7.PubMedCentralPubMed O’Connor DS, Grossman D, Plescia J, et al. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A. 2000;97:13103–7.PubMedCentralPubMed
173.
go back to reference Ikeguchi M, Yamaguchi K, Kaibara N. Survivin gene expression positively correlates with proliferative activity of cancer cells in esophageal cancer. Tumour Biol. 2003;24:40–5.PubMed Ikeguchi M, Yamaguchi K, Kaibara N. Survivin gene expression positively correlates with proliferative activity of cancer cells in esophageal cancer. Tumour Biol. 2003;24:40–5.PubMed
174.
go back to reference Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases and anticancer drugs. Cancer Res. 1998;58:15–20. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases and anticancer drugs. Cancer Res. 1998;58:15–20.
175.
go back to reference Kawasaki H, Toyoda M, Shinohara H, et al. Expression of surviving correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer. 2001;91:2026–32.PubMed Kawasaki H, Toyoda M, Shinohara H, et al. Expression of surviving correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer. 2001;91:2026–32.PubMed
176.
go back to reference Gianani R, Jarboe E, Orlicky D, et al. Expression of survivin in normal, hyperplastic, and neoplastic colonic mucosa. Hum Pathol. 2001;32:119–25.PubMed Gianani R, Jarboe E, Orlicky D, et al. Expression of survivin in normal, hyperplastic, and neoplastic colonic mucosa. Hum Pathol. 2001;32:119–25.PubMed
177.
go back to reference Hernandez JM, Farma JM, Coppola D, Hakam A, Fulp WJ, Chen DT, et al. Expression of the antiapoptotic protein survivin in colon cancer. Clin Colorectal Cancer. 2011;10:188–93.PubMed Hernandez JM, Farma JM, Coppola D, Hakam A, Fulp WJ, Chen DT, et al. Expression of the antiapoptotic protein survivin in colon cancer. Clin Colorectal Cancer. 2011;10:188–93.PubMed
178.
go back to reference Ofner D, Riehemann K, Maier H, Reidmann B, Nehoda H, Totsch M, et al. Immunohistochemically detectable Bcl-2 expression in colorectal carcinoma: correlation with tumor stage and patient survival. Br J Cancer. 1995;72:981–5.PubMedCentralPubMed Ofner D, Riehemann K, Maier H, Reidmann B, Nehoda H, Totsch M, et al. Immunohistochemically detectable Bcl-2 expression in colorectal carcinoma: correlation with tumor stage and patient survival. Br J Cancer. 1995;72:981–5.PubMedCentralPubMed
179.
go back to reference Baretton GB, Diebold G, Christoforis G, Vogt M, Muller C, Dopfer K, et al. Apoptosis and immunohistochemical bcl-2 expression in colorectal adenomas and carcinomas. Cancer (Phila). 1996;77:255–64. Baretton GB, Diebold G, Christoforis G, Vogt M, Muller C, Dopfer K, et al. Apoptosis and immunohistochemical bcl-2 expression in colorectal adenomas and carcinomas. Cancer (Phila). 1996;77:255–64.
180.
go back to reference Sinicrope FA, Hart J, Michelassi F, Lee JJ. Prognostic value of bcl-2 oncoprotein expression in stage II colon carcinoma. Clin Cancer Res. 1995;1:1103–10.PubMed Sinicrope FA, Hart J, Michelassi F, Lee JJ. Prognostic value of bcl-2 oncoprotein expression in stage II colon carcinoma. Clin Cancer Res. 1995;1:1103–10.PubMed
181.
go back to reference Srivastava S, Verma M, Henson DE. Biomarkers for early detection of colon cancer. Clin Cancer Res. 2001;7:11–8. Srivastava S, Verma M, Henson DE. Biomarkers for early detection of colon cancer. Clin Cancer Res. 2001;7:11–8.
182.
go back to reference Pritchard DM, Potten CS, Korsmeyer SJ, et al. Damage-induced apoptosis in intestinal epithelia from bcl-2-null and bax-null mice: investigations of the mechanistic determinants of epithelial apoptosis in vivo. Oncogene. 1999;18:7287–93.PubMed Pritchard DM, Potten CS, Korsmeyer SJ, et al. Damage-induced apoptosis in intestinal epithelia from bcl-2-null and bax-null mice: investigations of the mechanistic determinants of epithelial apoptosis in vivo. Oncogene. 1999;18:7287–93.PubMed
183.
go back to reference Pritchard DM, Print C, O’Reilly L, et al. Bcl-w is an important determinant of damage-induced apoptosis in epithelia of small and large intestine. Oncogene. 2000;19(34):3955–9.PubMed Pritchard DM, Print C, O’Reilly L, et al. Bcl-w is an important determinant of damage-induced apoptosis in epithelia of small and large intestine. Oncogene. 2000;19(34):3955–9.PubMed
184.
go back to reference Pathan N, Marusawa H, Krajewska M, et al. TUCAN, an antiapoptotic caspase-associated recruitment domain family protein overexpressed in cancer. JBC. 2001;276:32220–9. Pathan N, Marusawa H, Krajewska M, et al. TUCAN, an antiapoptotic caspase-associated recruitment domain family protein overexpressed in cancer. JBC. 2001;276:32220–9.
185.
go back to reference Poirier MC, Santella RM, Weston A. Carcinogen macromolecular adducts and their measurement. Carcinogenesis. 2000;21:353–9.PubMed Poirier MC, Santella RM, Weston A. Carcinogen macromolecular adducts and their measurement. Carcinogenesis. 2000;21:353–9.PubMed
186.
go back to reference Kawajiri K, Nakachi K, Imai K, Watanabe J, Hayashi S. Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer. Carcinogenesis. 1993;14:1085–9.PubMed Kawajiri K, Nakachi K, Imai K, Watanabe J, Hayashi S. Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer. Carcinogenesis. 1993;14:1085–9.PubMed
187.
go back to reference Bozina N, Bradamante V, Lovric M. Genetic polymorphisms of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity and cancer risk. Arh Hig Rada Toksikol. 2009;60:217–42.PubMed Bozina N, Bradamante V, Lovric M. Genetic polymorphisms of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity and cancer risk. Arh Hig Rada Toksikol. 2009;60:217–42.PubMed
188.
go back to reference Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, et al. Environmental and heritable factors in the causation of cancer analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.PubMed Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, et al. Environmental and heritable factors in the causation of cancer analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.PubMed
189.
go back to reference Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Sebille V, Colman H, et al. Combinations of cytochrome P450 gene polymorphisms enhancing the risk for sporadic colorectal cancer related to red meat consumption. Cancer Epidemiol Biomarkers Prev. 2007;16:1460–7.PubMed Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Sebille V, Colman H, et al. Combinations of cytochrome P450 gene polymorphisms enhancing the risk for sporadic colorectal cancer related to red meat consumption. Cancer Epidemiol Biomarkers Prev. 2007;16:1460–7.PubMed
190.
go back to reference Cotterchio M et al. Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2008;17:3098–107.PubMedCentralPubMed Cotterchio M et al. Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2008;17:3098–107.PubMedCentralPubMed
191.
go back to reference Bethke L et al. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk. BMC Cancer. 2007;7:123.PubMedCentralPubMed Bethke L et al. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk. BMC Cancer. 2007;7:123.PubMedCentralPubMed
192.
go back to reference Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK. Carcinogenesis. 1993;14:1821–4.PubMed Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK. Carcinogenesis. 1993;14:1821–4.PubMed
193.
go back to reference Brockmoller J, Kerb R, Drakoulis N, Staffeldt B, Roots I. Cancer Res. 1994;54:4103–11.PubMed Brockmoller J, Kerb R, Drakoulis N, Staffeldt B, Roots I. Cancer Res. 1994;54:4103–11.PubMed
194.
go back to reference Seidegård J, Pero RW, Markowitz MM, Roush G, Miller DG, Beattie EJ. Carcinogenesis. 1990;11:33–6.PubMed Seidegård J, Pero RW, Markowitz MM, Roush G, Miller DG, Beattie EJ. Carcinogenesis. 1990;11:33–6.PubMed
195.
go back to reference Kodate C, Fukushi A, Narita T, Kudo H, Soma Y, Sato K. Jpn J Cancer Res. 1988;77:226–9. Kodate C, Fukushi A, Narita T, Kudo H, Soma Y, Sato K. Jpn J Cancer Res. 1988;77:226–9.
196.
go back to reference Zhao ZQ, Guan QK, Yang FY, Zhao P, Zhou B, Chen ZJ. System review and meta-analysis of the relationships between five metabolic gene polymorphisms and colorectal adenoma risk. Tumour Biol. 2012;33(2):523–35.PubMed Zhao ZQ, Guan QK, Yang FY, Zhao P, Zhou B, Chen ZJ. System review and meta-analysis of the relationships between five metabolic gene polymorphisms and colorectal adenoma risk. Tumour Biol. 2012;33(2):523–35.PubMed
197.
go back to reference Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ, et al. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis. 1993;14:1633.PubMed Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ, et al. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis. 1993;14:1633.PubMed
198.
go back to reference Ilett KF, David BM, Detchon P, Castleden WM, Kwa R. Acetylation phenotype in colorectal carcinoma. Cancer Res. 1987;47:1466.PubMed Ilett KF, David BM, Detchon P, Castleden WM, Kwa R. Acetylation phenotype in colorectal carcinoma. Cancer Res. 1987;47:1466.PubMed
199.
go back to reference Sameer AS, Nissar S, Qadri Q, Alam S, Baba SM, Siddiqi MA. Role of CYP2E1 genotypes in susceptibility to colorectal cancer in Kashmiri population. Hum Genomics. 2011;5(6):530–7.PubMedCentralPubMed Sameer AS, Nissar S, Qadri Q, Alam S, Baba SM, Siddiqi MA. Role of CYP2E1 genotypes in susceptibility to colorectal cancer in Kashmiri population. Hum Genomics. 2011;5(6):530–7.PubMedCentralPubMed
200.
go back to reference Sameer AS, Qadri A, Siddiqi MA. GSTP1 I105V polymorphism and susceptibility to colorectal cancer in Kashmiri population. DNA Cell Biol. 2012;31(1):74–9.PubMed Sameer AS, Qadri A, Siddiqi MA. GSTP1 I105V polymorphism and susceptibility to colorectal cancer in Kashmiri population. DNA Cell Biol. 2012;31(1):74–9.PubMed
201.
go back to reference Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willett WC. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann Intern Med. 1994;121:241–6.PubMed Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willett WC. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann Intern Med. 1994;121:241–6.PubMed
202.
go back to reference Williams CS, Mann M, DuBios RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18:7908–16.PubMed Williams CS, Mann M, DuBios RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18:7908–16.PubMed
203.
go back to reference Egil F. Biochemistry of cyclooxygenase (COX-2) inhibitors and molecular pathology of COX-2 in neoplasia. Crit Rev Clin Lab Sci. 2000;37:431–502. Egil F. Biochemistry of cyclooxygenase (COX-2) inhibitors and molecular pathology of COX-2 in neoplasia. Crit Rev Clin Lab Sci. 2000;37:431–502.
204.
go back to reference Subbaramaiah K, Dannenberg AJ. Cyclooxygenase2: a molecular target for cancer prevention and, treatment. Trends Pharmacol Sci. 2003;24:96–102.PubMed Subbaramaiah K, Dannenberg AJ. Cyclooxygenase2: a molecular target for cancer prevention and, treatment. Trends Pharmacol Sci. 2003;24:96–102.PubMed
205.
go back to reference Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase-2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–8.PubMed Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase-2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–8.PubMed
206.
go back to reference Gupta RA, DuBois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001;1:11–21.PubMed Gupta RA, DuBois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001;1:11–21.PubMed
207.
go back to reference Marnett LJ, DuBois RN. COX-2: a target for colon cancer prevention. Annu Rev Pharmacol Toxicol. 2002;42:55–80.PubMed Marnett LJ, DuBois RN. COX-2: a target for colon cancer prevention. Annu Rev Pharmacol Toxicol. 2002;42:55–80.PubMed
208.
go back to reference Ogino S, Kirkner GJ, Nosho K, Irahara N, Kure S, Shima K, et al. Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin Cancer Res. 2008;14:8221–7.PubMedCentralPubMed Ogino S, Kirkner GJ, Nosho K, Irahara N, Kure S, Shima K, et al. Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin Cancer Res. 2008;14:8221–7.PubMedCentralPubMed
209.
go back to reference Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87:803–9.PubMed Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87:803–9.PubMed
210.
211.
go back to reference Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P, et al. Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem. 2002;277:27613–21.PubMed Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P, et al. Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem. 2002;277:27613–21.PubMed
212.
go back to reference Chen WS, Liu JH, Wei SJ, Liu JM, Hong CY, Yang WK. Colon cancer cells with high invasive potential are susceptible to induction of apoptosis by a selective COX-2 inhibitor. Cancer Sci. 2003;94:253–8.PubMed Chen WS, Liu JH, Wei SJ, Liu JM, Hong CY, Yang WK. Colon cancer cells with high invasive potential are susceptible to induction of apoptosis by a selective COX-2 inhibitor. Cancer Sci. 2003;94:253–8.PubMed
213.
go back to reference Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med. 2006;355:873–84.PubMed Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med. 2006;355:873–84.PubMed
214.
go back to reference Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med. 2003;348:883–90.PubMed Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med. 2003;348:883–90.PubMed
216.
go back to reference Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006;203:941–51.PubMedCentralPubMed Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006;203:941–51.PubMedCentralPubMed
217.
go back to reference Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin–beta-catenin signaling axis. Science. 2005;310:1504–10.PubMed Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin–beta-catenin signaling axis. Science. 2005;310:1504–10.PubMed
218.
go back to reference Wu AW, Gu J, Ji JF, Li ZF, Xu GW. Role of COX-2 in carcinogenesis of colorectal cancer and its relationship with tumor biological characteristics and patients prognosis. World J Gastroenterol. 2003;9(9):1990–4.PubMed Wu AW, Gu J, Ji JF, Li ZF, Xu GW. Role of COX-2 in carcinogenesis of colorectal cancer and its relationship with tumor biological characteristics and patients prognosis. World J Gastroenterol. 2003;9(9):1990–4.PubMed
219.
go back to reference Müller-Decker K, Fürstenberger G. The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Mol Carcinog. 2007;46:705–10.PubMed Müller-Decker K, Fürstenberger G. The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Mol Carcinog. 2007;46:705–10.PubMed
220.
go back to reference The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.
221.
go back to reference Kim TM, Lee SH, Chung YJ. Clinical applications of next-generation sequencing in colorectal cancers. World J Gastroenterol. 2013;19(40):6784–93.PubMedCentralPubMed Kim TM, Lee SH, Chung YJ. Clinical applications of next-generation sequencing in colorectal cancers. World J Gastroenterol. 2013;19(40):6784–93.PubMedCentralPubMed
222.
go back to reference Biancolella M, K Fortini B, Tring S, Plummer SJ, Mendoza-Fandino GA, et al. Identification and characterization of functional risk variants for colorectal cancer mapping to chromosome 11q23.1. Hum Mol Genet. 2013; doi:10.1093/hmg/ddt584. Biancolella M, K Fortini B, Tring S, Plummer SJ, Mendoza-Fandino GA, et al. Identification and characterization of functional risk variants for colorectal cancer mapping to chromosome 11q23.1. Hum Mol Genet. 2013; doi:10.​1093/​hmg/​ddt584.
223.
go back to reference Javid G, Zargar SA, Rather S, Khan AR, Khan BA, Yattoo GN, et al. Incidence of colorectal cancer in Kashmir Valley, India. Indian J Gastroenterol. 2011;30(1):7–11.PubMed Javid G, Zargar SA, Rather S, Khan AR, Khan BA, Yattoo GN, et al. Incidence of colorectal cancer in Kashmir Valley, India. Indian J Gastroenterol. 2011;30(1):7–11.PubMed
224.
go back to reference Fernandez-Rozadilla C, Cazier JB, Tomlinson I, Brea-Fernández A, Lamas MJ, et al. The EPICOLON Consortium, Hemminki K, Bessa X, Andreu M, Jover R, Xicola R, Llor X, Moreno V, Castells A, Castellví-Bel S, Carracedo A, Ruiz-Ponte C. A genome-wide association study on copy-number variation identifies a 11q11 loss as a candidate susceptibility variant for colorectal cancer. Hum Genet. 2013; doi:10.1007/s00439-013-1390-4 Fernandez-Rozadilla C, Cazier JB, Tomlinson I, Brea-Fernández A, Lamas MJ, et al. The EPICOLON Consortium, Hemminki K, Bessa X, Andreu M, Jover R, Xicola R, Llor X, Moreno V, Castells A, Castellví-Bel S, Carracedo A, Ruiz-Ponte C. A genome-wide association study on copy-number variation identifies a 11q11 loss as a candidate susceptibility variant for colorectal cancer. Hum Genet. 2013; doi:10.​1007/​s00439-013-1390-4
225.
go back to reference Rasool S, Kadla SA, Khan T, Qazi F, Shah NA, Basu J, et al. Association of a VDR gene polymorphism with risk of colorectal cancer in Kashmir. Asian Pac J Cancer Prev. 2013;14:5833–7.PubMed Rasool S, Kadla SA, Khan T, Qazi F, Shah NA, Basu J, et al. Association of a VDR gene polymorphism with risk of colorectal cancer in Kashmir. Asian Pac J Cancer Prev. 2013;14:5833–7.PubMed
226.
go back to reference Malik MA, Gupta A, Zargar SA, Mittal B. Role of genetic variants of deleted in colorectal carcinoma (DCC) polymorphisms and esophageal and gastric cancers risk in Kashmir Valley and meta-analysis. Tumour Biol. 2013;34:3049–57.PubMed Malik MA, Gupta A, Zargar SA, Mittal B. Role of genetic variants of deleted in colorectal carcinoma (DCC) polymorphisms and esophageal and gastric cancers risk in Kashmir Valley and meta-analysis. Tumour Biol. 2013;34:3049–57.PubMed
227.
go back to reference Nissar S, Lone TA, Banday MZ, Rasool R, Chowdri NA, Parray FQ, et al. Arg399Gln polymorphism of XRCC1 gene and risk of colorectal cancer in Kashmir: a case control study. Oncol Lett. 2013;5:959–63.PubMedCentralPubMed Nissar S, Lone TA, Banday MZ, Rasool R, Chowdri NA, Parray FQ, et al. Arg399Gln polymorphism of XRCC1 gene and risk of colorectal cancer in Kashmir: a case control study. Oncol Lett. 2013;5:959–63.PubMedCentralPubMed
228.
go back to reference Wani HA, Beigh MA, Amin S, Bhat AA, Bhat S, Khan H, et al. Methylation profile of promoter region of p16 gene in colorectal cancer patients of Kashmir Valley. J Biol Regul Homeost Agents. 2013;27(2):297–307.PubMed Wani HA, Beigh MA, Amin S, Bhat AA, Bhat S, Khan H, et al. Methylation profile of promoter region of p16 gene in colorectal cancer patients of Kashmir Valley. J Biol Regul Homeost Agents. 2013;27(2):297–307.PubMed
229.
go back to reference Khan NP, Pandith AA, Yousuf A, Khan NS, Khan MS, Bhat IA, et al. The XRCC1 Arg399Gln gene polymorphism and risk of colorectal cancer: a study in Kashmir. Asian Pac J Cancer Prev. 2013;14(11):6779–82.PubMed Khan NP, Pandith AA, Yousuf A, Khan NS, Khan MS, Bhat IA, et al. The XRCC1 Arg399Gln gene polymorphism and risk of colorectal cancer: a study in Kashmir. Asian Pac J Cancer Prev. 2013;14(11):6779–82.PubMed
230.
go back to reference Wani M, Afroze D, Makhdoomi M, Hamid I, Wani B, Bhat G, et al. Promoter methylation status of DNA repair gene (hMLH1) in gastric carcinoma patients of the Kashmir Valley. Asian Pac J Cancer Prev. 2012;13(8):4177–81.PubMed Wani M, Afroze D, Makhdoomi M, Hamid I, Wani B, Bhat G, et al. Promoter methylation status of DNA repair gene (hMLH1) in gastric carcinoma patients of the Kashmir Valley. Asian Pac J Cancer Prev. 2012;13(8):4177–81.PubMed
231.
go back to reference Shah MA, Shaff SM, Lone GN, Jan SM. Lack of influence of MGMT codon Leu84Phe and codon Ileu143Val polymorphisms on esophageal cancer risk in the Kashmir Valley. Asian Pac J Cancer Prev. 2012;13(7):3047–52.PubMed Shah MA, Shaff SM, Lone GN, Jan SM. Lack of influence of MGMT codon Leu84Phe and codon Ileu143Val polymorphisms on esophageal cancer risk in the Kashmir Valley. Asian Pac J Cancer Prev. 2012;13(7):3047–52.PubMed
232.
go back to reference Shafia S, Qasim I, Aziz SA, Bhat IA, Nisar S, Shah ZA. Role of vitamin D receptor (VDR) polymorphisms in susceptibility to multiple myeloma in ethnic Kashmiri population. Blood Cells Mol Dis. 2013;51(1):56–60.PubMed Shafia S, Qasim I, Aziz SA, Bhat IA, Nisar S, Shah ZA. Role of vitamin D receptor (VDR) polymorphisms in susceptibility to multiple myeloma in ethnic Kashmiri population. Blood Cells Mol Dis. 2013;51(1):56–60.PubMed
Metadata
Title
Genetic unraveling of colorectal cancer
Authors
Sabha Rasool
Vamiq Rasool
Tahira Naqvi
Bashir A. Ganai
Bhahwal Ali Shah
Publication date
01-06-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-1713-7

Other articles of this Issue 6/2014

Tumor Biology 6/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine