Skip to main content
Top
Published in: Tumor Biology 5/2014

01-05-2014 | Review

Development of anticancer drugs based on the hallmarks of tumor cells

Authors: Natalia Bailón-Moscoso, Juan Carlos Romero-Benavides, Patricia Ostrosky-Wegman

Published in: Tumor Biology | Issue 5/2014

Login to get access

Abstract

Cancer remains a public health problem with a high unmet medical demand. However, in recent decades, the knowledge of several functional molecular and biological traits that distinguish tumor cells from normal cells, known as the hallmarks of cancer as described by Hannahan and Weinberg, has led to new and modern therapeutic approaches against this disease. Most cancer drugs are deliberately developed for specific molecular targets that involve these hallmarks. In this review, we address the currently available cancer drugs and development of new drugs from the perspective of their interaction with these hallmarks as well as the pathways and mechanisms involved.
Literature
1.
go back to reference Collins I, Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol. 2006;2:689–700.PubMedCrossRef Collins I, Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol. 2006;2:689–700.PubMedCrossRef
4.
5.
go back to reference J.A. Engelman. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Cancer. 9 (2009). J.A. Engelman. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Cancer. 9 (2009).
6.
go back to reference Nardella C, Carracedo A, Alimonti A, Hobbs RM, Clohessy JG, Chen Z, et al. Differential requirement of mTOR in postmitotic tissues and tumorigenesis. Sci Signal. 2009;2:ra2.PubMedPubMedCentralCrossRef Nardella C, Carracedo A, Alimonti A, Hobbs RM, Clohessy JG, Chen Z, et al. Differential requirement of mTOR in postmitotic tissues and tumorigenesis. Sci Signal. 2009;2:ra2.PubMedPubMedCentralCrossRef
7.
go back to reference Maira S-M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7:1851–63.PubMedCrossRef Maira S-M, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7:1851–63.PubMedCrossRef
8.
go back to reference Zaytseva YY, Valentino JD, Gulhati P, Evers BM. mTOR inhibitors in cancer therapy. Cancer Lett. 2012;319:1–7.PubMedCrossRef Zaytseva YY, Valentino JD, Gulhati P, Evers BM. mTOR inhibitors in cancer therapy. Cancer Lett. 2012;319:1–7.PubMedCrossRef
9.
go back to reference S. Pyndiah, S. Tanida, K.M. Ahmed, E.K. Cassimere, C. Choe, D. Sakamuro. c-MYC suppresses BIN1 to release poly(ADP-ribose) polymerase 1: a mechanism by which cancer cells acquire cisplatin resistance. Sci. Signal. 4 (2011) ra19. S. Pyndiah, S. Tanida, K.M. Ahmed, E.K. Cassimere, C. Choe, D. Sakamuro. c-MYC suppresses BIN1 to release poly(ADP-ribose) polymerase 1: a mechanism by which cancer cells acquire cisplatin resistance. Sci. Signal. 4 (2011) ra19.
10.
go back to reference Larsson L-G, Henriksson MA. The yin and yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res. 2010;316:1429–37.PubMedCrossRef Larsson L-G, Henriksson MA. The yin and yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res. 2010;316:1429–37.PubMedCrossRef
11.
go back to reference Lu X, Pearson A, Lunec J. The MYCN oncoprotein as a drug development target. Cancer Lett. 2003;197:125–30.PubMedCrossRef Lu X, Pearson A, Lunec J. The MYCN oncoprotein as a drug development target. Cancer Lett. 2003;197:125–30.PubMedCrossRef
12.
go back to reference Lee MO, Han SY, Jiang S, Park JH, Kim SJ. Differential effects of retinoic acid on growth and apoptosis in human colon cancer cell lines associated with the induction of retinoic acid receptor beta. Biochem Pharmacol. 2000;59:485–96.PubMedCrossRef Lee MO, Han SY, Jiang S, Park JH, Kim SJ. Differential effects of retinoic acid on growth and apoptosis in human colon cancer cell lines associated with the induction of retinoic acid receptor beta. Biochem Pharmacol. 2000;59:485–96.PubMedCrossRef
13.
go back to reference Sarkar SA, Sharma RP. Expression of c-Myc and other apoptosis-related genes in Swiss Webster mouse fetuses after maternal exposure to all trans-retinoic acid. Reprod Toxicol. 2002;16:245–52.PubMedCrossRef Sarkar SA, Sharma RP. Expression of c-Myc and other apoptosis-related genes in Swiss Webster mouse fetuses after maternal exposure to all trans-retinoic acid. Reprod Toxicol. 2002;16:245–52.PubMedCrossRef
14.
15.
go back to reference Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.PubMedPubMedCentralCrossRef Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.PubMedPubMedCentralCrossRef
16.
go back to reference Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8.PubMedPubMedCentralCrossRef Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8.PubMedPubMedCentralCrossRef
18.
go back to reference Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–49.PubMedCrossRef Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–49.PubMedCrossRef
19.
go back to reference Malumbres M, Barbacid M. Cell cycle. CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.PubMedCrossRef Malumbres M, Barbacid M. Cell cycle. CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.PubMedCrossRef
20.
go back to reference Classon M, Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer. 2002;2:910–7.PubMedCrossRef Classon M, Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer. 2002;2:910–7.PubMedCrossRef
21.
go back to reference Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov. 2009;8:547–66.PubMedCrossRef Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov. 2009;8:547–66.PubMedCrossRef
22.
go back to reference Collins I, Garrett MD. Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol. 2005;5:366–73.PubMedCrossRef Collins I, Garrett MD. Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol. 2005;5:366–73.PubMedCrossRef
23.
go back to reference Woyach JA, Lozanski G, Ruppert AS, Lozanski A, Blum KA, Jones JA, et al. Outcome of patients with relapsed or refractory chronic lymphocytic leukemia treated with flavopiridol: impact of genetic features. Leukemia. 2012;26:1442–4.PubMedPubMedCentralCrossRef Woyach JA, Lozanski G, Ruppert AS, Lozanski A, Blum KA, Jones JA, et al. Outcome of patients with relapsed or refractory chronic lymphocytic leukemia treated with flavopiridol: impact of genetic features. Leukemia. 2012;26:1442–4.PubMedPubMedCentralCrossRef
24.
go back to reference Cirillo D, Pentimalli F, Giordano A. Peptides or small molecules? Different approaches to develop more effective CDK inhibitors. Curr Med Chem. 2011;18:2854–66.PubMedCrossRef Cirillo D, Pentimalli F, Giordano A. Peptides or small molecules? Different approaches to develop more effective CDK inhibitors. Curr Med Chem. 2011;18:2854–66.PubMedCrossRef
25.
go back to reference Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3–11.PubMedCrossRef Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3–11.PubMedCrossRef
26.
28.
go back to reference Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5:876–85.PubMedCrossRef Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5:876–85.PubMedCrossRef
29.
go back to reference Nagane M, Huang HJ, Cavenee WK. The potential of TRAIL for cancer chemotherapy. Apoptosis. 2001;6:191–7.PubMedCrossRef Nagane M, Huang HJ, Cavenee WK. The potential of TRAIL for cancer chemotherapy. Apoptosis. 2001;6:191–7.PubMedCrossRef
30.
31.
go back to reference Ghobrial I, Witzig T, Adjei A. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55:178–94.PubMedCrossRef Ghobrial I, Witzig T, Adjei A. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55:178–94.PubMedCrossRef
32.
go back to reference van Geelen CM, Pennarun B, Le PT, de Vries EG, de Jong S. Modulation of TRAIL resistance in colon carcinoma cells: different contributions of DR4 and DR5. BMC Cancer. 2011;11:39.PubMedPubMedCentralCrossRef van Geelen CM, Pennarun B, Le PT, de Vries EG, de Jong S. Modulation of TRAIL resistance in colon carcinoma cells: different contributions of DR4 and DR5. BMC Cancer. 2011;11:39.PubMedPubMedCentralCrossRef
34.
go back to reference Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer. 2009;9:724–37.PubMedCrossRef Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer. 2009;9:724–37.PubMedCrossRef
35.
go back to reference Wiman KG. Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ. 2006;13:921–6.PubMedCrossRef Wiman KG. Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ. 2006;13:921–6.PubMedCrossRef
36.
go back to reference Lu P, Yang X, Huang Y, Lu Z, Miao Z, Liang Q, et al. Antitumor activity of a combination of rAd2p53 adenoviral gene therapy and radiotherapy in esophageal carcinoma. Cell Biochem Biophys. 2011;59:147–52.PubMedCrossRef Lu P, Yang X, Huang Y, Lu Z, Miao Z, Liang Q, et al. Antitumor activity of a combination of rAd2p53 adenoviral gene therapy and radiotherapy in esophageal carcinoma. Cell Biochem Biophys. 2011;59:147–52.PubMedCrossRef
37.
go back to reference Partridge M, Costea DE, Huang X. The changing face of p53 in head and neck cancer. Int J Oral Maxillofac Surg. 2007;36:1123–38.PubMedCrossRef Partridge M, Costea DE, Huang X. The changing face of p53 in head and neck cancer. Int J Oral Maxillofac Surg. 2007;36:1123–38.PubMedCrossRef
38.
go back to reference Tovar C, Rosinski J, Filipovic Z. From the cover: small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Med Sci. 2006;103:188–1893. Tovar C, Rosinski J, Filipovic Z. From the cover: small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Med Sci. 2006;103:188–1893.
39.
go back to reference Fischer U, Schulze-Osthoff K. Apoptosis-based therapies and drug targets. Cell Death Differ. 2005;12 Suppl 1:942–61.PubMedCrossRef Fischer U, Schulze-Osthoff K. Apoptosis-based therapies and drug targets. Cell Death Differ. 2005;12 Suppl 1:942–61.PubMedCrossRef
40.
go back to reference Reed JC, Pellecchia M. Apoptosis-based therapies for hematologic malignancies. Blood. 2005;106:408–18.PubMedCrossRef Reed JC, Pellecchia M. Apoptosis-based therapies for hematologic malignancies. Blood. 2005;106:408–18.PubMedCrossRef
41.
go back to reference Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.PubMedCrossRef Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.PubMedCrossRef
42.
go back to reference Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008;8:121–32.PubMedCrossRef Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008;8:121–32.PubMedCrossRef
43.
go back to reference Reed JC. Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ. 2006;13:1378–86.PubMedCrossRef Reed JC. Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ. 2006;13:1378–86.PubMedCrossRef
44.
go back to reference Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov. 2008;7:989–1000.PubMedCrossRef Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov. 2008;7:989–1000.PubMedCrossRef
45.
go back to reference Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res. 2007;13:7254–63.PubMedCrossRef Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res. 2007;13:7254–63.PubMedCrossRef
46.
go back to reference M.H. Kang, C.P. Reynolds. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy targeting mitochondrial apoptotic pathways. Clin. Cancer Res. (2009) 1126–1132. M.H. Kang, C.P. Reynolds. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy targeting mitochondrial apoptotic pathways. Clin. Cancer Res. (2009) 1126–1132.
47.
go back to reference Hann CL, Daniel VC. E. a Sugar, I. Dobromilskaya, S.C. Murphy, L. Cope, et al. Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer. Cancer Res. 2008;68:2321–8.PubMedPubMedCentralCrossRef Hann CL, Daniel VC. E. a Sugar, I. Dobromilskaya, S.C. Murphy, L. Cope, et al. Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer. Cancer Res. 2008;68:2321–8.PubMedPubMedCentralCrossRef
48.
go back to reference Kabore AF, Johnston JB, Gibson SB. Changes in the apoptotic and survival signaling in cancer cells and their potential therapeutic implications. Curr Cancer Drug Targets. 2004;4:147–63.PubMedCrossRef Kabore AF, Johnston JB, Gibson SB. Changes in the apoptotic and survival signaling in cancer cells and their potential therapeutic implications. Curr Cancer Drug Targets. 2004;4:147–63.PubMedCrossRef
49.
go back to reference D’Amelio M, Tino E, Cecconi F. The apoptosome: emerging insights and new potential targets for drug design. Pharm Res. 2008;25:740–51.PubMedCrossRef D’Amelio M, Tino E, Cecconi F. The apoptosome: emerging insights and new potential targets for drug design. Pharm Res. 2008;25:740–51.PubMedCrossRef
50.
go back to reference Yang J-Y, Michod D, Walicki J, Widmann C. Surviving the kiss of death. Biochem Pharmacol. 2004;68:1027–31.PubMedCrossRef Yang J-Y, Michod D, Walicki J, Widmann C. Surviving the kiss of death. Biochem Pharmacol. 2004;68:1027–31.PubMedCrossRef
51.
go back to reference Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;8:61–70.PubMedCrossRef Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;8:61–70.PubMedCrossRef
52.
go back to reference Ryan BM, O’Donovan N, Duffy MJ. Survivin: a new target for anti-cancer therapy. Cancer Treat Rev. 2009;35:553–62.PubMedCrossRef Ryan BM, O’Donovan N, Duffy MJ. Survivin: a new target for anti-cancer therapy. Cancer Treat Rev. 2009;35:553–62.PubMedCrossRef
53.
go back to reference Church DN, Talbot DC. Survivin in solid tumors: rationale for development of inhibitors. Curr Oncol Rep. 2012;14:120–8.PubMedCrossRef Church DN, Talbot DC. Survivin in solid tumors: rationale for development of inhibitors. Curr Oncol Rep. 2012;14:120–8.PubMedCrossRef
55.
go back to reference R. Arora, M. Shuda, A. Guastafierro, H. Feng, T. Toptan, Y. Tolstov, et al. Survivin is a therapeutic target in Merkel cell carcinoma. Sci. Transl. Med. 4 (2012) 133ra56. R. Arora, M. Shuda, A. Guastafierro, H. Feng, T. Toptan, Y. Tolstov, et al. Survivin is a therapeutic target in Merkel cell carcinoma. Sci. Transl. Med. 4 (2012) 133ra56.
56.
57.
go back to reference K.-D. Yu, Z.-M. Shao. The two faces of autophagy and the pathological underestimation of DCIS. Nat. Rev. Cancer. 11 (2011) 618; author reply 618. K.-D. Yu, Z.-M. Shao. The two faces of autophagy and the pathological underestimation of DCIS. Nat. Rev. Cancer. 11 (2011) 618; author reply 618.
58.
go back to reference Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 2009;16:87–93.PubMedCrossRef Maiuri MC, Tasdemir E, Criollo A, Morselli E, Vicencio JM, Carnuccio R, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 2009;16:87–93.PubMedCrossRef
59.
60.
go back to reference Kubisch J, Türei D, Földvári-Nagy L. Z. a Dunai, L. Zsákai, M. Varga, et al. Complex regulation of autophagy in cancer—integrated approaches to discover the networks that hold a double-edged sword. Semin Cancer Biol. 2013;23:252–61.PubMedCrossRef Kubisch J, Türei D, Földvári-Nagy L. Z. a Dunai, L. Zsákai, M. Varga, et al. Complex regulation of autophagy in cancer—integrated approaches to discover the networks that hold a double-edged sword. Semin Cancer Biol. 2013;23:252–61.PubMedCrossRef
61.
62.
go back to reference Bodnar AG, Ouellette M, Frolkis M, Holt S, Chiu C, Morin G, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52.PubMedCrossRef Bodnar AG, Ouellette M, Frolkis M, Holt S, Chiu C, Morin G, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52.PubMedCrossRef
63.
go back to reference Guittat L, Alberti P, Gomez D, De Cian A, Pennarun G, Lemarteleur T, et al. Targeting human telomerase for cancer therapeutics. Cytotechnology. 2004;45:75–90.PubMedPubMedCentralCrossRef Guittat L, Alberti P, Gomez D, De Cian A, Pennarun G, Lemarteleur T, et al. Targeting human telomerase for cancer therapeutics. Cytotechnology. 2004;45:75–90.PubMedPubMedCentralCrossRef
65.
go back to reference Djojosubroto MW, Chin AC, Go N, Schaetzlein S, Manns MP, Gryaznov S, et al. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology. 2005;42:1127–36.PubMedCrossRef Djojosubroto MW, Chin AC, Go N, Schaetzlein S, Manns MP, Gryaznov S, et al. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology. 2005;42:1127–36.PubMedCrossRef
66.
go back to reference Gellert GC, Dikmen ZG, Wright WE, Gryaznov S, Shay JW. Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat. 2006;96:73–81.PubMedCrossRef Gellert GC, Dikmen ZG, Wright WE, Gryaznov S, Shay JW. Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat. 2006;96:73–81.PubMedCrossRef
68.
69.
go back to reference Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev. 2012;5:444–56. Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev. 2012;5:444–56.
70.
go back to reference Herbert BS. Disruption of telomere homeostasis as a new cancer treatment strategy. Memo - Mag. Eur Med Oncol. 2009;2:21–4. Herbert BS. Disruption of telomere homeostasis as a new cancer treatment strategy. Memo - Mag. Eur Med Oncol. 2009;2:21–4.
71.
72.
go back to reference Kim M-Y, Vankayalapati H, Shin-ya K, Wierzba K, Hurley LH. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc. 2002;124:2098–9.PubMedCrossRef Kim M-Y, Vankayalapati H, Shin-ya K, Wierzba K, Hurley LH. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc. 2002;124:2098–9.PubMedCrossRef
73.
go back to reference Burger AM, Dai F, Schultes CM, Reszka AP, Moore MJ. J. a Double, et al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 2005;65:1489–96.PubMedCrossRef Burger AM, Dai F, Schultes CM, Reszka AP, Moore MJ. J. a Double, et al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 2005;65:1489–96.PubMedCrossRef
74.
go back to reference Leonetti C, Scarsella M, Riggio G, Rizzo A, Salvati E, D’Incalci M, et al. G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in preclinical models of solid tumors. Clin Cancer Res. 2008;14:7284–91.PubMedCrossRef Leonetti C, Scarsella M, Riggio G, Rizzo A, Salvati E, D’Incalci M, et al. G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in preclinical models of solid tumors. Clin Cancer Res. 2008;14:7284–91.PubMedCrossRef
75.
go back to reference Chen Y, Qu K, Zhao C, Wu L, Ren J, Wang J, et al. Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat Commun. 2012;3:1074.PubMedCrossRef Chen Y, Qu K, Zhao C, Wu L, Ren J, Wang J, et al. Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat Commun. 2012;3:1074.PubMedCrossRef
76.
go back to reference Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84.PubMedCrossRef Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84.PubMedCrossRef
77.
go back to reference Steeg PS. Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer. 2003;3:55–63.PubMedCrossRef Steeg PS. Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer. 2003;3:55–63.PubMedCrossRef
78.
go back to reference Palmieri D, Halverson DO, Ouatas T, Horak CE, Salerno M, Johnson J, et al. Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst. 2005;97:632–42.PubMedCrossRef Palmieri D, Halverson DO, Ouatas T, Horak CE, Salerno M, Johnson J, et al. Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst. 2005;97:632–42.PubMedCrossRef
80.
go back to reference El Touny L, Banerjee P. Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochem Biophys Res Commun. 2007;361:169–75.PubMedPubMedCentralCrossRef El Touny L, Banerjee P. Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochem Biophys Res Commun. 2007;361:169–75.PubMedPubMedCentralCrossRef
81.
go back to reference Xu J-H, Guo X-Z, Ren L-N, Shao L-C, Liu M-P. KAI1 is a potential target for anti-metastasis in pancreatic cancer cells. World J Gastroenterol. 2008;14:1126–32.PubMedPubMedCentralCrossRef Xu J-H, Guo X-Z, Ren L-N, Shao L-C, Liu M-P. KAI1 is a potential target for anti-metastasis in pancreatic cancer cells. World J Gastroenterol. 2008;14:1126–32.PubMedPubMedCentralCrossRef
82.
go back to reference Stresing V, Daubiné F, Benzaid I, Mönkkönen H, Clézardin P. Bisphosphonates in cancer therapy. Cancer Lett. 2007;257:16–35.PubMedCrossRef Stresing V, Daubiné F, Benzaid I, Mönkkönen H, Clézardin P. Bisphosphonates in cancer therapy. Cancer Lett. 2007;257:16–35.PubMedCrossRef
84.
go back to reference Wu L, Zhu L, Shi W-H, Zhang J, Ma D, Yu B. Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol. 2009;602:124–31.PubMedCrossRef Wu L, Zhu L, Shi W-H, Zhang J, Ma D, Yu B. Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol. 2009;602:124–31.PubMedCrossRef
85.
go back to reference Hynes NE. H. a Lane. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.PubMedCrossRef Hynes NE. H. a Lane. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.PubMedCrossRef
86.
go back to reference Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19:6550–65.PubMedCrossRef Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19:6550–65.PubMedCrossRef
87.
go back to reference Weigelt B, Peterse JL. L.J. van ’t Veer. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.PubMedCrossRef Weigelt B, Peterse JL. L.J. van ’t Veer. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.PubMedCrossRef
88.
go back to reference Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9:463–75.PubMedCrossRef Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9:463–75.PubMedCrossRef
89.
go back to reference Weinberg RA. Perspectives in cancer research oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 1989;49:3713–21.PubMed Weinberg RA. Perspectives in cancer research oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 1989;49:3713–21.PubMed
91.
go back to reference Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.PubMedCrossRef Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.PubMedCrossRef
93.
go back to reference Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol. 2009;6:507–18.PubMedCrossRef Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol. 2009;6:507–18.PubMedCrossRef
94.
go back to reference Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J. R. a Smith, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5:835–44.PubMedCrossRef Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J. R. a Smith, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5:835–44.PubMedCrossRef
95.
go back to reference Ronca R, Sozzani S, Presta M, Alessi P. Delivering cytokines at tumor site: the immunocytokine-conjugated anti-EDB-fibronectin antibody case. Immunobiology. 2009;214:800–10.PubMedCrossRef Ronca R, Sozzani S, Presta M, Alessi P. Delivering cytokines at tumor site: the immunocytokine-conjugated anti-EDB-fibronectin antibody case. Immunobiology. 2009;214:800–10.PubMedCrossRef
97.
go back to reference Heath VL, Bicknell R. Anticancer strategies involving the vasculature. Nat Rev Clin Oncol. 2009;6:395–404.PubMedCrossRef Heath VL, Bicknell R. Anticancer strategies involving the vasculature. Nat Rev Clin Oncol. 2009;6:395–404.PubMedCrossRef
98.
go back to reference Reinacher-Schick A, Pohl M, Schmiegel W. Drug insight: antiangiogenic therapies for gastrointestinal cancers—focus on monoclonal antibodies. Nat Clin Pract Gastroenterol Hepatol. 2008;5:250–67.PubMedCrossRef Reinacher-Schick A, Pohl M, Schmiegel W. Drug insight: antiangiogenic therapies for gastrointestinal cancers—focus on monoclonal antibodies. Nat Clin Pract Gastroenterol Hepatol. 2008;5:250–67.PubMedCrossRef
99.
go back to reference Cragg GM, Newman DJ. Nature: a vital source of leads for anticancer drug development. Phytochem Rev. 2009;8:313–31.CrossRef Cragg GM, Newman DJ. Nature: a vital source of leads for anticancer drug development. Phytochem Rev. 2009;8:313–31.CrossRef
100.
101.
go back to reference Legg JA, Herbert JMJ, Clissold P, Bicknell R. Slits and roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis. 2008;11:13–21.PubMedCrossRef Legg JA, Herbert JMJ, Clissold P, Bicknell R. Slits and roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis. 2008;11:13–21.PubMedCrossRef
102.
go back to reference Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L, et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell. 2011;20:33–46.PubMedCrossRef Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L, et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell. 2011;20:33–46.PubMedCrossRef
103.
go back to reference Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.PubMedCrossRef Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.PubMedCrossRef
104.
105.
go back to reference Guaman-Ortiz LM, Giansanti V, Dona F, Scovassi I. Pharmacological effects of PARP inhibitors on cancer and other diseases. Curr Enzym Inhib. 2011;7:244–58.CrossRef Guaman-Ortiz LM, Giansanti V, Dona F, Scovassi I. Pharmacological effects of PARP inhibitors on cancer and other diseases. Curr Enzym Inhib. 2011;7:244–58.CrossRef
107.
go back to reference Drew Y, Plummer R. PARP inhibitors in cancer therapy: two modes of attack on the cancer cell widening the clinical applications. Drug Resist Updat. 2009;12:153–6.PubMedCrossRef Drew Y, Plummer R. PARP inhibitors in cancer therapy: two modes of attack on the cancer cell widening the clinical applications. Drug Resist Updat. 2009;12:153–6.PubMedCrossRef
108.
go back to reference Jagtap P, Szabó C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005;4:421–40.PubMedCrossRef Jagtap P, Szabó C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005;4:421–40.PubMedCrossRef
109.
go back to reference Annunziata C, O’Shaughnessy J. PARP as a novel therapeutic target in cancer. Clin Cancer Res. 2011;16:4517–26.CrossRef Annunziata C, O’Shaughnessy J. PARP as a novel therapeutic target in cancer. Clin Cancer Res. 2011;16:4517–26.CrossRef
110.
go back to reference Begg AC. F. a Stewart, C. Vens. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11:239–53.PubMedCrossRef Begg AC. F. a Stewart, C. Vens. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11:239–53.PubMedCrossRef
111.
go back to reference D. Davidson, Y. Wang, R. Aloyz, L. Panasci. The PARP inhibitor ABT-888 synergizes irinotecan treatment of colon cancer cell lines. Invest. New Drugs. (2013) 1–8. D. Davidson, Y. Wang, R. Aloyz, L. Panasci. The PARP inhibitor ABT-888 synergizes irinotecan treatment of colon cancer cell lines. Invest. New Drugs. (2013) 1–8.
112.
113.
go back to reference Ekblad T, Camaioni E, Schüler H, Macchiarulo A. PARP inhibitors: polypharmacology versus selective inhibition. FEBS J. 2013;280:3563–75.PubMedCrossRef Ekblad T, Camaioni E, Schüler H, Macchiarulo A. PARP inhibitors: polypharmacology versus selective inhibition. FEBS J. 2013;280:3563–75.PubMedCrossRef
114.
go back to reference Weaver AN, Yang ES. Beyond DNA repair: additional functions of PARP-1 in cancer. Front Oncol. 2013;3:1–11.CrossRef Weaver AN, Yang ES. Beyond DNA repair: additional functions of PARP-1 in cancer. Front Oncol. 2013;3:1–11.CrossRef
115.
go back to reference Do K, Chen A. Molecular pathways: targeting PARP in cancer treatment. Clin Cancer Res. 2013;19:977–84.PubMedCrossRef Do K, Chen A. Molecular pathways: targeting PARP in cancer treatment. Clin Cancer Res. 2013;19:977–84.PubMedCrossRef
116.
117.
go back to reference De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH. The elephant and the blind men: making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front Oncol. 2013;3:228.PubMedPubMedCentralCrossRef De Lorenzo SB, Patel AG, Hurley RM, Kaufmann SH. The elephant and the blind men: making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front Oncol. 2013;3:228.PubMedPubMedCentralCrossRef
118.
go back to reference Banerjee S, Kaye SB, Ashworth A. Making the best of PARP inhibitors in ovarian cancer. Nat Rev Clin Oncol. 2010;7:508–19.PubMedCrossRef Banerjee S, Kaye SB, Ashworth A. Making the best of PARP inhibitors in ovarian cancer. Nat Rev Clin Oncol. 2010;7:508–19.PubMedCrossRef
120.
121.
go back to reference Matsuoka S. B. a Ballif, A. Smogorzewska, E.R. McDonald, K.E. Hurov, J. Luo, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.PubMedCrossRef Matsuoka S. B. a Ballif, A. Smogorzewska, E.R. McDonald, K.E. Hurov, J. Luo, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.PubMedCrossRef
122.
go back to reference Helleday T, Petermann E, Lundin C, Hodgson B. R. a Sharma. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.PubMedCrossRef Helleday T, Petermann E, Lundin C, Hodgson B. R. a Sharma. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.PubMedCrossRef
123.
go back to reference Yang D, Halaby M, Li Y, Hibma JC, Burn P. Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov Today. 2011;16:332–8.PubMedCrossRef Yang D, Halaby M, Li Y, Hibma JC, Burn P. Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov Today. 2011;16:332–8.PubMedCrossRef
124.
go back to reference A. Nadkarni, M. Shrivastav, A.C. Mladek, P.M. Schwingler, P.T. Grogan, J. Chen, et al. ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells. J. Neurooncol. (2012). A. Nadkarni, M. Shrivastav, A.C. Mladek, P.M. Schwingler, P.T. Grogan, J. Chen, et al. ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells. J. Neurooncol. (2012).
125.
go back to reference Rainey M, Charlton M, Stanton R, Kastan M. Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res. 2008;68:7466–74.PubMedPubMedCentralCrossRef Rainey M, Charlton M, Stanton R, Kastan M. Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res. 2008;68:7466–74.PubMedPubMedCentralCrossRef
126.
127.
go back to reference Kops GJPL. B. a a Weaver, D.W. Cleveland. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer. 2005;5:773–85.PubMedCrossRef Kops GJPL. B. a a Weaver, D.W. Cleveland. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer. 2005;5:773–85.PubMedCrossRef
128.
go back to reference Zhivotovsky B, Kroemer G. Apoptosis and genomic instability. Nat Rev Mol Cell Biol. 2004;5:752–62.PubMedCrossRef Zhivotovsky B, Kroemer G. Apoptosis and genomic instability. Nat Rev Mol Cell Biol. 2004;5:752–62.PubMedCrossRef
129.
go back to reference Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN, Gandara DR. Aurora kinases as anticancer drug targets. Clin Cancer Res. 2008;14:1639–48.PubMedCrossRef Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN, Gandara DR. Aurora kinases as anticancer drug targets. Clin Cancer Res. 2008;14:1639–48.PubMedCrossRef
130.
go back to reference Kitzen JJEM. M.J. a de Jonge, J. Verweij. Aurora kinase inhibitors. Crit Rev Oncol Hematol. 2010;73:99–110.PubMedCrossRef Kitzen JJEM. M.J. a de Jonge, J. Verweij. Aurora kinase inhibitors. Crit Rev Oncol Hematol. 2010;73:99–110.PubMedCrossRef
131.
go back to reference Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med. 2004;10:262–7.PubMedCrossRef Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med. 2004;10:262–7.PubMedCrossRef
132.
go back to reference Keen N, Taylor S. Mitotic drivers—inhibitors of the Aurora B kinase. Cancer Metastasis Rev. 2009;28:185–95.PubMedCrossRef Keen N, Taylor S. Mitotic drivers—inhibitors of the Aurora B kinase. Cancer Metastasis Rev. 2009;28:185–95.PubMedCrossRef
133.
135.
136.
go back to reference Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9:447–64.PubMedCrossRef Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9:447–64.PubMedCrossRef
137.
go back to reference Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol. 2009;19:17–24.PubMedCrossRef Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol. 2009;19:17–24.PubMedCrossRef
138.
go back to reference Cohen S, Flescher E. Methyl jasmonate: A plant stress hormone as an anti-cancer drug. Phytochemistry. 2009;70:1600–9.PubMedCrossRef Cohen S, Flescher E. Methyl jasmonate: A plant stress hormone as an anti-cancer drug. Phytochemistry. 2009;70:1600–9.PubMedCrossRef
139.
go back to reference Raviv Z, Cohen S, Reischer-Pelech D. The anti-cancer activities of jasmonates. Cancer Chemother Pharmacol. 2013;71:275–85.PubMedCrossRef Raviv Z, Cohen S, Reischer-Pelech D. The anti-cancer activities of jasmonates. Cancer Chemother Pharmacol. 2013;71:275–85.PubMedCrossRef
140.
go back to reference Vander Heiden M, Christofk H, Schuma E, Subtelny AO, Sharfi H, Harlow E, et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol. 2010;79:1118–24.PubMedCrossRef Vander Heiden M, Christofk H, Schuma E, Subtelny AO, Sharfi H, Harlow E, et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol. 2010;79:1118–24.PubMedCrossRef
143.
go back to reference Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30:4297–306.PubMedCrossRef Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30:4297–306.PubMedCrossRef
144.
go back to reference Iqbal MA, Bamezai RNK. Resveratrol inhibits cancer cell metabolism by down regulating pyruvate kinase M2 via inhibition of mammalian target of rapamycin. PLoS One. 2012;7:e36764.PubMedPubMedCentralCrossRef Iqbal MA, Bamezai RNK. Resveratrol inhibits cancer cell metabolism by down regulating pyruvate kinase M2 via inhibition of mammalian target of rapamycin. PLoS One. 2012;7:e36764.PubMedPubMedCentralCrossRef
145.
go back to reference Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.PubMedCrossRef Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.PubMedCrossRef
146.
go back to reference Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A. 2010;107:2037–42.PubMedPubMedCentralCrossRef Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A. 2010;107:2037–42.PubMedPubMedCentralCrossRef
147.
go back to reference Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science. 2004;305:200–5.PubMedCrossRef Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science. 2004;305:200–5.PubMedCrossRef
148.
go back to reference Sharma SV, Settleman J. Exploiting the balance between life and death: targeted cancer therapy and “oncogenic shock”. Biochem Pharmacol. 2010;80:666–73.PubMedCrossRef Sharma SV, Settleman J. Exploiting the balance between life and death: targeted cancer therapy and “oncogenic shock”. Biochem Pharmacol. 2010;80:666–73.PubMedCrossRef
150.
go back to reference Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer. 2006;6:613–25.PubMedCrossRef Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer. 2006;6:613–25.PubMedCrossRef
151.
go back to reference Katz JB, Muller AJ, Prendergast GC. T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;2008(222):206–21.CrossRef Katz JB, Muller AJ, Prendergast GC. T-cell tolerance and tumoral immune escape. Immunol Rev. 2008;2008(222):206–21.CrossRef
152.
go back to reference Prendergast GC. Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene. 2008;27:3889–900.PubMedCrossRef Prendergast GC. Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene. 2008;27:3889–900.PubMedCrossRef
154.
go back to reference Yared J, Kimball A, Baer MR, Bahrain H, Auerbach M. Rituximab maintenance therapy until progression after rituximab and chemotherapy induction in patients with follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2013;13:253–7.PubMedCrossRef Yared J, Kimball A, Baer MR, Bahrain H, Auerbach M. Rituximab maintenance therapy until progression after rituximab and chemotherapy induction in patients with follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2013;13:253–7.PubMedCrossRef
156.
go back to reference A.E. Moran, M. Kovacsovics-Bankowski, A.D. Weinberg. The TNFRs OX40, 4–1BB, and CD40 as targets for cancer immunotherapy. Curr. Opin. Immunol. (2013) 1–8. A.E. Moran, M. Kovacsovics-Bankowski, A.D. Weinberg. The TNFRs OX40, 4–1BB, and CD40 as targets for cancer immunotherapy. Curr. Opin. Immunol. (2013) 1–8.
157.
go back to reference Advani R, Forero-Torres A, Furman RR, Rosenblatt JD, Younes A, Ren H, et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27:4371–7.PubMedCrossRef Advani R, Forero-Torres A, Furman RR, Rosenblatt JD, Younes A, Ren H, et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27:4371–7.PubMedCrossRef
158.
go back to reference Houot R, Kohrt H, Goldstein MJ, Levy R. Immunomodulating antibodies and drugs for the treatment of hematological malignancies. Cancer Metastasis Rev. 2011;30:97–109.PubMedCrossRef Houot R, Kohrt H, Goldstein MJ, Levy R. Immunomodulating antibodies and drugs for the treatment of hematological malignancies. Cancer Metastasis Rev. 2011;30:97–109.PubMedCrossRef
159.
go back to reference Peggs KS. S. a Quezada, C. a Chambers, A.J. Korman, J.P. Allison. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009;206:1717–25.PubMedPubMedCentralCrossRef Peggs KS. S. a Quezada, C. a Chambers, A.J. Korman, J.P. Allison. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009;206:1717–25.PubMedPubMedCentralCrossRef
161.
162.
go back to reference Aggarwal BB. R. V Vijayalekshmi, B. Sung. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425–30.PubMedCrossRef Aggarwal BB. R. V Vijayalekshmi, B. Sung. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425–30.PubMedCrossRef
163.
go back to reference Kundu J, Surh Y. Breaking the relay in deregulated cellular signal transduction as a rationale for chemoprevention with anti-inflammatory phytochemicals. Mutat Res. 2005;591:123–46.PubMedCrossRef Kundu J, Surh Y. Breaking the relay in deregulated cellular signal transduction as a rationale for chemoprevention with anti-inflammatory phytochemicals. Mutat Res. 2005;591:123–46.PubMedCrossRef
164.
165.
167.
go back to reference Cuzick J, Otto F. J. a Baron, P.H. Brown, J. Burn, P. Greenwald, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009;10:501–7.PubMedCrossRef Cuzick J, Otto F. J. a Baron, P.H. Brown, J. Burn, P. Greenwald, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009;10:501–7.PubMedCrossRef
168.
go back to reference Ben-Baruh A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol. 2006;16:38–52.CrossRef Ben-Baruh A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol. 2006;16:38–52.CrossRef
169.
go back to reference Galzi J-L, Hachet-Haas M, Bonnet D, Daubeuf F, Lecat S, Hibert M, et al. Neutralizing endogenous chemokines with small molecules. Principles and potential therapeutic applications. Pharmacol Ther. 2010;126:39–55.PubMedCrossRef Galzi J-L, Hachet-Haas M, Bonnet D, Daubeuf F, Lecat S, Hibert M, et al. Neutralizing endogenous chemokines with small molecules. Principles and potential therapeutic applications. Pharmacol Ther. 2010;126:39–55.PubMedCrossRef
170.
go back to reference Trotta T, Costantini S, Colonna G. Modelling of the membrane receptor CXCR3 and its complexes with CXCL9, CXCL10 and CXCL11 chemokines: putative target for new drug design. Mol Immunol. 2009;47:332–9.PubMedCrossRef Trotta T, Costantini S, Colonna G. Modelling of the membrane receptor CXCR3 and its complexes with CXCL9, CXCL10 and CXCL11 chemokines: putative target for new drug design. Mol Immunol. 2009;47:332–9.PubMedCrossRef
172.
go back to reference Lin Y, Bai L, Chen W, Xu S. The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 2010;14:45–55.PubMedPubMedCentralCrossRef Lin Y, Bai L, Chen W, Xu S. The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 2010;14:45–55.PubMedPubMedCentralCrossRef
173.
go back to reference Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;70:i104–8.PubMedCrossRef Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;70:i104–8.PubMedCrossRef
174.
go back to reference Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012;38:904–10.PubMedCrossRef Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012;38:904–10.PubMedCrossRef
175.
go back to reference Shen H-M, Tergaonkar V. NFjB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis. 2009;14:348–63.PubMedCrossRef Shen H-M, Tergaonkar V. NFjB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis. 2009;14:348–63.PubMedCrossRef
176.
go back to reference Brown ER. K. a Charles, S. a Hoare, R.L. Rye, D.I. Jodrell, R.E. Aird, et al. A clinical study assessing the tolerability and biological effects of infliximab, a TNF-alpha inhibitor, in patients with advanced cancer. Ann Oncol. 2008;19:1340–6.PubMedCrossRef Brown ER. K. a Charles, S. a Hoare, R.L. Rye, D.I. Jodrell, R.E. Aird, et al. A clinical study assessing the tolerability and biological effects of infliximab, a TNF-alpha inhibitor, in patients with advanced cancer. Ann Oncol. 2008;19:1340–6.PubMedCrossRef
177.
go back to reference Zidi I, Mestiri S, Bartegi A, Ben Amor N. TNF-alpha and its inhibitors in cancer. Med Oncol. 2010;27:185–98.PubMedCrossRef Zidi I, Mestiri S, Bartegi A, Ben Amor N. TNF-alpha and its inhibitors in cancer. Med Oncol. 2010;27:185–98.PubMedCrossRef
178.
go back to reference Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther. 2010;87:401–6.PubMedCrossRef Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther. 2010;87:401–6.PubMedCrossRef
179.
go back to reference Olivier S, Robe P, Bours V. Can NF-kB be a target for novel and efficient anti-cancer agents ? Biochem Pharmacol. 2006;72:1054–68.PubMedCrossRef Olivier S, Robe P, Bours V. Can NF-kB be a target for novel and efficient anti-cancer agents ? Biochem Pharmacol. 2006;72:1054–68.PubMedCrossRef
180.
go back to reference Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 2005;5:297–309.PubMedCrossRef Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 2005;5:297–309.PubMedCrossRef
183.
go back to reference Petronelli A, Pannitteri G, Testa U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs. 2009;20:880–92.PubMedCrossRef Petronelli A, Pannitteri G, Testa U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs. 2009;20:880–92.PubMedCrossRef
184.
go back to reference Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J. Terpenoids: natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci. 2008;65:2979–99.PubMedCrossRef Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J. Terpenoids: natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci. 2008;65:2979–99.PubMedCrossRef
185.
go back to reference J. Shortt, a K. Hsu, R.W. Johnstone. Thalidomide-analogue biology: immunological, molecular and epigenetic targets in cancer therapy. Oncogene. (2013) 1–12. J. Shortt, a K. Hsu, R.W. Johnstone. Thalidomide-analogue biology: immunological, molecular and epigenetic targets in cancer therapy. Oncogene. (2013) 1–12.
Metadata
Title
Development of anticancer drugs based on the hallmarks of tumor cells
Authors
Natalia Bailón-Moscoso
Juan Carlos Romero-Benavides
Patricia Ostrosky-Wegman
Publication date
01-05-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-1649-y

Other articles of this Issue 5/2014

Tumor Biology 5/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine