Skip to main content
Top
Published in: Tumor Biology 5/2014

01-05-2014 | Research Article

MTHFR genetic polymorphisms may contribute to the risk of chronic myelogenous leukemia in adults: a meta-analysis of 12 genetic association studies

Authors: Bin Li, Jian Zhang, Lei Wang, Yan Li, Juping Jin, Limei Ai, Chong Li, Zhe Li, Shudan Mao

Published in: Tumor Biology | Issue 5/2014

Login to get access

Abstract

Chronic myelogenous leukemia (CML) is a complex disease with a genetic basis. The genetic association studies (GASs) that have investigated the association between adult CML and 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms have produced contradictory and inconclusive results. The aim of this meta-analysis is to provide a relatively comprehensive assessment of the association of these polymorphisms with adult CML risk. A literature search for eligible GAS published before September 15, 2013 was conducted in PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases. Pooled odds ratios (ORs) with their corresponding 95 % confidence intervals (95 % CIs) were used to evaluate the strength of the association under a fixed or random effect model according to heterogeneity test results. All analyses were performed using the Stata software, version 12.0. Twelve case-control studies were included in this meta-analysis with a total of 932 CML patients and 3,465 healthy controls. For MTHFR C677T (dbSNP: rs1801133, C>T), though the pooled ORs were not significant in the overall population, all the ORs greater than 1 suggested an increased risk of CML for carriers of the risk allele. However, stratified analysis based on genotyping method revealed a significant association in the PCR-restriction fragment length polymorphism (RFLP) subgroup, possibly as a result of heterogeneity. For MTHFR A1298C (dbSNP: rs1801131, A>C), the combined results showed that carriers of the C allele may be associated with a decreased risk of adult CML. Stratified analysis showed that the magnitude of this effect was especially significant among Asians, indicating ethnicity differences in adult CML susceptibility. This meta-analysis shows that the C allele of MTHFR A1298C may be associated with a decreased risk in adult CML, especially among Asians, while MTHFR C677T may not be associated with adult CML risk. However, the development of adult CML may be the result of gene-gene and gene-environment interactions, which should be considered in future individual GAS and subsequent meta-analyses.
Literature
1.
2.
go back to reference Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–64.CrossRefPubMed Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–64.CrossRefPubMed
3.
go back to reference Gyurkocza B, Storb R, Storer BE, Chauncey TR, Lange T, et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol. 2010;28:2859–67.CrossRefPubMedPubMedCentral Gyurkocza B, Storb R, Storer BE, Chauncey TR, Lange T, et al. Nonmyeloablative allogeneic hematopoietic cell transplantation in patients with acute myeloid leukemia. J Clin Oncol. 2010;28:2859–67.CrossRefPubMedPubMedCentral
4.
go back to reference Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–302.CrossRefPubMed Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–302.CrossRefPubMed
5.
go back to reference Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer. 2005;5:311–21.CrossRefPubMed Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer. 2005;5:311–21.CrossRefPubMed
6.
go back to reference Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–56.PubMed Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–56.PubMed
7.
go back to reference Quintas-Cardama A, Cortes JE. Chronic myeloid leukemia: diagnosis and treatment. Mayo Clin Proc. 2006;81:973–88.CrossRefPubMed Quintas-Cardama A, Cortes JE. Chronic myeloid leukemia: diagnosis and treatment. Mayo Clin Proc. 2006;81:973–88.CrossRefPubMed
8.
go back to reference Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.CrossRefPubMed Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.CrossRefPubMed
9.
go back to reference Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71:121–38.CrossRefPubMed Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71:121–38.CrossRefPubMed
10.
go back to reference Duthie SJ, Narayanan S, Blum S, Pirie L, Brand GM. Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr Cancer. 2000;37:245–51.CrossRefPubMed Duthie SJ, Narayanan S, Blum S, Pirie L, Brand GM. Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr Cancer. 2000;37:245–51.CrossRefPubMed
11.
go back to reference Bailey LB, Gregory 3rd JF. Folate metabolism and requirements. J Nutr. 1999;129:779–82.PubMed Bailey LB, Gregory 3rd JF. Folate metabolism and requirements. J Nutr. 1999;129:779–82.PubMed
12.
go back to reference Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci U S A. 2001;98:4004–9.CrossRefPubMedPubMedCentral Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci U S A. 2001;98:4004–9.CrossRefPubMedPubMedCentral
13.
go back to reference Fodinger M, Horl WH, Sunder-Plassmann G. Molecular biology of 5,10-methylenetetrahydrofolate reductase. J Nephrol. 2000;13:20–33.PubMed Fodinger M, Horl WH, Sunder-Plassmann G. Molecular biology of 5,10-methylenetetrahydrofolate reductase. J Nephrol. 2000;13:20–33.PubMed
14.
go back to reference Duthie SJ. Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull. 1999;55:578–92.CrossRefPubMed Duthie SJ. Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull. 1999;55:578–92.CrossRefPubMed
15.
go back to reference Duthie SJ, Narayanan S, Brand GM, Pirie L, Grant G. Impact of folate deficiency on DNA stability. J Nutr. 2002;132:2444S–9S.PubMed Duthie SJ, Narayanan S, Brand GM, Pirie L, Grant G. Impact of folate deficiency on DNA stability. J Nutr. 2002;132:2444S–9S.PubMed
16.
go back to reference Krajinovic M, Lamothe S, Labuda D, Lemieux-Blanchard E, Theoret Y, et al. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood. 2004;103:252–7.CrossRefPubMed Krajinovic M, Lamothe S, Labuda D, Lemieux-Blanchard E, Theoret Y, et al. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood. 2004;103:252–7.CrossRefPubMed
17.
go back to reference Hanson NQ, Aras O, Yang F, Tsai MY. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: incidence and effect of combined genotypes on plasma fasting and post-methionine load homocysteine in vascular disease. Clin Chem. 2001;47:661–6.PubMed Hanson NQ, Aras O, Yang F, Tsai MY. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: incidence and effect of combined genotypes on plasma fasting and post-methionine load homocysteine in vascular disease. Clin Chem. 2001;47:661–6.PubMed
18.
go back to reference Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64:169–72.CrossRefPubMed Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64:169–72.CrossRefPubMed
19.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.CrossRefPubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.CrossRefPubMedPubMedCentral
20.
go back to reference Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, et al. Strengthening the reporting of genetic association studies (STREGA): an extension of the STROBE statement. Hum Genet. 2009;125:131–51.CrossRefPubMed Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, et al. Strengthening the reporting of genetic association studies (STREGA): an extension of the STROBE statement. Hum Genet. 2009;125:131–51.CrossRefPubMed
21.
go back to reference Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.CrossRefPubMed Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.CrossRefPubMed
22.
23.
go back to reference Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed
24.
go back to reference van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med. 2002;21:589–624.CrossRefPubMed van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med. 2002;21:589–624.CrossRefPubMed
25.
go back to reference Sacks HS, Berrier J, Reitman D, Ancona-Berk VA, Chalmers TC. Meta-analyses of randomized controlled trials. N Engl J Med. 1987;316:450–5.CrossRefPubMed Sacks HS, Berrier J, Reitman D, Ancona-Berk VA, Chalmers TC. Meta-analyses of randomized controlled trials. N Engl J Med. 1987;316:450–5.CrossRefPubMed
26.
go back to reference Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295:676–80.CrossRefPubMed Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA. 2006;295:676–80.CrossRefPubMed
28.
go back to reference Barbosa CG, Souza CL, de Moura Neto JP, Arruda M, Barreto JH, et al. Methylenetetrahydrofolate reductase polymorphisms in myeloid leukemia patients from Northeastern Brazil. Genet Mol Biol. 2008;31:29–32.CrossRef Barbosa CG, Souza CL, de Moura Neto JP, Arruda M, Barreto JH, et al. Methylenetetrahydrofolate reductase polymorphisms in myeloid leukemia patients from Northeastern Brazil. Genet Mol Biol. 2008;31:29–32.CrossRef
29.
go back to reference Deligezer U, Akisik E, Dalay N. Genotyping of the MTHFR gene polymorphism, C677T in patients with leukemia by melting curve analysis. Mol Diagn. 2003;7:181–5.CrossRefPubMed Deligezer U, Akisik E, Dalay N. Genotyping of the MTHFR gene polymorphism, C677T in patients with leukemia by melting curve analysis. Mol Diagn. 2003;7:181–5.CrossRefPubMed
30.
go back to reference Hur M, Park JY, Cho HC, Lee KM, Shin HY, et al. Methylenetetrahydrofolate reductase A1298C genotypes are associated with the risks of acute lymphoblastic leukaemia and chronic myelogenous leukaemia in the Korean population. Clin Lab Haematol. 2006;28:154–9.CrossRefPubMed Hur M, Park JY, Cho HC, Lee KM, Shin HY, et al. Methylenetetrahydrofolate reductase A1298C genotypes are associated with the risks of acute lymphoblastic leukaemia and chronic myelogenous leukaemia in the Korean population. Clin Lab Haematol. 2006;28:154–9.CrossRefPubMed
31.
go back to reference Hussain SR, Naqvi H, Raza ST, Ahmed F, Babu SG, et al. Methylenetetrahydrofolate reductase C677T genetic polymorphisms and risk of leukaemia among the North Indian population. Cancer Epidemiol. 2012;36:e227–31.CrossRefPubMed Hussain SR, Naqvi H, Raza ST, Ahmed F, Babu SG, et al. Methylenetetrahydrofolate reductase C677T genetic polymorphisms and risk of leukaemia among the North Indian population. Cancer Epidemiol. 2012;36:e227–31.CrossRefPubMed
32.
go back to reference Ismail SI, Ababneh NA, Awidi A. Methylenetetrahydrofolate reductase (MTHFR) genotype association with the risk of chronic myelogenous leukemia. Jordan Med J. 2009;43:8–14. Ismail SI, Ababneh NA, Awidi A. Methylenetetrahydrofolate reductase (MTHFR) genotype association with the risk of chronic myelogenous leukemia. Jordan Med J. 2009;43:8–14.
33.
go back to reference Jakovljevic K, Malisic E, Cavic M, Radulovic S, Jankovic R. Association between methylenetetrahydrofolate reductase polymorphism C677T and risk of chronic myeloid leukemia in Serbian population. Leuk Lymphoma. 2012;53:1327–30.CrossRefPubMed Jakovljevic K, Malisic E, Cavic M, Radulovic S, Jankovic R. Association between methylenetetrahydrofolate reductase polymorphism C677T and risk of chronic myeloid leukemia in Serbian population. Leuk Lymphoma. 2012;53:1327–30.CrossRefPubMed
34.
go back to reference Jankovic RN, Jakovljevic K, Cavic M, Malisic E. Relation of methylenetetrahydrofolate reductase C677T polymorphism to chronic myeloid leukemia in Serbia. J Clin Oncol. 2011;29. Jankovic RN, Jakovljevic K, Cavic M, Malisic E. Relation of methylenetetrahydrofolate reductase C677T polymorphism to chronic myeloid leukemia in Serbia. J Clin Oncol. 2011;29.
35.
go back to reference Kim HN, Kim YK, Lee IK, Yang DH, Lee JJ, et al. Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk Res. 2009;33:82–7.CrossRefPubMed Kim HN, Kim YK, Lee IK, Yang DH, Lee JJ, et al. Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk Res. 2009;33:82–7.CrossRefPubMed
36.
go back to reference Lordelo GS, Miranda-Vilela AL, Akimoto AK, Alves PC, Hiragi CO, et al. Association between methylene tetrahydrofolate reductase and glutathione s-transferase M1 gene polymorphisms and chronic myeloid leukemia in a Brazilian population. Genet Mol Res. 2012;11:1013–26.CrossRefPubMed Lordelo GS, Miranda-Vilela AL, Akimoto AK, Alves PC, Hiragi CO, et al. Association between methylene tetrahydrofolate reductase and glutathione s-transferase M1 gene polymorphisms and chronic myeloid leukemia in a Brazilian population. Genet Mol Res. 2012;11:1013–26.CrossRefPubMed
37.
go back to reference Moon HW, Kim TY, Oh BR, Min HC, Cho HI, et al. MTHFR 677CC/1298CC genotypes are highly associated with chronic myelogenous leukemia: a case-control study in Korea. Leuk Res. 2007;31:1213–7.CrossRefPubMed Moon HW, Kim TY, Oh BR, Min HC, Cho HI, et al. MTHFR 677CC/1298CC genotypes are highly associated with chronic myelogenous leukemia: a case-control study in Korea. Leuk Res. 2007;31:1213–7.CrossRefPubMed
38.
go back to reference Vahid P, Farnaz R, Zaker F, Farzaneh A, Parisa R. Methylenetetrahydrofolate reductase gene polymorphisms and risk of myeloid leukemia. Lab Med. 2010;41:490–4.CrossRef Vahid P, Farnaz R, Zaker F, Farzaneh A, Parisa R. Methylenetetrahydrofolate reductase gene polymorphisms and risk of myeloid leukemia. Lab Med. 2010;41:490–4.CrossRef
40.
go back to reference Kim YI. Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev. 2004;13:511–9.PubMed Kim YI. Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev. 2004;13:511–9.PubMed
41.
42.
go back to reference Bai JL, Zheng MH, Xia X, Ter-Minassian M, Chen YP, et al. MTHFR C677T polymorphism contributes to prostate cancer risk among Caucasians: a meta-analysis of 3511 cases and 2762 controls. Eur J Cancer. 2009;45:1443–9.CrossRefPubMed Bai JL, Zheng MH, Xia X, Ter-Minassian M, Chen YP, et al. MTHFR C677T polymorphism contributes to prostate cancer risk among Caucasians: a meta-analysis of 3511 cases and 2762 controls. Eur J Cancer. 2009;45:1443–9.CrossRefPubMed
43.
go back to reference Collin SM, Metcalfe C, Zuccolo L, Lewis SJ, Chen L, et al. Association of folate-pathway gene polymorphisms with the risk of prostate cancer: a population-based nested case-control study, systematic review, and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2009;18:2528–39.CrossRefPubMed Collin SM, Metcalfe C, Zuccolo L, Lewis SJ, Chen L, et al. Association of folate-pathway gene polymorphisms with the risk of prostate cancer: a population-based nested case-control study, systematic review, and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2009;18:2528–39.CrossRefPubMed
44.
go back to reference Boccia S, Boffetta P, Brennan P, Ricciardi G, Gianfagna F, et al. Meta-analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and risk of head and neck and lung cancer. Cancer Lett. 2009;273:55–61.CrossRefPubMed Boccia S, Boffetta P, Brennan P, Ricciardi G, Gianfagna F, et al. Meta-analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and risk of head and neck and lung cancer. Cancer Lett. 2009;273:55–61.CrossRefPubMed
45.
go back to reference Boccia S, Hung R, Ricciardi G, Gianfagna F, Ebert MP, et al. Meta- and pooled analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer risk: a huge-GSEC review. Am J Epidemiol. 2008;167:505–16.CrossRefPubMed Boccia S, Hung R, Ricciardi G, Gianfagna F, Ebert MP, et al. Meta- and pooled analyses of the methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer risk: a huge-GSEC review. Am J Epidemiol. 2008;167:505–16.CrossRefPubMed
46.
go back to reference Dong X, Wu J, Liang P, Li J, Yuan L, et al. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer: a meta-analysis. Arch Med Res. 2010;41:125–33.CrossRefPubMed Dong X, Wu J, Liang P, Li J, Yuan L, et al. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer: a meta-analysis. Arch Med Res. 2010;41:125–33.CrossRefPubMed
47.
go back to reference Eroglu A, Akar N. Methylenetetrahydrofolate reductase C677T polymorphism in breast cancer risk. Breast Cancer Res Treat. 2010;122:897–8.CrossRefPubMed Eroglu A, Akar N. Methylenetetrahydrofolate reductase C677T polymorphism in breast cancer risk. Breast Cancer Res Treat. 2010;122:897–8.CrossRefPubMed
48.
go back to reference Ding XP, Feng L, Ma L. MTHFR C677T polymorphism and ovarian cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2012;13:3937–42.CrossRefPubMed Ding XP, Feng L, Ma L. MTHFR C677T polymorphism and ovarian cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2012;13:3937–42.CrossRefPubMed
49.
go back to reference Chen H, Zhu J. C677T polymorphism of methylenetetrahydrofolate reductase may contribute to cervical cancer risk in complete over-dominant model. Med Hypotheses. 2013;80:679–83.CrossRefPubMed Chen H, Zhu J. C677T polymorphism of methylenetetrahydrofolate reductase may contribute to cervical cancer risk in complete over-dominant model. Med Hypotheses. 2013;80:679–83.CrossRefPubMed
50.
go back to reference Guo LN. Methylenetetrahydrofolate reductase C677T polymorphism and cervical cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2012;13:2193–7.CrossRefPubMed Guo LN. Methylenetetrahydrofolate reductase C677T polymorphism and cervical cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2012;13:2193–7.CrossRefPubMed
52.
go back to reference Robien K, Ulrich CM. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a huGE minireview. Am J Epidemiol. 2003;157:571–82.CrossRefPubMed Robien K, Ulrich CM. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a huGE minireview. Am J Epidemiol. 2003;157:571–82.CrossRefPubMed
53.
go back to reference Pereira TV, Rudnicki M, Pereira AC, Pombo-de-Oliveira MS, Franco RF. 5,10-Methylenetetrahydrofolate reductase polymorphisms and acute lymphoblastic leukemia risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15:1956–63.CrossRefPubMed Pereira TV, Rudnicki M, Pereira AC, Pombo-de-Oliveira MS, Franco RF. 5,10-Methylenetetrahydrofolate reductase polymorphisms and acute lymphoblastic leukemia risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15:1956–63.CrossRefPubMed
54.
go back to reference Wang J, Zhan P, Chen B, Zhou R, Yang Y, et al. MTHFR C677T polymorphisms and childhood acute lymphoblastic leukemia: a meta-analysis. Leuk Res. 2010;34:1596–600.CrossRefPubMed Wang J, Zhan P, Chen B, Zhou R, Yang Y, et al. MTHFR C677T polymorphisms and childhood acute lymphoblastic leukemia: a meta-analysis. Leuk Res. 2010;34:1596–600.CrossRefPubMed
55.
go back to reference Yan J, Yin M, Dreyer ZE, Scheurer ME, Kamdar K, et al. A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children. Pediatr Blood Cancer. 2012;58:513–8.CrossRefPubMed Yan J, Yin M, Dreyer ZE, Scheurer ME, Kamdar K, et al. A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children. Pediatr Blood Cancer. 2012;58:513–8.CrossRefPubMed
Metadata
Title
MTHFR genetic polymorphisms may contribute to the risk of chronic myelogenous leukemia in adults: a meta-analysis of 12 genetic association studies
Authors
Bin Li
Jian Zhang
Lei Wang
Yan Li
Juping Jin
Limei Ai
Chong Li
Zhe Li
Shudan Mao
Publication date
01-05-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1554-9

Other articles of this Issue 5/2014

Tumor Biology 5/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine