Skip to main content
Top
Published in: Tumor Biology 3/2014

01-03-2014 | Research Article

Genetic association of PLCE1, C11orf92-C11orf93, and NOC3L with colorectal cancer risk in the Han population

Authors: Xianglong Duan, Xiaolan Li, Huiling Lou, Tingting Geng, Tianbo Jin, Ping Liang, Shanqu Li, Yanbin Long, Chao Chen

Published in: Tumor Biology | Issue 3/2014

Login to get access

Abstract

Colorectal cancer (CRC) is a common malignant tumor that is influenced by an interaction between genetic and environmental factors. Currently, the inherited factors of CRC are unclear. Our study selected 19 tag single nucleotide polymorphisms (tSNPs) to investigate whether they were associated with CRC in the Han population. In this Han Chinese case–control study, we genotyped 203 CRC cases and 296 controls using Sequenom MassARRAY technology and analyzed their associations with CRC using χ2 tests, SNPStats software, and SHEsis software. Based on χ2 tests, PLCE1 -rs2077218, rs11187877 (p = 0.049) and C11orf92-C11orf93-rs3802842 (p = 0.023) correlate with CRC risk. In the genetic model analyses, we found the genotype “CC” of rs3802842 in C11orf92-C11orf93 may significantly increase CRC risk in the recessive model (p = 0.0071), whereas “GT” of rs17109928 in NOC3L may decrease the risk in the over-dominant model (p = 0.0091). Using SHEsis software, we found PLCE1 and NOC3L are strongly linked, and the “GCCATTCTGTC” haplotype may increase the risk of CRC (p = 0.049). We found three genes (PLCE1, C11orf92-C11orf93, and NOC3L) are associated with CRC susceptibility. In combination with previous reports, our results suggest that these genes may be associated with CRC in the Han population.
Literature
1.
go back to reference Zheng S, Zhang SZ, Chen K, Zhu YL, Dong Q. Research on colorectal cancer in China. Recent Adv Cancer Res Ther. 2012; 535–95. Zheng S, Zhang SZ, Chen K, Zhu YL, Dong Q. Research on colorectal cancer in China. Recent Adv Cancer Res Ther. 2012; 535–95.
2.
go back to reference Gsur A, Bernbart K, Baierl A, Feik E, Fuhrlinger G, Hofer P, et al. No association of XRCC1 polymorphisms Arg194Trp and Arg399Gln with colorectal cancer risk. Cancer Epidemiol. 2011;35:e38–41.PubMedCrossRef Gsur A, Bernbart K, Baierl A, Feik E, Fuhrlinger G, Hofer P, et al. No association of XRCC1 polymorphisms Arg194Trp and Arg399Gln with colorectal cancer risk. Cancer Epidemiol. 2011;35:e38–41.PubMedCrossRef
3.
go back to reference Wang X, Zbou C, Qiu G, Fan J, Tang H, Peng Z. Screening of new tumor suppressor genes in sporadic colorectal cancer patients. Hepatogastroenterology. 2008;55:2039–44.PubMed Wang X, Zbou C, Qiu G, Fan J, Tang H, Peng Z. Screening of new tumor suppressor genes in sporadic colorectal cancer patients. Hepatogastroenterology. 2008;55:2039–44.PubMed
4.
go back to reference Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet. 2012;44:770–6.PubMedCrossRef Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet. 2012;44:770–6.PubMedCrossRef
5.
go back to reference Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008;40:1426–35.PubMedCrossRef Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008;40:1426–35.PubMedCrossRef
6.
go back to reference Peters U, Hutter CM, Hsu L, Schumacher FR, Conti DV, Carlson CS, et al. Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet. 2012;131:217–34.PubMedCentralPubMedCrossRef Peters U, Hutter CM, Hsu L, Schumacher FR, Conti DV, Carlson CS, et al. Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet. 2012;131:217–34.PubMedCentralPubMedCrossRef
7.
go back to reference Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet. 2009. Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet. 2009.
8.
go back to reference Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.PubMedCrossRef Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.PubMedCrossRef
9.
go back to reference Adamec C. Example of the use of the nonparametric test: Test χ2 for comparison of 2 independent examples. Cesk Zdrav. 1964;12:613–9.PubMed Adamec C. Example of the use of the nonparametric test: Test χ2 for comparison of 2 independent examples. Cesk Zdrav. 1964;12:613–9.PubMed
10.
go back to reference Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22:1928–9.PubMedCrossRef Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22:1928–9.PubMedCrossRef
11.
go back to reference Bland JM, Altman DG. Statistical notes. The odds ratio. Brit Med J. 2000;320:1468. Bland JM, Altman DG. Statistical notes. The odds ratio. Brit Med J. 2000;320:1468.
12.
go back to reference Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8.PubMedCrossRef Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8.PubMedCrossRef
13.
go back to reference Bye H, Prescott NJ, Lewis CM, Matejcjc M, Moodley L, Robertson B. Distinct genetic association at the PLCE1 locus with oesophageal squamous cell carcinoma in the South African population. Carcinogenesis. 2012;33:2155–61.PubMedCentralPubMedCrossRef Bye H, Prescott NJ, Lewis CM, Matejcjc M, Moodley L, Robertson B. Distinct genetic association at the PLCE1 locus with oesophageal squamous cell carcinoma in the South African population. Carcinogenesis. 2012;33:2155–61.PubMedCentralPubMedCrossRef
14.
go back to reference Gu H, Ding G, Zhang W, Liu C, Chen Y, Chen S. Replication study of PLCE1 and C20orf54 polymorphism and risk of esophageal cancer in a Chinese population. Mol Biol Rep. 2012;39:9105–11.PubMedCrossRef Gu H, Ding G, Zhang W, Liu C, Chen Y, Chen S. Replication study of PLCE1 and C20orf54 polymorphism and risk of esophageal cancer in a Chinese population. Mol Biol Rep. 2012;39:9105–11.PubMedCrossRef
15.
go back to reference Palmer AJ, Lochhead P, Hold GL, Rabkin CS, Chow WH, Lissowska J. Genetic variation in C20orf54, PLCE1 and MUC1 and the risk of upper gastrointestinal cancers in Caucasian populations. Eur J Cancer Prev. 2012;21:541–4.PubMedCentralPubMedCrossRef Palmer AJ, Lochhead P, Hold GL, Rabkin CS, Chow WH, Lissowska J. Genetic variation in C20orf54, PLCE1 and MUC1 and the risk of upper gastrointestinal cancers in Caucasian populations. Eur J Cancer Prev. 2012;21:541–4.PubMedCentralPubMedCrossRef
16.
go back to reference Wang X, Zhou C, Qiu G, Yang Y, Yan D, Xing T, et al. Phospholipase C epsilon plays a suppressive role in incidence of colorectal cancer. Med Oncol. 2012;29:1051–8.PubMedCrossRef Wang X, Zhou C, Qiu G, Yang Y, Yan D, Xing T, et al. Phospholipase C epsilon plays a suppressive role in incidence of colorectal cancer. Med Oncol. 2012;29:1051–8.PubMedCrossRef
17.
go back to reference Wang XL, Zhou CZ, Qiu GQ, Fan JW, Xing TH, Li T, et al. PLCE1 over-expression inhibits migration of colon cancer SW620 cells and induces their apoptosis. Tumor. 2011; 31. Wang XL, Zhou CZ, Qiu GQ, Fan JW, Xing TH, Li T, et al. PLCE1 over-expression inhibits migration of colon cancer SW620 cells and induces their apoptosis. Tumor. 2011; 31.
18.
go back to reference Peltekova V, Lemire M, Trinh Q, Qazi A, Bielecki R, HodgsonJensen L, et al. Tumor microenvironment and genetic association with colorectal cancer risk. EJC. 2012;48 Suppl 5:S25.CrossRef Peltekova V, Lemire M, Trinh Q, Qazi A, Bielecki R, HodgsonJensen L, et al. Tumor microenvironment and genetic association with colorectal cancer risk. EJC. 2012;48 Suppl 5:S25.CrossRef
19.
go back to reference Tominage K, Johmura Y, Nishizuka M, Imagawa M. Fad24, a mammalian homolog of Noc3p, is a positive regulator in adipocyte differentiation. J Cell Sci. 2004;117:6217–26.CrossRef Tominage K, Johmura Y, Nishizuka M, Imagawa M. Fad24, a mammalian homolog of Noc3p, is a positive regulator in adipocyte differentiation. J Cell Sci. 2004;117:6217–26.CrossRef
20.
go back to reference Johmura Y, Osada S, Nishizuka M, Imaqawa M. FAD24, a regulator of adipogenesis, is required for the regulation of DNA replication in cell proliferation. Biol Pharm Bull. 2008;31:1092–5.PubMedCrossRef Johmura Y, Osada S, Nishizuka M, Imaqawa M. FAD24, a regulator of adipogenesis, is required for the regulation of DNA replication in cell proliferation. Biol Pharm Bull. 2008;31:1092–5.PubMedCrossRef
21.
go back to reference Johmura Y, Osada S, Nishizuka M, Imagawa M. FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication. J Biol Chem. 2008;283:2265–74.PubMedCrossRef Johmura Y, Osada S, Nishizuka M, Imagawa M. FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication. J Biol Chem. 2008;283:2265–74.PubMedCrossRef
22.
go back to reference Johmura Y, Suzuki M, Osada S, Nishizuka M, Imagawa M. FAD24, a regulator of adipogenesis and DNA replication, inhibits H-RAS-mediated transformation by repressing NF-кB activity. Biochem Bioph Res Co. 2008;369:464–70.CrossRef Johmura Y, Suzuki M, Osada S, Nishizuka M, Imagawa M. FAD24, a regulator of adipogenesis and DNA replication, inhibits H-RAS-mediated transformation by repressing NF-кB activity. Biochem Bioph Res Co. 2008;369:464–70.CrossRef
23.
24.
go back to reference Wang S, Liu ZJ, Wang LS, Zhang XR. NF-κB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6:327–34.PubMedCrossRef Wang S, Liu ZJ, Wang LS, Zhang XR. NF-κB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6:327–34.PubMedCrossRef
25.
go back to reference Yuan LJ, Jin TB, Yin JK, Du XL, Wang Q, Dong R, et al. Polymorphisms of tumor-related genes IL-10, PSCA, MTRR, and NOC3L are associated with the risk of gastric cancer in the Chinese Han population. Cancer Epidemiol. 2012;36:e366–72.PubMedCrossRef Yuan LJ, Jin TB, Yin JK, Du XL, Wang Q, Dong R, et al. Polymorphisms of tumor-related genes IL-10, PSCA, MTRR, and NOC3L are associated with the risk of gastric cancer in the Chinese Han population. Cancer Epidemiol. 2012;36:e366–72.PubMedCrossRef
Metadata
Title
Genetic association of PLCE1, C11orf92-C11orf93, and NOC3L with colorectal cancer risk in the Han population
Authors
Xianglong Duan
Xiaolan Li
Huiling Lou
Tingting Geng
Tianbo Jin
Ping Liang
Shanqu Li
Yanbin Long
Chao Chen
Publication date
01-03-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 3/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1242-9

Other articles of this Issue 3/2014

Tumor Biology 3/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine