Skip to main content
Top
Published in: Tumor Biology 5/2013

01-10-2013 | Research Article

Association between MTHFR 677C>T polymorphism and risk of gliomas: evidence from a meta-analysis

Authors: Qiong Lu, Dongwei Dai, Wenyuan Zhao, Laixing Wang, Zhijian Yue, Xin Chen, Guosheng Han, Bin Hao, Pengfei Yang, Anmei Deng, Jianmin Liu

Published in: Tumor Biology | Issue 5/2013

Login to get access

Abstract

Folate metabolism plays an important role in carcinogenesis. Methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism is a genetic alteration in an enzyme involved in folate metabolism, but its effect on risk of gliomas is still uncertain. To shed some light on these contradictory results from previous studies, we performed a meta-analysis of published data investigating the association between MTHFR 677C>T polymorphism and risk of gliomas. PubMed, Embase, and Web of Science databases were searched for eligible case–control studies. Odds ratios (ORs) and 95 % confidence intervals (CIs) were used to assess the strength of this association. Ten individual case–control studies from six publications with a total of 1,786 cases and 2,076 controls were included into this meta-analysis. There was no obvious heterogeneity under all comparison models of this meta-analysis. Meta-analysis of those ten studies showed that there was no obvious association between MTHFR 677C>T polymorphism and risk of gliomas under all five genetic models (for T versus C, OR = 1.00, 95 % CI 0.90–1.12, P OR = 0.959; for TT versus CC, OR = 1.02, 95 % CI 0.82–1.27, P OR = 0.870; for CT versus CC, OR = 1.02, 95 % CI 0.89–1.18, P OR = 0.733; for TT+CT versus CC, OR = 1.02, 95 % CI 0.90–1.16, P OR = 0.781; for TT versus CT+CC, OR = 0.99, 95 % CI 0.81–1.21, P OR = 0.902). There was also no obvious association between MTHFR 677C>T polymorphism and risk of gliomas in the sensitivity and subgroup analyses of Caucasians. There was no risk of publication bias in this meta-analysis. The evidence from our meta-analysis supports that there is no association between MTHFR 677C>T polymorphism and risk of gliomas.
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
3.
go back to reference Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311–33.CrossRefPubMed Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311–33.CrossRefPubMed
4.
go back to reference Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60:166–93.PubMedCentralCrossRefPubMed Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60:166–93.PubMedCentralCrossRefPubMed
5.
go back to reference Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov. 2004;3:430–46.CrossRefPubMed Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov. 2004;3:430–46.CrossRefPubMed
6.
go back to reference Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.CrossRefPubMed Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.CrossRefPubMed
7.
go back to reference Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA. 2008;299:2423–36.PubMedCentralCrossRefPubMed Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA. 2008;299:2423–36.PubMedCentralCrossRefPubMed
8.
go back to reference Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010;10:319–31.CrossRefPubMed Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010;10:319–31.CrossRefPubMed
9.
go back to reference Eichholzer M, Tonz O, Zimmermann R. Folic acid: a public-health challenge. Lancet. 2006;367:1352–61.CrossRefPubMed Eichholzer M, Tonz O, Zimmermann R. Folic acid: a public-health challenge. Lancet. 2006;367:1352–61.CrossRefPubMed
10.
go back to reference Holmes MV, Newcombe P, Hubacek JA, Sofat R, Ricketts SL, Cooper J, et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet. 2011;378:584–94.PubMedCentralCrossRefPubMed Holmes MV, Newcombe P, Hubacek JA, Sofat R, Ricketts SL, Cooper J, et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet. 2011;378:584–94.PubMedCentralCrossRefPubMed
11.
go back to reference Antoniades C, Shirodaria C, Leeson P, Baarholm OA, Van-Assche T, Cunnington C, et al. MTHFR 677 C>T polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation. 2009;119:2507–15.CrossRefPubMed Antoniades C, Shirodaria C, Leeson P, Baarholm OA, Van-Assche T, Cunnington C, et al. MTHFR 677 C>T polymorphism reveals functional importance for 5-methyltetrahydrofolate, not homocysteine, in regulation of vascular redox state and endothelial function in human atherosclerosis. Circulation. 2009;119:2507–15.CrossRefPubMed
12.
go back to reference Fodinger M, Horl WH, Sunder-Plassmann G. Molecular biology of 5,10-methylenetetrahydrofolate reductase. J Nephrol. 2000;13:20–33.PubMed Fodinger M, Horl WH, Sunder-Plassmann G. Molecular biology of 5,10-methylenetetrahydrofolate reductase. J Nephrol. 2000;13:20–33.PubMed
13.
go back to reference Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.CrossRefPubMed Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–3.CrossRefPubMed
14.
go back to reference Ueland PM, Hustad S, Schneede J, Refsum H, Vollset SE. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci. 2001;22:195–201.CrossRefPubMed Ueland PM, Hustad S, Schneede J, Refsum H, Vollset SE. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci. 2001;22:195–201.CrossRefPubMed
15.
go back to reference Kafadar AM, Yilmaz H, Kafadar D, Ergen A, Zeybek U, Bozkurt N, et al. C677T gene polymorphism of methylenetetrahydrofolate reductase (MTHFR) in meningiomas and high-grade gliomas. Anticancer Res. 2006;26:2445–9.PubMed Kafadar AM, Yilmaz H, Kafadar D, Ergen A, Zeybek U, Bozkurt N, et al. C677T gene polymorphism of methylenetetrahydrofolate reductase (MTHFR) in meningiomas and high-grade gliomas. Anticancer Res. 2006;26:2445–9.PubMed
16.
go back to reference Semmler A, Simon M, Moskau S, Linnebank M. The methionine synthase polymorphism c.2756A>G alters susceptibility to glioblastoma multiforme. Cancer Epidemiol Biomarkers Prev. 2006;15:2314–6.CrossRefPubMed Semmler A, Simon M, Moskau S, Linnebank M. The methionine synthase polymorphism c.2756A>G alters susceptibility to glioblastoma multiforme. Cancer Epidemiol Biomarkers Prev. 2006;15:2314–6.CrossRefPubMed
17.
go back to reference Bethke L, Webb E, Murray A, Schoemaker M, Feychting M, Lonn S, et al. Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiol Biomarkers Prev. 2008;17:1195–202.CrossRefPubMed Bethke L, Webb E, Murray A, Schoemaker M, Feychting M, Lonn S, et al. Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiol Biomarkers Prev. 2008;17:1195–202.CrossRefPubMed
18.
go back to reference Sirachainan N, Wongruangsri S, Kajanachumpol S, Pakakasama S, Visudtibhan A, Nuchprayoon I, et al. Folate pathway genetic polymorphisms and susceptibility of central nervous system tumors in Thai children. Cancer Detect Prev. 2008;32:72–8.CrossRefPubMed Sirachainan N, Wongruangsri S, Kajanachumpol S, Pakakasama S, Visudtibhan A, Nuchprayoon I, et al. Folate pathway genetic polymorphisms and susceptibility of central nervous system tumors in Thai children. Cancer Detect Prev. 2008;32:72–8.CrossRefPubMed
19.
go back to reference da Costa DM, de Lima GP, Faria MH, Rabenhorst SH. Polymorphisms of folate pathway enzymes (methylenetetrahydrofolate reductase and thymidylate synthase) and their relationship with thymidylate synthase expression in human astrocytic tumors. DNA Cell Biol. 2012;31:57–66.CrossRefPubMed da Costa DM, de Lima GP, Faria MH, Rabenhorst SH. Polymorphisms of folate pathway enzymes (methylenetetrahydrofolate reductase and thymidylate synthase) and their relationship with thymidylate synthase expression in human astrocytic tumors. DNA Cell Biol. 2012;31:57–66.CrossRefPubMed
20.
go back to reference Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMed Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMed
21.
23.
go back to reference Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.CrossRef Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.CrossRef
24.
go back to reference Tobias A. Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull. 1999;8:15–7. Tobias A. Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull. 1999;8:15–7.
25.
go back to reference Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ. 1998;316:469.PubMedCentralCrossRefPubMed Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ. 1998;316:469.PubMedCentralCrossRefPubMed
27.
go back to reference Sciacca FL, Ciusani E, Silvani A, Corsini E, Frigerio S, Pogliani S, et al. Genetic and plasma markers of venous thromboembolism in patients with high grade glioma. Clin Cancer Res. 2004;10:1312–7.CrossRefPubMed Sciacca FL, Ciusani E, Silvani A, Corsini E, Frigerio S, Pogliani S, et al. Genetic and plasma markers of venous thromboembolism in patients with high grade glioma. Clin Cancer Res. 2004;10:1312–7.CrossRefPubMed
28.
go back to reference Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol. 2011;12:83–91.CrossRefPubMed Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol. 2011;12:83–91.CrossRefPubMed
29.
go back to reference Jiang L, Fang X, Bao Y, Zhou JY, Shen XY, Ding MH, et al. Association between the XRCC1 polymorphisms and glioma risk: a meta-analysis of case–control studies. PLoS One. 2013;8(1):e55597.PubMedCentralCrossRefPubMed Jiang L, Fang X, Bao Y, Zhou JY, Shen XY, Ding MH, et al. Association between the XRCC1 polymorphisms and glioma risk: a meta-analysis of case–control studies. PLoS One. 2013;8(1):e55597.PubMedCentralCrossRefPubMed
30.
go back to reference Wei X, Chen D, Lv T. A functional polymorphism in XRCC1 is associated with glioma risk: evidence from a meta-analysis. Mol Biol Rep. 2013;40(1):567–72.CrossRefPubMed Wei X, Chen D, Lv T. A functional polymorphism in XRCC1 is associated with glioma risk: evidence from a meta-analysis. Mol Biol Rep. 2013;40(1):567–72.CrossRefPubMed
31.
go back to reference Lee MS, Asomaning K, Su L, Wain JC, Mark EJ, Christiani DC. MTHFR polymorphisms, folate intake and carcinogen DNA adducts in the lung. Int J Cancer. 2012;131(5):1203–9.PubMedCentralCrossRefPubMed Lee MS, Asomaning K, Su L, Wain JC, Mark EJ, Christiani DC. MTHFR polymorphisms, folate intake and carcinogen DNA adducts in the lung. Int J Cancer. 2012;131(5):1203–9.PubMedCentralCrossRefPubMed
32.
go back to reference Qin X, Peng Q, Chen Z, Deng Y, Huang S, Xu J, et al. The association between MTHFR gene polymorphisms and hepatocellular carcinoma risk: a meta-analysis. PLoS One. 2013;8(2):e56070.PubMedCentralCrossRefPubMed Qin X, Peng Q, Chen Z, Deng Y, Huang S, Xu J, et al. The association between MTHFR gene polymorphisms and hepatocellular carcinoma risk: a meta-analysis. PLoS One. 2013;8(2):e56070.PubMedCentralCrossRefPubMed
Metadata
Title
Association between MTHFR 677C>T polymorphism and risk of gliomas: evidence from a meta-analysis
Authors
Qiong Lu
Dongwei Dai
Wenyuan Zhao
Laixing Wang
Zhijian Yue
Xin Chen
Guosheng Han
Bin Hao
Pengfei Yang
Anmei Deng
Jianmin Liu
Publication date
01-10-2013
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2013
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-0838-4

Other articles of this Issue 5/2013

Tumor Biology 5/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine