Skip to main content
Top
Published in: Tumor Biology 5/2013

01-10-2013 | Research Article

Association between NQO1 C609T polymorphism and bladder cancer susceptibility: a systemic review and meta-analysis

Authors: Min Gong, Qingtong Yi, Weiming Wang

Published in: Tumor Biology | Issue 5/2013

Login to get access

Abstract

There is growing evidence for the important roles of genetic factors in the host’s susceptibility to bladder cancer. NAD(P)H:quinone oxidoreductase 1 (NQO1) is a cytosolic enzyme that catalyzes the two-electron reduction of quinoid compounds into hydroquinones. Since the NQO1 C609T polymorphism is linked to enzymatic activity of NQO1, it has also been hypothesized that NQO1 C609T polymorphism may affect the host’s susceptibility to bladder cancer by modifying the exposure to carcinogens. There were many studies carried out to assess the association between NQO1 C609T polymorphism and bladder cancer risk, but they reported contradictory results. We conducted a meta-analysis to examine the hypotheses that the NQO1 C609T polymorphism modifies the risk of bladder cancer. Eleven case–control studies with 2,937 bladder cancer cases and 3,008 controls were included in the meta-analysis. Overall, there was no obvious association between NQO1 C609T polymorphism and bladder cancer susceptibility (for T versus C: odds ratio (OR) = 1.12, 95 % confidence interval (95 %CI) 0.99–1.26, P OR = 0.069; for TT versus CC: OR = 1.31, 95 %CI 0.95–1.81, P OR = 0.100; for TT/CT versus CC: OR = 1.06, 95 %CI 0.95–1.18, P OR = 0.304; for TT versus CT/CC: OR = 1.29, 95 %CI 0.94–1.77, P OR = 0.112). After adjusting for heterogeneity, meta-analysis of those left 10 studies showed that there was an obvious association between NQO1 C609T polymorphism and bladder cancer susceptibility (for T versus C: OR = 1.18, 95 %CI 1.06–1.31, P OR = 0.003; for TT versus CC: OR = 1.47, 95 %CI 1.14–1.90, P OR = 0.003; for TT/CT versus CC: OR = 1.16, 95 %CI 1.01–1.34, P OR = 0.036; for TT versus CT/CC: OR = 1.39, 95 %CI 1.10–1.75, P OR = 0.006). There was low risk of publication bias. Therefore, our meta-analysis suggests that NQO1 C609T polymorphism is associated with bladder cancer susceptibility.
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
3.
go back to reference Mitra AP, Cote RJ. Molecular pathogenesis and diagnostics of bladder cancer. Annu Rev Pathol. 2009;4:251–85.CrossRefPubMed Mitra AP, Cote RJ. Molecular pathogenesis and diagnostics of bladder cancer. Annu Rev Pathol. 2009;4:251–85.CrossRefPubMed
4.
go back to reference Wu X, Hildebrandt MA, Chang DW. Genome-wide association studies of bladder cancer risk: a field synopsis of progress and potential applications. Cancer Metastasis Rev. 2009;28:269–80.CrossRefPubMed Wu X, Hildebrandt MA, Chang DW. Genome-wide association studies of bladder cancer risk: a field synopsis of progress and potential applications. Cancer Metastasis Rev. 2009;28:269–80.CrossRefPubMed
5.
go back to reference Golka K, Selinski S, Lehmann ML, Blaszkewicz M, Marchan R, Ickstadt K, et al. Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”. Arch Toxicol. 2011;85:539–54.CrossRefPubMed Golka K, Selinski S, Lehmann ML, Blaszkewicz M, Marchan R, Ickstadt K, et al. Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”. Arch Toxicol. 2011;85:539–54.CrossRefPubMed
7.
go back to reference Ross D, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 2004;382:115–44.CrossRefPubMed Ross D, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 2004;382:115–44.CrossRefPubMed
8.
go back to reference Guha N, Chang JS, Chokkalingam AP, Wiemels JL, Smith MT, Buffler PA. NQO1 polymorphisms and de novo childhood leukemia: a huge review and meta-analysis. Am J Epidemiol. 2008;168:1221–32.PubMedCentralCrossRefPubMed Guha N, Chang JS, Chokkalingam AP, Wiemels JL, Smith MT, Buffler PA. NQO1 polymorphisms and de novo childhood leukemia: a huge review and meta-analysis. Am J Epidemiol. 2008;168:1221–32.PubMedCentralCrossRefPubMed
9.
go back to reference Siegel D, Yan C, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Pharmacol. 2012;83:1033–40.PubMedCentralCrossRefPubMed Siegel D, Yan C, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Pharmacol. 2012;83:1033–40.PubMedCentralCrossRefPubMed
10.
go back to reference Misra V, Grondin A, Klamut HJ, Rauth AM. Assessment of the relationship between genotypic status of a DT-diaphorase point mutation and enzymatic activity. Br J Cancer. 2000;83:998–1002.PubMedCentralCrossRefPubMed Misra V, Grondin A, Klamut HJ, Rauth AM. Assessment of the relationship between genotypic status of a DT-diaphorase point mutation and enzymatic activity. Br J Cancer. 2000;83:998–1002.PubMedCentralCrossRefPubMed
11.
go back to reference Siegel D, McGuinness SM, Winski SL, Ross D. Genotype-phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetics. 1999;9:113–21.CrossRefPubMed Siegel D, McGuinness SM, Winski SL, Ross D. Genotype-phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetics. 1999;9:113–21.CrossRefPubMed
12.
go back to reference Wang YH, Lee YH, Tseng PT, Shen CH, Chiou HY. Human NAD(P)H:quinone oxidoreductase 1 (NQO1) and sulfotransferase 1A1 (SULT1A1) polymorphisms and urothelial cancer risk in Taiwan. J Cancer Res Clin Oncol. 2008;134:203–9.CrossRefPubMed Wang YH, Lee YH, Tseng PT, Shen CH, Chiou HY. Human NAD(P)H:quinone oxidoreductase 1 (NQO1) and sulfotransferase 1A1 (SULT1A1) polymorphisms and urothelial cancer risk in Taiwan. J Cancer Res Clin Oncol. 2008;134:203–9.CrossRefPubMed
13.
go back to reference Terry PD, Umbach DM, Taylor JA. No association between SOD2 or NQO1 genotypes and risk of bladder cancer. Cancer Epidemiol Biomark Prev. 2005;14:753–4.CrossRef Terry PD, Umbach DM, Taylor JA. No association between SOD2 or NQO1 genotypes and risk of bladder cancer. Cancer Epidemiol Biomark Prev. 2005;14:753–4.CrossRef
14.
go back to reference Schulz WA, Krummeck A, Rosinger I, Eickelmann P, Neuhaus C, Ebert T, et al. Increased frequency of a null-allele for NAD(P)H: quinone oxidoreductase in patients with urological malignancies. Pharmacogenetics. 1997;7:235–9.CrossRefPubMed Schulz WA, Krummeck A, Rosinger I, Eickelmann P, Neuhaus C, Ebert T, et al. Increased frequency of a null-allele for NAD(P)H: quinone oxidoreductase in patients with urological malignancies. Pharmacogenetics. 1997;7:235–9.CrossRefPubMed
15.
go back to reference Sanyal S, Festa F, Sakano S, Zhang Z, Steineck G, Norming U, et al. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis. 2004;25:729–34.CrossRefPubMed Sanyal S, Festa F, Sakano S, Zhang Z, Steineck G, Norming U, et al. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis. 2004;25:729–34.CrossRefPubMed
16.
go back to reference Park SJ, Zhao H, Spitz MR, Grossman HB, Wu X. An association between NQO1 genetic polymorphism and risk of bladder cancer. Mutat Res. 2003;536:131–7.CrossRefPubMed Park SJ, Zhao H, Spitz MR, Grossman HB, Wu X. An association between NQO1 genetic polymorphism and risk of bladder cancer. Mutat Res. 2003;536:131–7.CrossRefPubMed
17.
go back to reference Moore LE, Wiencke JK, Bates MN, Zheng S, Rey OA, Smith AH. Investigation of genetic polymorphisms and smoking in a bladder cancer case–control study in Argentina. Cancer Lett. 2004;211:199–207.CrossRefPubMed Moore LE, Wiencke JK, Bates MN, Zheng S, Rey OA, Smith AH. Investigation of genetic polymorphisms and smoking in a bladder cancer case–control study in Argentina. Cancer Lett. 2004;211:199–207.CrossRefPubMed
18.
go back to reference Hung RJ, Boffetta P, Brennan P, Malaveille C, Gelatti U, Placidi D, et al. Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk. Carcinogenesis. 2004;25:973–8.CrossRefPubMed Hung RJ, Boffetta P, Brennan P, Malaveille C, Gelatti U, Placidi D, et al. Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk. Carcinogenesis. 2004;25:973–8.CrossRefPubMed
19.
go back to reference Fu J, Chen BC. Relationship between genetic polymorphism of NQO1 and susceptibility to bladder cancer. J Chin Oncol. 2012;18:561–4. Fu J, Chen BC. Relationship between genetic polymorphism of NQO1 and susceptibility to bladder cancer. J Chin Oncol. 2012;18:561–4.
20.
go back to reference Figueroa JD, Malats N, Garcia-Closas M, Real FX, Silverman D, Kogevinas M, et al. Bladder cancer risk and genetic variation in AKR1C3 and other metabolizing genes. Carcinogenesis. 2008;29:1955–62.PubMedCentralCrossRefPubMed Figueroa JD, Malats N, Garcia-Closas M, Real FX, Silverman D, Kogevinas M, et al. Bladder cancer risk and genetic variation in AKR1C3 and other metabolizing genes. Carcinogenesis. 2008;29:1955–62.PubMedCentralCrossRefPubMed
21.
go back to reference Choi JY, Lee KM, Cho SH, Kim SW, Choi HY, Lee SY, et al. CYP2E1 and NQO1 genotypes, smoking and bladder cancer. Pharmacogenetics. 2003;13:349–55.CrossRefPubMed Choi JY, Lee KM, Cho SH, Kim SW, Choi HY, Lee SY, et al. CYP2E1 and NQO1 genotypes, smoking and bladder cancer. Pharmacogenetics. 2003;13:349–55.CrossRefPubMed
22.
go back to reference Broberg K, Bjork J, Paulsson K, Hoglund M, Albin M. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis. 2005;26:1263–71.CrossRefPubMed Broberg K, Bjork J, Paulsson K, Hoglund M, Albin M. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis. 2005;26:1263–71.CrossRefPubMed
24.
go back to reference Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMed Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMed
25.
26.
go back to reference Galbraith R. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med. 1988;7:889–94.CrossRefPubMed Galbraith R. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med. 1988;7:889–94.CrossRefPubMed
28.
go back to reference Kiltie AE. Common predisposition alleles for moderately common cancers: bladder cancer. Curr Opin Genet Dev. 2010;20:218–24.CrossRefPubMed Kiltie AE. Common predisposition alleles for moderately common cancers: bladder cancer. Curr Opin Genet Dev. 2010;20:218–24.CrossRefPubMed
29.
go back to reference Han SS, Rosenberg PS, Garcia-Closas M, Figueroa JD, Silverman D, Chanock SJ, et al. Likelihood ratio test for detecting gene (G)-environment (E) interactions under an additive risk model exploiting G-E independence for case–control data. Am J Epidemiol. 2012;176:1060–7.PubMedCentralCrossRefPubMed Han SS, Rosenberg PS, Garcia-Closas M, Figueroa JD, Silverman D, Chanock SJ, et al. Likelihood ratio test for detecting gene (G)-environment (E) interactions under an additive risk model exploiting G-E independence for case–control data. Am J Epidemiol. 2012;176:1060–7.PubMedCentralCrossRefPubMed
30.
go back to reference Boffetta P, Winn DM, Ioannidis JP, Thomas DC, Little J, Smith GD, et al. Recommendations and proposed guidelines for assessing the cumulative evidence on joint effects of genes and environments on cancer occurrence in humans. Int J Epidemiol. 2012;41:686–704.PubMedCentralCrossRefPubMed Boffetta P, Winn DM, Ioannidis JP, Thomas DC, Little J, Smith GD, et al. Recommendations and proposed guidelines for assessing the cumulative evidence on joint effects of genes and environments on cancer occurrence in humans. Int J Epidemiol. 2012;41:686–704.PubMedCentralCrossRefPubMed
31.
go back to reference Panagiotakis GI, Papadogianni D, Chatziioannou MN, Lasithiotaki I, Delakas D, Spandidos DA. Association of human herpes, papilloma and polyoma virus families with bladder cancer. Tumour Biol. 2013;34:71–9.CrossRefPubMed Panagiotakis GI, Papadogianni D, Chatziioannou MN, Lasithiotaki I, Delakas D, Spandidos DA. Association of human herpes, papilloma and polyoma virus families with bladder cancer. Tumour Biol. 2013;34:71–9.CrossRefPubMed
32.
go back to reference Zhang Y, Wang X, Zhang W, Gong S. An association between XPC Lys939Gln polymorphism and the risk of bladder cancer: a meta-analysis. Tumour Biol. 2013;34:973–82.CrossRefPubMed Zhang Y, Wang X, Zhang W, Gong S. An association between XPC Lys939Gln polymorphism and the risk of bladder cancer: a meta-analysis. Tumour Biol. 2013;34:973–82.CrossRefPubMed
33.
go back to reference Fan R, Zhong M, Wang S, Zhang Y, Andrew A, Karagas M, et al. Entropy-based information gain approaches to detect and to characterize gene-gene and gene-environment interactions/correlations of complex diseases. Genet Epidemiol. 2011;35:706–21.PubMedCentralCrossRefPubMed Fan R, Zhong M, Wang S, Zhang Y, Andrew A, Karagas M, et al. Entropy-based information gain approaches to detect and to characterize gene-gene and gene-environment interactions/correlations of complex diseases. Genet Epidemiol. 2011;35:706–21.PubMedCentralCrossRefPubMed
Metadata
Title
Association between NQO1 C609T polymorphism and bladder cancer susceptibility: a systemic review and meta-analysis
Authors
Min Gong
Qingtong Yi
Weiming Wang
Publication date
01-10-2013
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2013
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-0799-7

Other articles of this Issue 5/2013

Tumor Biology 5/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine