Skip to main content
Top
Published in: Tumor Biology 6/2012

01-12-2012 | Research Article

IRF1 suppresses Ki-67 promoter activity through interfering with Sp1 activation

Authors: Feifei Chen, Jian Song, Jiehui Di, Qing Zhang, Hui Tian, Junnian Zheng

Published in: Tumor Biology | Issue 6/2012

Login to get access

Abstract

Interferon regulatory factor 1 (IRF1) shows tumor-suppressor activity by suppressing proliferation of cancer cells. To exert its anti-proliferative effects, this factor must ultimately control transcription of several key genes that regulate cell cycle progression. Here, we showed that Ki-67 gene is a novel proliferation-related downstream target of IRF1. IRF1 repressed Ki-67 gene transcription in a dose-dependent manner in human Ketr-3 and 786-O renal carcinoma cells. We previously cloned the Ki-67 core promoter which contained two functional Sp1 binding sites. Mutation of the two Sp1 binding sites abrogated Sp1-dependent enhancement of Ki-67 promoter activity. Forced elevation of IRF1 decreased endogenous Sp1 protein level. However, there was no effect on Sp1 mRNA level after transfected with IRF1. Our findings establish a casual series of events that connect anti-proliferative effects of IRF1 with the Ki-67 gene, which encodes a key regulator of the G1/S phase transition. It suggests that the inhibitory effect on Ki-67 gene expression mediated by decreasing level of Sp1 protein might be a novel function of the anti-tumor activity of IRF1.
Literature
1.
2.
go back to reference Algaba F, Akaza H, López-Beltrán A, et al. Current pathology keys of renal cell carcinoma. Eur Urol. 2011;60(4):634–43.PubMedCrossRef Algaba F, Akaza H, López-Beltrán A, et al. Current pathology keys of renal cell carcinoma. Eur Urol. 2011;60(4):634–43.PubMedCrossRef
3.
go back to reference Sugimura J, Tamura G, Suzuki Y, et al. Allelic loss on chromosomes 3p, 5q and 17p in renal cell carcinomas. Pathol Int. 1997;47(2–3):79–83.PubMed Sugimura J, Tamura G, Suzuki Y, et al. Allelic loss on chromosomes 3p, 5q and 17p in renal cell carcinomas. Pathol Int. 1997;47(2–3):79–83.PubMed
4.
go back to reference Itoh S, Harada H, Nakamura Y, et al. Assignment of the human interferon regulatory factor-1 (IRF1) gene to chromosome 5q23-q31. Genomics. 1991;10:1097–9.PubMedCrossRef Itoh S, Harada H, Nakamura Y, et al. Assignment of the human interferon regulatory factor-1 (IRF1) gene to chromosome 5q23-q31. Genomics. 1991;10:1097–9.PubMedCrossRef
5.
go back to reference Fujita T, Sakakibara J, Sudo Y, et al. Evidence for a nuclear factor(s), IRF1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. EMBO J. 1988;7(11):3397–405.PubMed Fujita T, Sakakibara J, Sudo Y, et al. Evidence for a nuclear factor(s), IRF1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. EMBO J. 1988;7(11):3397–405.PubMed
6.
go back to reference Nozawa H, Oda E, Ueda S, et al. Functionally inactivating point mutation in the tumor-suppressor IRF1 gene identified in human gastric cancer. Int J Cancer. 1998;77(4):522–7.PubMedCrossRef Nozawa H, Oda E, Ueda S, et al. Functionally inactivating point mutation in the tumor-suppressor IRF1 gene identified in human gastric cancer. Int J Cancer. 1998;77(4):522–7.PubMedCrossRef
7.
go back to reference Takaoka A, Tamura T, Taniguchi T. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci. 2008;99(3):467–78.PubMedCrossRef Takaoka A, Tamura T, Taniguchi T. Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci. 2008;99(3):467–78.PubMedCrossRef
8.
go back to reference Xie R, van Wijnen AJ, van Der Meijden C, et al. The cell cycle control element of histone H4 gene transcription is maximally responsive to interferon regulatory factor pairs IRF1/IRF-3 and IRF1/IRF-7. J Biol Chem. 2001;276(21):18624–32.PubMedCrossRef Xie R, van Wijnen AJ, van Der Meijden C, et al. The cell cycle control element of histone H4 gene transcription is maximally responsive to interferon regulatory factor pairs IRF1/IRF-3 and IRF1/IRF-7. J Biol Chem. 2001;276(21):18624–32.PubMedCrossRef
9.
go back to reference Xie RL, Gupta S, Miele A, et al. The tumor suppressor interferon regulatory factor 1 interferes with SP1 activation to repress the human CDK2 promoter. J Biol Chem. 2003;278(29):26589–96.PubMedCrossRef Xie RL, Gupta S, Miele A, et al. The tumor suppressor interferon regulatory factor 1 interferes with SP1 activation to repress the human CDK2 promoter. J Biol Chem. 2003;278(29):26589–96.PubMedCrossRef
10.
go back to reference Li P, Du Q, Cao Z, et al. Interferon-γ induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF1). Cancer Lett. 2012;314(2):213–22.PubMedCrossRef Li P, Du Q, Cao Z, et al. Interferon-γ induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF1). Cancer Lett. 2012;314(2):213–22.PubMedCrossRef
11.
go back to reference Coccia EM, Stellacci E, Valtieri M, et al. Ectopic expression of interferon regulatory factor-1 potentiates granulocytic differentiation. Biochem J. 2001;360(Pt 2):285–94.PubMedCrossRef Coccia EM, Stellacci E, Valtieri M, et al. Ectopic expression of interferon regulatory factor-1 potentiates granulocytic differentiation. Biochem J. 2001;360(Pt 2):285–94.PubMedCrossRef
12.
go back to reference Gerdes J, Li L, Schlueter C, et al. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol. 1991;138(4):867–73.PubMed Gerdes J, Li L, Schlueter C, et al. Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol. 1991;138(4):867–73.PubMed
13.
go back to reference Bubán T, Tóth L, Tanyi M, et al. Ki-67—new faces of an old player. Orv Hetil. 2009;150(23):1059–70.PubMedCrossRef Bubán T, Tóth L, Tanyi M, et al. Ki-67—new faces of an old player. Orv Hetil. 2009;150(23):1059–70.PubMedCrossRef
14.
go back to reference McGuire BB, Fitzpatrick JM. Biomarkers in renal cell carcinoma. Curr Opin Urol. 2009;19(5):441–6.PubMedCrossRef McGuire BB, Fitzpatrick JM. Biomarkers in renal cell carcinoma. Curr Opin Urol. 2009;19(5):441–6.PubMedCrossRef
15.
go back to reference Pei DS, Qian GW, Tian H, et al. Analysis of human Ki-67 gene promoter and identification of the Sp1 binding sites for Ki-67 transcription. Tumour Biol. 2012;33(1):257–66.PubMedCrossRef Pei DS, Qian GW, Tian H, et al. Analysis of human Ki-67 gene promoter and identification of the Sp1 binding sites for Ki-67 transcription. Tumour Biol. 2012;33(1):257–66.PubMedCrossRef
16.
go back to reference Tian H, Qian GW, Li W, et al. A critical role of Sp1 transcription factor in regulating the human Ki-67 gene expression. Tumour Biol. 2011;32(2):273–83.PubMedCrossRef Tian H, Qian GW, Li W, et al. A critical role of Sp1 transcription factor in regulating the human Ki-67 gene expression. Tumour Biol. 2011;32(2):273–83.PubMedCrossRef
17.
go back to reference Patil DT, Chou PM. Sialoblastoma: utility of Ki-67 and p53 as a prognostic tool and review of literature. Pediatr Dev Pathol. 2010;13(1):32–8.PubMedCrossRef Patil DT, Chou PM. Sialoblastoma: utility of Ki-67 and p53 as a prognostic tool and review of literature. Pediatr Dev Pathol. 2010;13(1):32–8.PubMedCrossRef
18.
go back to reference Li XQ, Pei DS, Qian GW, et al. The effect of methylated oligonucleotide targeting Ki-67 gene in human 786-O renal carcinoma cells. Tumour Biol. 2011;32(5):863–72.PubMedCrossRef Li XQ, Pei DS, Qian GW, et al. The effect of methylated oligonucleotide targeting Ki-67 gene in human 786-O renal carcinoma cells. Tumour Biol. 2011;32(5):863–72.PubMedCrossRef
19.
go back to reference Spink J, Evans T. Binding of the transcription factor interferon regulatory factor-1 to the inducible nitric-oxide synthase promoter. J Biol Chem. 1997;272(39):24417–25.PubMedCrossRef Spink J, Evans T. Binding of the transcription factor interferon regulatory factor-1 to the inducible nitric-oxide synthase promoter. J Biol Chem. 1997;272(39):24417–25.PubMedCrossRef
20.
go back to reference Philipsen S, Suske G. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 1999;27(15):2991–3000.PubMedCrossRef Philipsen S, Suske G. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 1999;27(15):2991–3000.PubMedCrossRef
21.
go back to reference Davie JR, He S, Li L, et al. Nuclear organization and chromatin dynamics-Sp1, Sp3 and histone deacetylases. Adv Enzym Regul. 2008;48:189–208.CrossRef Davie JR, He S, Li L, et al. Nuclear organization and chromatin dynamics-Sp1, Sp3 and histone deacetylases. Adv Enzym Regul. 2008;48:189–208.CrossRef
22.
go back to reference van’s Gravesande S, Layne MD, Ye Q, et al. IFN regulatory factor-1 regulates IFN-gamma-dependent cathepsin S expression. J Immunol. 2002;168(9):4488–94. van’s Gravesande S, Layne MD, Ye Q, et al. IFN regulatory factor-1 regulates IFN-gamma-dependent cathepsin S expression. J Immunol. 2002;168(9):4488–94.
23.
go back to reference Sgarbanti M, Remoli AL, Marsili G, et al. IRF1 is required for full NF-kappaB transcriptional activity at the human immunodeficiency virus type 1 long terminal repeat enhancer. J Virol. 2008;82(7):3632–41.PubMedCrossRef Sgarbanti M, Remoli AL, Marsili G, et al. IRF1 is required for full NF-kappaB transcriptional activity at the human immunodeficiency virus type 1 long terminal repeat enhancer. J Virol. 2008;82(7):3632–41.PubMedCrossRef
24.
go back to reference Tapias A, Ciudad CJ, Roninson IB, et al. Regulation of Sp1 by cell cycle related proteins. Cell Cycle. 2008;7(18):2856–67.PubMedCrossRef Tapias A, Ciudad CJ, Roninson IB, et al. Regulation of Sp1 by cell cycle related proteins. Cell Cycle. 2008;7(18):2856–67.PubMedCrossRef
Metadata
Title
IRF1 suppresses Ki-67 promoter activity through interfering with Sp1 activation
Authors
Feifei Chen
Jian Song
Jiehui Di
Qing Zhang
Hui Tian
Junnian Zheng
Publication date
01-12-2012
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2012
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-012-0483-3

Other articles of this Issue 6/2012

Tumor Biology 6/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine