Skip to main content
Top
Published in: Tumor Biology 2/2012

01-04-2012 | Research Article

DNA methylation biomarker candidates for early detection of colon cancer

Authors: Joo Mi Yi, Mashaal Dhir, Angela A. Guzzetta, Christine A. Iacobuzio-Donahue, Kyu Heo, Kwang Mo Yang, Hiromu Suzuki, Minoru Toyota, Hwan-Mook Kim, Nita Ahuja

Published in: Tumor Biology | Issue 2/2012

Login to get access

Abstract

Promoter CpG island hypermethylation of tumor suppressor genes is a common hallmark of all human cancers. Many researchers have been looking for potential epigenetic therapeutic targets in cancer using gene expression profiling with DNA microarray approaches. Our recent genome-wide platform of CpG island hypermethylation and gene expression in colorectal cancer (CRC) cell lines revealed that FBN2 and TCERG1L gene silencing is associated with DNA hypermethylation of a CpG island in the promoter region. In this study, promoter DNA hypermethylation of FBN2 and TCERG1L in CRC occurs as an early and cancer-specific event in colorectal cancer. Both genes showed high frequency of methylation in colon cancer cell lines (>80% for both of genes), adenomas (77% for FBN2, 90% for TCERG1L, n = 39), and carcinomas (86% for FBN2, 99% for TCERG1L, n = 124). Bisulfite sequencing confirmed cancer-specific methylation of FBN2 and TCERG1L of promoters in colon cancer cell line and cancers but not in normal colon. Methylation of FBN2 and TCERG1L is accompanied by downregulation in cell lines and in primary tumors as described in the Oncomine™ website. Together, our results suggest that gene silencing of FBN2 and TCERG1L is associated with promoter DNA hypermethylation in CRC tumors and may be excellent biomarkers for the early detection of CRC.
Literature
1.
2.
go back to reference Heresbach DMS, D'halluin PN, Bretagne JF, Branger B. Review in depth and meta-analysis of controlled trials on colorectal cancer screening by faecal occult blood test. Eur J Gastroenterol Hepatol. 2006;18:427–33.PubMedCrossRef Heresbach DMS, D'halluin PN, Bretagne JF, Branger B. Review in depth and meta-analysis of controlled trials on colorectal cancer screening by faecal occult blood test. Eur J Gastroenterol Hepatol. 2006;18:427–33.PubMedCrossRef
3.
go back to reference Meissner HI, Breen N, Klabunde CN, Vernon SW. Patterns of colorectal cancer screening uptake among men and women in the United States. Cancer Epidemiol Biomarkers & Prevention. 2006;15:389–94.CrossRef Meissner HI, Breen N, Klabunde CN, Vernon SW. Patterns of colorectal cancer screening uptake among men and women in the United States. Cancer Epidemiol Biomarkers & Prevention. 2006;15:389–94.CrossRef
4.
go back to reference Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54.PubMedCrossRef Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54.PubMedCrossRef
6.
go back to reference Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Dong Chen W, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36:417–22.PubMedCrossRef Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Dong Chen W, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36:417–22.PubMedCrossRef
7.
go back to reference Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, et al. Gata-4 and gata-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol. 2003;23:8429–39.PubMedCrossRef Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, et al. Gata-4 and gata-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol. 2003;23:8429–39.PubMedCrossRef
8.
go back to reference Glockner SC, Dhir M, Yi JM, McGarvey KE, Van Neste L, Louwagie J, et al. Methylation of tfpi2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. Cancer Res. 2009;69:4691–9.PubMedCrossRef Glockner SC, Dhir M, Yi JM, McGarvey KE, Van Neste L, Louwagie J, et al. Methylation of tfpi2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. Cancer Res. 2009;69:4691–9.PubMedCrossRef
9.
go back to reference Schuebel KE, Chen W, Cope L, Glöckner SC, Suzuki H, Yi JM, et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genetics. 2007;3:1709–23.PubMedCrossRef Schuebel KE, Chen W, Cope L, Glöckner SC, Suzuki H, Yi JM, et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genetics. 2007;3:1709–23.PubMedCrossRef
10.
go back to reference Karpf AR JD. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Oncogene. 2002;21:5496–503.PubMedCrossRef Karpf AR JD. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Oncogene. 2002;21:5496–503.PubMedCrossRef
11.
go back to reference Yang Q, Ota K, Tian Y, Kumar A, Wada J, Kashihara N, et al. Cloning of rat fibrillin-2 cDNA and its role in branching morphogenesis of embryonic lung. Dev Biol. 1999;212:229–42.PubMedCrossRef Yang Q, Ota K, Tian Y, Kumar A, Wada J, Kashihara N, et al. Cloning of rat fibrillin-2 cDNA and its role in branching morphogenesis of embryonic lung. Dev Biol. 1999;212:229–42.PubMedCrossRef
12.
go back to reference Hagihara A, Miyamoto K, Furuta J, Hiraoka N, Wakazono K, Seki S, et al. Identification of 27 5′ CpG islands aberrantly methylated and 13 genes silenced in human pancreatic cancers. Oncogene. 2004;23:8705–10.PubMedCrossRef Hagihara A, Miyamoto K, Furuta J, Hiraoka N, Wakazono K, Seki S, et al. Identification of 27 5′ CpG islands aberrantly methylated and 13 genes silenced in human pancreatic cancers. Oncogene. 2004;23:8705–10.PubMedCrossRef
13.
go back to reference Sune C, Hayashi T, Liu Y, Lane WS, Young RA, Garcia-Blanco MA. Ca150, a nuclear protein associated with the RNA polymerase ii holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol Cell Biol. 1997;17:6029–39.PubMed Sune C, Hayashi T, Liu Y, Lane WS, Young RA, Garcia-Blanco MA. Ca150, a nuclear protein associated with the RNA polymerase ii holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol Cell Biol. 1997;17:6029–39.PubMed
14.
go back to reference Sanchez-Alvarez M, Goldstrohm AC, Garcia-Blanco MA, Sune C. Human transcription elongation factor ca150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol Cell Biol. 2006;26:4998–5014.PubMedCrossRef Sanchez-Alvarez M, Goldstrohm AC, Garcia-Blanco MA, Sune C. Human transcription elongation factor ca150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol Cell Biol. 2006;26:4998–5014.PubMedCrossRef
15.
go back to reference Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, et al. DNMT1 and DNMT3B cooperate to silence genes in human cancer cells. Nature. 2002;416:552–6.PubMedCrossRef Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, et al. DNMT1 and DNMT3B cooperate to silence genes in human cancer cells. Nature. 2002;416:552–6.PubMedCrossRef
16.
go back to reference Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.PubMedCrossRef Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.PubMedCrossRef
17.
go back to reference Rhodes DR YJ, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, et al. Oncomine: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.PubMed Rhodes DR YJ, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, et al. Oncomine: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.PubMed
18.
go back to reference Kaiser SPY, Franklin JL, Halberg RB, Yu M, Jessen WJ, Freudenberg J, et al. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol. 2007;8:R131.PubMedCrossRef Kaiser SPY, Franklin JL, Halberg RB, Yu M, Jessen WJ, Freudenberg J, et al. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol. 2007;8:R131.PubMedCrossRef
19.
go back to reference Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, et al. Metastasis-associated gene expression changes predict poor outcomes in patients with dukes stage b and c colorectal cancer. Clin Cancer Res. 2009;15:7642–51.PubMedCrossRef Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, et al. Metastasis-associated gene expression changes predict poor outcomes in patients with dukes stage b and c colorectal cancer. Clin Cancer Res. 2009;15:7642–51.PubMedCrossRef
20.
go back to reference Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology. 2010;138:958–68.PubMedCrossRef Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology. 2010;138:958–68.PubMedCrossRef
21.
go back to reference Watanabe T, Kobunai T, Toda E, Yamamoto Y, Kanazawa T, Kazama Y, et al. Distal colorectal cancers with microsatellite instability (MSI) display distinct gene expression profiles that are different from proximal MSI cancers. Cancer Res. 2006;66:9804–8.PubMedCrossRef Watanabe T, Kobunai T, Toda E, Yamamoto Y, Kanazawa T, Kazama Y, et al. Distal colorectal cancers with microsatellite instability (MSI) display distinct gene expression profiles that are different from proximal MSI cancers. Cancer Res. 2006;66:9804–8.PubMedCrossRef
22.
go back to reference Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.PubMedCrossRef Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.PubMedCrossRef
23.
go back to reference Chan TA GS, Yi JM, Chen W, Van Neste L, Cope L, Herman JG, et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med. 2008;5:0823–38. Chan TA GS, Yi JM, Chen W, Van Neste L, Cope L, Herman JG, et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med. 2008;5:0823–38.
24.
go back to reference Yi JM, Dhir M, Van Neste L, Downing SR, Jeschke J, Glockner SC, et al. Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clin Cancer Res. 2011;17:1535–45.PubMedCrossRef Yi JM, Dhir M, Van Neste L, Downing SR, Jeschke J, Glockner SC, et al. Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clin Cancer Res. 2011;17:1535–45.PubMedCrossRef
25.
go back to reference Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007;16:R50–9.PubMedCrossRef Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007;16:R50–9.PubMedCrossRef
26.
go back to reference Zhang W, Glockner SC, Guo M, Machida EO, Wang DH, Easwaran H, et al. Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Research. 2008;68:2764–72.PubMedCrossRef Zhang W, Glockner SC, Guo M, Machida EO, Wang DH, Easwaran H, et al. Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Research. 2008;68:2764–72.PubMedCrossRef
27.
go back to reference Tsunoda SSE, De Young NJ, Wang X, Tian ZQ, Liu JF, Jamieson GG, et al. Methylation of CLDN6, FBN2, RBP1, RBP4, TFPI2, and TMEFF2 in esophageal squamous cell carcinoma. Oncological Report. 2009;21:1067–73. Tsunoda SSE, De Young NJ, Wang X, Tian ZQ, Liu JF, Jamieson GG, et al. Methylation of CLDN6, FBN2, RBP1, RBP4, TFPI2, and TMEFF2 in esophageal squamous cell carcinoma. Oncological Report. 2009;21:1067–73.
28.
go back to reference Cortese R, Hartmann O, Berlin K, Eckhardt F. Correlative gene expression and DNA methylation profiling in lung development nominate new biomarkers in lung cancer. Int J Biochem Cell Biol. 2008;40:1494–508.PubMedCrossRef Cortese R, Hartmann O, Berlin K, Eckhardt F. Correlative gene expression and DNA methylation profiling in lung development nominate new biomarkers in lung cancer. Int J Biochem Cell Biol. 2008;40:1494–508.PubMedCrossRef
29.
go back to reference Chen H, Suzuki M, Nakamura Y, Ohira M, Ando S, Iida T, et al. Aberrant methylation of FBN2 in human non-small cell lung cancer. Lung Cancer. 2005;50:43–9.PubMedCrossRef Chen H, Suzuki M, Nakamura Y, Ohira M, Ando S, Iida T, et al. Aberrant methylation of FBN2 in human non-small cell lung cancer. Lung Cancer. 2005;50:43–9.PubMedCrossRef
30.
31.
go back to reference Lofton-Day C, Model F, DeVos T, Tetzner R, Distler J, Schuster M, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54:414–23.PubMedCrossRef Lofton-Day C, Model F, DeVos T, Tetzner R, Distler J, Schuster M, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54:414–23.PubMedCrossRef
32.
go back to reference Kim MS LJ, Sidransky D. DNA methylation markers in colorectal cancer. Cancer Metastasis Review. 2010;29:181–206.CrossRef Kim MS LJ, Sidransky D. DNA methylation markers in colorectal cancer. Cancer Metastasis Review. 2010;29:181–206.CrossRef
33.
go back to reference Melotte VLM, van den Bosch SM, Hellebrekers DM, de Hoon JP, Wouters KA, Daenen KL, et al. N-Myc downstream-regulated gene 4 (NDGR4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J Natl Canc Inst. 2009;101:916–27.CrossRef Melotte VLM, van den Bosch SM, Hellebrekers DM, de Hoon JP, Wouters KA, Daenen KL, et al. N-Myc downstream-regulated gene 4 (NDGR4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J Natl Canc Inst. 2009;101:916–27.CrossRef
34.
go back to reference Melotte V, Lentjes MHFM, van den Bosch SM, Hellebrekers DMEI, de Hoon JPJ, Wouters KAD, et al. N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J National Cancer Institute. 2009;101:916–27.CrossRef Melotte V, Lentjes MHFM, van den Bosch SM, Hellebrekers DMEI, de Hoon JPJ, Wouters KAD, et al. N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J National Cancer Institute. 2009;101:916–27.CrossRef
Metadata
Title
DNA methylation biomarker candidates for early detection of colon cancer
Authors
Joo Mi Yi
Mashaal Dhir
Angela A. Guzzetta
Christine A. Iacobuzio-Donahue
Kyu Heo
Kwang Mo Yang
Hiromu Suzuki
Minoru Toyota
Hwan-Mook Kim
Nita Ahuja
Publication date
01-04-2012
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2012
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-011-0302-2

Other articles of this Issue 2/2012

Tumor Biology 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine