Skip to main content
Top
Published in: Translational Stroke Research 5/2016

01-10-2016 | Original Article

Anesthesia in Experimental Stroke Research

Authors: Ulrike Hoffmann, Huaxin Sheng, Cenk Ayata, David S. Warner

Published in: Translational Stroke Research | Issue 5/2016

Login to get access

Abstract

Anesthetics have enabled major advances in development of experimental models of human stroke. Yet, their profound pharmacologic effects on neural function can confound the interpretation of experimental stroke research. Anesthetics have species-, drug-, and dose-specific effects on cerebral blood flow and metabolism, neurovascular coupling, autoregulation, ischemic depolarizations, excitotoxicity, inflammation, neural networks, and numerous molecular pathways relevant for stroke outcome. Both preconditioning and postconditioning properties have been described. Anesthetics also modulate systemic arterial blood pressure, lung ventilation, and thermoregulation, all of which may interact with the ischemic insult as well as the therapeutic interventions. These confounds present a dilemma. Here, we provide an overview of the anesthetic mechanisms of action and molecular and physiologic effects on factors relevant to stroke outcomes that can guide the choice and optimization of the anesthetic regimen in experimental stroke.
Literature
1.
go back to reference Warner DS, James ML, Laskowitz DT, Wijdicks EF. Translational research in acute central nervous system injury: lessons learned and the future. JAMA Neurol. 2014;71(10):1311–8.PubMedCrossRef Warner DS, James ML, Laskowitz DT, Wijdicks EF. Translational research in acute central nervous system injury: lessons learned and the future. JAMA Neurol. 2014;71(10):1311–8.PubMedCrossRef
2.
go back to reference Schifilliti D, Grasso G, Conti A, Fodale V. Anaesthetic-related neuroprotection: intravenous or inhalational agents? CNS Drugs. 2010;24(11):893–907.PubMed Schifilliti D, Grasso G, Conti A, Fodale V. Anaesthetic-related neuroprotection: intravenous or inhalational agents? CNS Drugs. 2010;24(11):893–907.PubMed
3.
go back to reference Kety SS, Schmidt CF. The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest. 1946;25:107–19.PubMedCentralCrossRef Kety SS, Schmidt CF. The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest. 1946;25:107–19.PubMedCentralCrossRef
4.
go back to reference Himwich WA, Homburger E, et al. Brain metabolism in man; unanesthetized and in pentothal narcosis. Am J Psychiatry. 1947;103(5):689–96.PubMedCrossRef Himwich WA, Homburger E, et al. Brain metabolism in man; unanesthetized and in pentothal narcosis. Am J Psychiatry. 1947;103(5):689–96.PubMedCrossRef
5.
go back to reference Michenfelder JD. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology. 1974;41(3):231–6.PubMedCrossRef Michenfelder JD. The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology. 1974;41(3):231–6.PubMedCrossRef
6.
go back to reference Michenfelder JD, Theye RA. The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology. 1970;33(4):430–9.PubMedCrossRef Michenfelder JD, Theye RA. The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology. 1970;33(4):430–9.PubMedCrossRef
7.
go back to reference Todd MM, Drummond JC. A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat. Anesthesiology. 1984;60(4):276–82.PubMedCrossRef Todd MM, Drummond JC. A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat. Anesthesiology. 1984;60(4):276–82.PubMedCrossRef
8.
go back to reference Scheller MS, Tateishi A, Drummond JC, Zornow MH. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology. 1988;68(4):548–51.PubMedCrossRef Scheller MS, Tateishi A, Drummond JC, Zornow MH. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology. 1988;68(4):548–51.PubMedCrossRef
9.
go back to reference Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71(1):49–54.PubMedCrossRef Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71(1):49–54.PubMedCrossRef
10.
go back to reference Nugent M, Artru AA, Michenfelder JD. Cerebral metabolic, vascular and protective effects of midazolam maleate: comparison to diazepam. Anesthesiology. 1982;56(3):172–6.PubMedCrossRef Nugent M, Artru AA, Michenfelder JD. Cerebral metabolic, vascular and protective effects of midazolam maleate: comparison to diazepam. Anesthesiology. 1982;56(3):172–6.PubMedCrossRef
11.
go back to reference Renou AM, Vernhiet J, Macrez P, Constant P, Billerey J, Khadaroo MY, et al. Cerebral blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth. 1978;50(10):1047–51.PubMedCrossRef Renou AM, Vernhiet J, Macrez P, Constant P, Billerey J, Khadaroo MY, et al. Cerebral blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth. 1978;50(10):1047–51.PubMedCrossRef
12.
go back to reference Post RM, Kennedy C, Shinohara M, Squillace K, Miyaoka M, Suda S, et al. Metabolic and behavioral consequences of lidocaine-kindled seizures. Brain Res. 1984;324(2):295–303.PubMedCrossRef Post RM, Kennedy C, Shinohara M, Squillace K, Miyaoka M, Suda S, et al. Metabolic and behavioral consequences of lidocaine-kindled seizures. Brain Res. 1984;324(2):295–303.PubMedCrossRef
13.
go back to reference Carlsson C, Smith DS, Keykhah MM, Englebach I, Harp JR. The effects of high-dose fentanyl on cerebral circulation and metabolism in rats. Anesthesiology. 1982;57(5):375–80.PubMedCrossRef Carlsson C, Smith DS, Keykhah MM, Englebach I, Harp JR. The effects of high-dose fentanyl on cerebral circulation and metabolism in rats. Anesthesiology. 1982;57(5):375–80.PubMedCrossRef
15.
go back to reference Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, et al. Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol. 1997;7(1):9–24.PubMedCrossRef Vollenweider FX, Leenders KL, Scharfetter C, Antonini A, Maguire P, Missimer J, et al. Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). Eur Neuropsychopharmacol. 1997;7(1):9–24.PubMedCrossRef
16.
go back to reference Oguchi K, Arakawa K, Nelson SR, Samson F. The influence of droperidol, diazepam, and physostigmine on ketamine-induced behavior and brain regional glucose utilization in rat. Anesthesiology. 1982;57(5):353–8.PubMedCrossRef Oguchi K, Arakawa K, Nelson SR, Samson F. The influence of droperidol, diazepam, and physostigmine on ketamine-induced behavior and brain regional glucose utilization in rat. Anesthesiology. 1982;57(5):353–8.PubMedCrossRef
17.
go back to reference Pelligrino DA, Miletich DJ, Hoffman WE, Albrecht RF. Nitrous oxide markedly increases cerebral cortical metabolic rate and blood flow in the goat. Anesthesiology. 1984;60(5):405–12.PubMedCrossRef Pelligrino DA, Miletich DJ, Hoffman WE, Albrecht RF. Nitrous oxide markedly increases cerebral cortical metabolic rate and blood flow in the goat. Anesthesiology. 1984;60(5):405–12.PubMedCrossRef
18.
go back to reference Dashdorj N, Corrie K, Napolitano A, Petersen E, Mahajan RP, Auer DP. Effects of subanesthetic dose of nitrous oxide on cerebral blood flow and metabolism: a multimodal magnetic resonance imaging study in healthy volunteers. Anesthesiology. 2013;118(3):577–86. doi:10.1097/ALN.0b013e3182800d58.PubMedCrossRef Dashdorj N, Corrie K, Napolitano A, Petersen E, Mahajan RP, Auer DP. Effects of subanesthetic dose of nitrous oxide on cerebral blood flow and metabolism: a multimodal magnetic resonance imaging study in healthy volunteers. Anesthesiology. 2013;118(3):577–86. doi:10.​1097/​ALN.​0b013e3182800d58​.PubMedCrossRef
19.
go back to reference Reinstrup P, Ryding E, Ohlsson T, Sandell A, Erlandsson K, Ljunggren K, et al. Regional cerebral metabolic rate (positron emission tomography) during inhalation of nitrous oxide 50 % in humans. Br J Anaesth. 2008;100(1):66–71.PubMedCrossRef Reinstrup P, Ryding E, Ohlsson T, Sandell A, Erlandsson K, Ljunggren K, et al. Regional cerebral metabolic rate (positron emission tomography) during inhalation of nitrous oxide 50 % in humans. Br J Anaesth. 2008;100(1):66–71.PubMedCrossRef
20.
go back to reference Reasoner DK, Warner DS, Todd MM, McAllister A. Effects of nitrous oxide on cerebral metabolic rate in rats anaesthetized with isoflurane. Br J Anaesth. 1990;65(2):210–5.PubMedCrossRef Reasoner DK, Warner DS, Todd MM, McAllister A. Effects of nitrous oxide on cerebral metabolic rate in rats anaesthetized with isoflurane. Br J Anaesth. 1990;65(2):210–5.PubMedCrossRef
21.
go back to reference Kaisti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99(3):603–13.PubMedCrossRef Kaisti KK, Langsjo JW, Aalto S, Oikonen V, Sipila H, Teras M, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99(3):603–13.PubMedCrossRef
22.
go back to reference Kofke WA, Garman RH, Tom WC, Rose ME, Hawkins RA. Alfentanil-induced hypermetabolism, seizure, and histopathology in rat brain. Anesth Analg. 1992;75(6):953–64.PubMedCrossRef Kofke WA, Garman RH, Tom WC, Rose ME, Hawkins RA. Alfentanil-induced hypermetabolism, seizure, and histopathology in rat brain. Anesth Analg. 1992;75(6):953–64.PubMedCrossRef
23.
go back to reference Jones MV, Brooks PA, Harrison NL. Enhancement of gamma-aminobutyric acid-activated Cl- currents in cultured rat hippocampal neurones by three volatile anaesthetics. J Physiol. 1992;449:279–93.PubMedPubMedCentralCrossRef Jones MV, Brooks PA, Harrison NL. Enhancement of gamma-aminobutyric acid-activated Cl- currents in cultured rat hippocampal neurones by three volatile anaesthetics. J Physiol. 1992;449:279–93.PubMedPubMedCentralCrossRef
24.
go back to reference Yang J, Zorumski CF. Effects of isoflurane on N-methyl-D-aspartate gated ion channels in cultured rat hippocampal neurons. Ann N Y Acad Sci. 1991;625:287–9.PubMedCrossRef Yang J, Zorumski CF. Effects of isoflurane on N-methyl-D-aspartate gated ion channels in cultured rat hippocampal neurons. Ann N Y Acad Sci. 1991;625:287–9.PubMedCrossRef
25.
go back to reference Irifune M, Sato T, Kamata Y, Nishikawa T, Dohi T, Kawahara M. Evidence for GABA(a) receptor agonistic properties of ketamine: convulsive and anesthetic behavioral models in mice. Anesth Analg. 2000;91(1):230–6.PubMed Irifune M, Sato T, Kamata Y, Nishikawa T, Dohi T, Kawahara M. Evidence for GABA(a) receptor agonistic properties of ketamine: convulsive and anesthetic behavioral models in mice. Anesth Analg. 2000;91(1):230–6.PubMed
26.
go back to reference Wakita M, Kotani N, Yamaga T, Akaike N. Nitrous oxide directly inhibits action potential-dependent neurotransmission from single presynaptic boutons adhering to rat hippocampal CA3 neurons. Brain Res Bull. 2015;118:34–45.PubMedCrossRef Wakita M, Kotani N, Yamaga T, Akaike N. Nitrous oxide directly inhibits action potential-dependent neurotransmission from single presynaptic boutons adhering to rat hippocampal CA3 neurons. Brain Res Bull. 2015;118:34–45.PubMedCrossRef
27.
go back to reference Yamakura T, Mori H, Masaki H, Shimoji K, Mishnina M. Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport. 1993;4:687–90.PubMedCrossRef Yamakura T, Mori H, Masaki H, Shimoji K, Mishnina M. Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport. 1993;4:687–90.PubMedCrossRef
28.
go back to reference Mennerick S, Jevtovic-Todorovic V, Todorovic SM, Shen W, Olney JW, Zorumski CF. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci. 1998;18(23):9716–26.PubMed Mennerick S, Jevtovic-Todorovic V, Todorovic SM, Shen W, Olney JW, Zorumski CF. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci. 1998;18(23):9716–26.PubMed
29.
go back to reference Dickinson R, Peterson BK, Banks P, Simillis C, Martin JC, Valenzuela CA, et al. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology. 2007;107(5):756–67.PubMedCrossRef Dickinson R, Peterson BK, Banks P, Simillis C, Martin JC, Valenzuela CA, et al. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology. 2007;107(5):756–67.PubMedCrossRef
31.
go back to reference Rex S, Schaefer W, Meyer PH, Rossaint R, Boy C, Setani K, et al. Positron emission tomography study of regional cerebral metabolism during general anesthesia with xenon in humans. Anesthesiology. 2006;105(5):936–43.PubMedCrossRef Rex S, Schaefer W, Meyer PH, Rossaint R, Boy C, Setani K, et al. Positron emission tomography study of regional cerebral metabolism during general anesthesia with xenon in humans. Anesthesiology. 2006;105(5):936–43.PubMedCrossRef
32.
go back to reference Jensen NF, Todd MM, Kramer DJ, Leonard PA, Warner DS. A comparison of the vasodilating effects of halothane and isoflurane on the isolated rabbit basilar artery with and without intact endothelium. Anesthesiology. 1992;76(4):624–34.PubMedCrossRef Jensen NF, Todd MM, Kramer DJ, Leonard PA, Warner DS. A comparison of the vasodilating effects of halothane and isoflurane on the isolated rabbit basilar artery with and without intact endothelium. Anesthesiology. 1992;76(4):624–34.PubMedCrossRef
33.
go back to reference Gelb AW, Zhang C, Hamilton JT. Propofol induces dilation and inhibits constriction in Guinea pig basilar arteries. Anesth Analg. 1996;83(3):472–6.PubMedCrossRef Gelb AW, Zhang C, Hamilton JT. Propofol induces dilation and inhibits constriction in Guinea pig basilar arteries. Anesth Analg. 1996;83(3):472–6.PubMedCrossRef
34.
go back to reference Fukuda S, Murakawa T, Takeshita H, Toda N. Direct effects of ketamine on isolated canine cerebral and mesenteric arteries. Anesth Analg. 1983;62(6):553–8.PubMedCrossRef Fukuda S, Murakawa T, Takeshita H, Toda N. Direct effects of ketamine on isolated canine cerebral and mesenteric arteries. Anesth Analg. 1983;62(6):553–8.PubMedCrossRef
35.
go back to reference Matta BF, Mayberg TS, Lam AM. Direct cerebrovasodilatory effects of halothane, isoflurane, and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology. 1995;83(5):980–5 .discussion 27APubMedCrossRef Matta BF, Mayberg TS, Lam AM. Direct cerebrovasodilatory effects of halothane, isoflurane, and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology. 1995;83(5):980–5 .discussion 27APubMedCrossRef
36.
go back to reference Hansen TD, Warner DS, Todd MM, Vust LJ. Effects of nitrous oxide and volatile anaesthetics on cerebral blood flow. Br J Anaesth. 1989;63(3):290–5.PubMedCrossRef Hansen TD, Warner DS, Todd MM, Vust LJ. Effects of nitrous oxide and volatile anaesthetics on cerebral blood flow. Br J Anaesth. 1989;63(3):290–5.PubMedCrossRef
37.
go back to reference Lenz C, Frietsch T, Futterer C, Rebel A, van Ackern K, Kuschinsky W, et al. Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane. Anesthesiology. 1999;91(6):1720–3.PubMedCrossRef Lenz C, Frietsch T, Futterer C, Rebel A, van Ackern K, Kuschinsky W, et al. Local coupling of cerebral blood flow to cerebral glucose metabolism during inhalational anesthesia in rats: desflurane versus isoflurane. Anesthesiology. 1999;91(6):1720–3.PubMedCrossRef
38.
go back to reference Franceschini MA, Radhakrishnan H, Thakur K, Wu W, Ruvinskaya S, Carp S, et al. The effect of different anesthetics on neurovascular coupling. NeuroImage. 2010;51(4):1367–77.PubMedPubMedCentralCrossRef Franceschini MA, Radhakrishnan H, Thakur K, Wu W, Ruvinskaya S, Carp S, et al. The effect of different anesthetics on neurovascular coupling. NeuroImage. 2010;51(4):1367–77.PubMedPubMedCentralCrossRef
39.
go back to reference Miletich DJ, Ivankovich AD, Albrecht RF, Reimann CR, Rosenberg R, McKissic ED. Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia. Anesth Analg. 1976;55(1):100–9.PubMedCrossRef Miletich DJ, Ivankovich AD, Albrecht RF, Reimann CR, Rosenberg R, McKissic ED. Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia. Anesth Analg. 1976;55(1):100–9.PubMedCrossRef
40.
go back to reference McPherson RW, Traystman RJ. Effects of isoflurane on cerebral autoregulation in dogs. Anesthesiology. 1988;69(4):493–9.PubMedCrossRef McPherson RW, Traystman RJ. Effects of isoflurane on cerebral autoregulation in dogs. Anesthesiology. 1988;69(4):493–9.PubMedCrossRef
41.
go back to reference Werner C, Lu H, Engelhard K, Unbehaun N, Kochs E. Sevoflurane impairs cerebral blood flow autoregulation in rats: reversal by nonselective nitric oxide synthase inhibition. Anesth Analg. 2005;101(2):509–16.PubMedCrossRef Werner C, Lu H, Engelhard K, Unbehaun N, Kochs E. Sevoflurane impairs cerebral blood flow autoregulation in rats: reversal by nonselective nitric oxide synthase inhibition. Anesth Analg. 2005;101(2):509–16.PubMedCrossRef
42.
go back to reference Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. 1995;83(1):66–76.PubMedCrossRef Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. 1995;83(1):66–76.PubMedCrossRef
43.
go back to reference Goettel N, Patet C, Rossi A, Burkhart CS, Czosnyka M, Strebel SP, et al. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups. J Clin Monit Comput. 2016;30(3):255–64.PubMedCrossRef Goettel N, Patet C, Rossi A, Burkhart CS, Czosnyka M, Strebel SP, et al. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups. J Clin Monit Comput. 2016;30(3):255–64.PubMedCrossRef
44.
go back to reference Girling KJ, Cavill G, Mahajan RP. The effects of nitrous oxide and oxygen on transient hyperemic response in human volunteers. Anesth Analg. 1999;89(1):175–80.PubMed Girling KJ, Cavill G, Mahajan RP. The effects of nitrous oxide and oxygen on transient hyperemic response in human volunteers. Anesth Analg. 1999;89(1):175–80.PubMed
45.
go back to reference Steiner LA, Johnston AJ, Chatfield DA, Czosnyka M, Coleman MR, Coles JP, et al. The effects of large-dose propofol on cerebrovascular pressure autoregulation in head-injured patients. Anesth Analg. 2003;97(2):572–6.PubMedCrossRef Steiner LA, Johnston AJ, Chatfield DA, Czosnyka M, Coleman MR, Coles JP, et al. The effects of large-dose propofol on cerebrovascular pressure autoregulation in head-injured patients. Anesth Analg. 2003;97(2):572–6.PubMedCrossRef
46.
go back to reference Schmidt A, Ryding E, Akeson J. Racemic ketamine does not abolish cerebrovascular autoregulation in the pig. Acta Anaesthesiol Scand. 2003;47(5):569–75.PubMedCrossRef Schmidt A, Ryding E, Akeson J. Racemic ketamine does not abolish cerebrovascular autoregulation in the pig. Acta Anaesthesiol Scand. 2003;47(5):569–75.PubMedCrossRef
47.
go back to reference Engelhard K, Werner C, Lu H, Mollenberg O, Kochs E. Effect of S-(+)-ketamine on autoregulation of cerebral blood flow. Anasthesiol Intensivmed Notfallmed Schmerzther. 1997;32(12):721–5.PubMedCrossRef Engelhard K, Werner C, Lu H, Mollenberg O, Kochs E. Effect of S-(+)-ketamine on autoregulation of cerebral blood flow. Anasthesiol Intensivmed Notfallmed Schmerzther. 1997;32(12):721–5.PubMedCrossRef
48.
go back to reference Engelhard K, Werner C, Mollenberg O, Kochs E. S(+)-ketamine/propofol maintain dynamic cerebrovascular autoregulation in humans. Can J Anaesth. 2001;48(10):1034–9.PubMedCrossRef Engelhard K, Werner C, Mollenberg O, Kochs E. S(+)-ketamine/propofol maintain dynamic cerebrovascular autoregulation in humans. Can J Anaesth. 2001;48(10):1034–9.PubMedCrossRef
49.
go back to reference Ogawa Y, Iwasaki K, Aoki K, Gokan D, Hirose N, Kato J, et al. The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesth Analg. 2010;111(5):1279–84.PubMedCrossRef Ogawa Y, Iwasaki K, Aoki K, Gokan D, Hirose N, Kato J, et al. The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesth Analg. 2010;111(5):1279–84.PubMedCrossRef
50.
go back to reference Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology. 2008;109(4):642–50.PubMedCrossRef Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology. 2008;109(4):642–50.PubMedCrossRef
51.
go back to reference Ayad M, Verity MA, Rubinstein EH. Lidocaine delays cortical ischemic depolarization: relationship to electrophysiologic recovery and neuropathology. J Neurosurg Anesthesiol. 1994;6(2):98–110.PubMedCrossRef Ayad M, Verity MA, Rubinstein EH. Lidocaine delays cortical ischemic depolarization: relationship to electrophysiologic recovery and neuropathology. J Neurosurg Anesthesiol. 1994;6(2):98–110.PubMedCrossRef
52.
go back to reference Sasaki R, Hirota K, Roth SH, Yamazaki M. Anoxic depolarization of rat hippocampal slices is prevented by thiopental but not by propofol or isoflurane. Br J Anaesth. 2005;94(4):486–91.PubMedCrossRef Sasaki R, Hirota K, Roth SH, Yamazaki M. Anoxic depolarization of rat hippocampal slices is prevented by thiopental but not by propofol or isoflurane. Br J Anaesth. 2005;94(4):486–91.PubMedCrossRef
53.
go back to reference Nakashima K, Todd MM. Effects of hypothermia, pentobarbital, and isoflurane on postdepolarization amino acid release during complete global cerebral ischemia. Anesthesiology. 1996;85(1):161–8.PubMedCrossRef Nakashima K, Todd MM. Effects of hypothermia, pentobarbital, and isoflurane on postdepolarization amino acid release during complete global cerebral ischemia. Anesthesiology. 1996;85(1):161–8.PubMedCrossRef
54.
go back to reference Kobayashi M, Takeda Y, Taninishi H, Takata K, Aoe H, Morita K. Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration. J Neurosurg Anesthesiol. 2007;19(3):171–8.PubMedCrossRef Kobayashi M, Takeda Y, Taninishi H, Takata K, Aoe H, Morita K. Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration. J Neurosurg Anesthesiol. 2007;19(3):171–8.PubMedCrossRef
55.
go back to reference Verhaegen MJ, Todd MM, Warner DS. A comparison of cerebral ischemic flow thresholds during halothane/N2O and isoflurane/N2O anesthesia in rats. Anesthesiology. 1992;76(5):743–54.PubMedCrossRef Verhaegen MJ, Todd MM, Warner DS. A comparison of cerebral ischemic flow thresholds during halothane/N2O and isoflurane/N2O anesthesia in rats. Anesthesiology. 1992;76(5):743–54.PubMedCrossRef
56.
go back to reference Wang J, Cottrell JE, Kass IS. Effects of desflurane and propofol on electrophysiological parameters during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience. 2009;160(1):140–8.PubMedCrossRef Wang J, Cottrell JE, Kass IS. Effects of desflurane and propofol on electrophysiological parameters during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience. 2009;160(1):140–8.PubMedCrossRef
57.
go back to reference Wang J, Meng F, Cottrell JE, Kass IS. The differential effects of volatile anesthetics on electrophysiological and biochemical changes during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience. 2006;140(3):957–67.PubMedCrossRef Wang J, Meng F, Cottrell JE, Kass IS. The differential effects of volatile anesthetics on electrophysiological and biochemical changes during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells. Neuroscience. 2006;140(3):957–67.PubMedCrossRef
58.
go back to reference Verhaegen M, Todd MM, Warner DS. Ischemic depolarization during halothane-nitrous oxide and isoflurane-nitrous oxide anesthesia. An examination of cerebral blood flow threshold and times to depolarization. Anesthesiology. 1994;81(4):965–73.PubMedCrossRef Verhaegen M, Todd MM, Warner DS. Ischemic depolarization during halothane-nitrous oxide and isoflurane-nitrous oxide anesthesia. An examination of cerebral blood flow threshold and times to depolarization. Anesthesiology. 1994;81(4):965–73.PubMedCrossRef
59.
go back to reference Nellgård B, Mackensen GB, Pineda J, Wellons 3rd JC, Pearlstein RD, Warner DS. Anesthetic effects on cerebral metabolic rate predict histologic outcome from near-complete forebrain ischemia in the rat. Anesthesiology. 2000;93(2):431–6.PubMedCrossRef Nellgård B, Mackensen GB, Pineda J, Wellons 3rd JC, Pearlstein RD, Warner DS. Anesthetic effects on cerebral metabolic rate predict histologic outcome from near-complete forebrain ischemia in the rat. Anesthesiology. 2000;93(2):431–6.PubMedCrossRef
60.
go back to reference Hartings JA, Shuttleworth CW, Kirov SA, Ayata C, Hinzman JM, Foreman B et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cereb Blood Flow Metab. 2016. doi:10.1177/0271678X16654495. Hartings JA, Shuttleworth CW, Kirov SA, Ayata C, Hinzman JM, Foreman B et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cereb Blood Flow Metab. 2016. doi:10.​1177/​0271678X16654495​.
61.
62.
go back to reference Saito R, Graf R, Hubel K, Fujita T, Rosner G, Heiss WD. Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J Cereb Blood Flow Metab. 1997;17(8):857–64.PubMedCrossRef Saito R, Graf R, Hubel K, Fujita T, Rosner G, Heiss WD. Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J Cereb Blood Flow Metab. 1997;17(8):857–64.PubMedCrossRef
63.
go back to reference Takagaki M, Feuerstein D, Kumagai T, Gramer M, Yoshimine T, Graf R. Isoflurane suppresses cortical spreading depolarizations compared to propofol--implications for sedation of neurocritical care patients. Exp Neurol. 2014;252:12–7.PubMedCrossRef Takagaki M, Feuerstein D, Kumagai T, Gramer M, Yoshimine T, Graf R. Isoflurane suppresses cortical spreading depolarizations compared to propofol--implications for sedation of neurocritical care patients. Exp Neurol. 2014;252:12–7.PubMedCrossRef
64.
go back to reference Zhao L, Nowak Jr TS. Preconditioning cortical lesions reduce the incidence of peri-infarct depolarizations during focal ischemia in the spontaneously hypertensive rat: interaction with prior anesthesia and the impact of hyperglycemia. J Cereb Blood Flow Metab. 2015;35(7):1181–90. Zhao L, Nowak Jr TS. Preconditioning cortical lesions reduce the incidence of peri-infarct depolarizations during focal ischemia in the spontaneously hypertensive rat: interaction with prior anesthesia and the impact of hyperglycemia. J Cereb Blood Flow Metab. 2015;35(7):1181–90.
65.
go back to reference Kudo C, Toyama M, Boku A, Hanamoto H, Morimoto Y, Sugimura M, et al. Anesthetic effects on susceptibility to cortical spreading depression. Neuropharmacology. 2013;67:32–6.PubMedCrossRef Kudo C, Toyama M, Boku A, Hanamoto H, Morimoto Y, Sugimura M, et al. Anesthetic effects on susceptibility to cortical spreading depression. Neuropharmacology. 2013;67:32–6.PubMedCrossRef
66.
go back to reference Hertle DN, Dreier JP, Woitzik J, Hartings JA, Bullock R, Okonkwo DO, et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain J Neurol. 2012;135(Pt 8):2390–8.CrossRef Hertle DN, Dreier JP, Woitzik J, Hartings JA, Bullock R, Okonkwo DO, et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain J Neurol. 2012;135(Pt 8):2390–8.CrossRef
67.
go back to reference Sakowitz OW, Kiening KL, Krajewski KL, Sarrafzadeh AS, Fabricius M, Strong AJ, et al. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury. Stroke. 2009;40(8):e519–22.PubMedCrossRef Sakowitz OW, Kiening KL, Krajewski KL, Sarrafzadeh AS, Fabricius M, Strong AJ, et al. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury. Stroke. 2009;40(8):e519–22.PubMedCrossRef
68.
go back to reference Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia. Anesthesiology. 1973;39(5):510–7.PubMedCrossRef Michenfelder JD, Theye RA. Cerebral protection by thiopental during hypoxia. Anesthesiology. 1973;39(5):510–7.PubMedCrossRef
69.
go back to reference Newberg LA, Michenfelder JD. Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology. 1983;59(1):29–35.PubMedCrossRef Newberg LA, Michenfelder JD. Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology. 1983;59(1):29–35.PubMedCrossRef
70.
go back to reference Ishida K, Berger M, Nadler J, Warner DS. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality. Curr Pharm Des. 2014;20(36):5751–65.PubMedCrossRef Ishida K, Berger M, Nadler J, Warner DS. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality. Curr Pharm Des. 2014;20(36):5751–65.PubMedCrossRef
71.
go back to reference Kudo M, Aono M, Lee Y, Massey G, Pearlstein RD, Warner DS. Effects of volatile anesthetics on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cultures. Anesthesiology. 2001;95(3):756–65.PubMedCrossRef Kudo M, Aono M, Lee Y, Massey G, Pearlstein RD, Warner DS. Effects of volatile anesthetics on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cultures. Anesthesiology. 2001;95(3):756–65.PubMedCrossRef
72.
go back to reference Kimbro JR, Kelly PJ, Drummond JC, Cole DJ, Patel PM. Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesthesiology. 2000;92(3):806–12.PubMedCrossRef Kimbro JR, Kelly PJ, Drummond JC, Cole DJ, Patel PM. Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. Anesthesiology. 2000;92(3):806–12.PubMedCrossRef
73.
go back to reference Harada H, Kelly PJ, Cole DJ, Drummond JC, Patel PM. Isoflurane reduces N-methyl-D-aspartate toxicity in vivo in the rat cerebral cortex. Anesth Analg. 1999;89(6):1442–7.PubMed Harada H, Kelly PJ, Cole DJ, Drummond JC, Patel PM. Isoflurane reduces N-methyl-D-aspartate toxicity in vivo in the rat cerebral cortex. Anesth Analg. 1999;89(6):1442–7.PubMed
74.
go back to reference Eilers H, Bickler PE. Hypothermia and isoflurane similarly inhibit glutamate release evoked by chemical anoxia in rat cortical brain slices. Anesthesiology. 1996;85(3):600–7.PubMedCrossRef Eilers H, Bickler PE. Hypothermia and isoflurane similarly inhibit glutamate release evoked by chemical anoxia in rat cortical brain slices. Anesthesiology. 1996;85(3):600–7.PubMedCrossRef
75.
go back to reference Popovic R, Liniger R, Bickler PE. Anesthetics and mild hypothermia similarly prevent hippocampal neuron death in an in vitro model of cerebral ischemia. Anesthesiology. 2000;92(5):1343–9.PubMedCrossRef Popovic R, Liniger R, Bickler PE. Anesthetics and mild hypothermia similarly prevent hippocampal neuron death in an in vitro model of cerebral ischemia. Anesthesiology. 2000;92(5):1343–9.PubMedCrossRef
76.
go back to reference Elsersy H, Mixco J, Sheng H, Pearlstein RD, Warner DS. Selective gamma-aminobutyric acid type a receptor antagonism reverses isoflurane ischemic neuroprotection. Anesthesiology. 2006;105(1):81–90.PubMedCrossRef Elsersy H, Mixco J, Sheng H, Pearlstein RD, Warner DS. Selective gamma-aminobutyric acid type a receptor antagonism reverses isoflurane ischemic neuroprotection. Anesthesiology. 2006;105(1):81–90.PubMedCrossRef
77.
go back to reference Gray JJ, Bickler PE, Fahlman CS, Zhan X, Schuyler JA. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases. Anesthesiology. 2005;102(3):606–15.PubMedCrossRef Gray JJ, Bickler PE, Fahlman CS, Zhan X, Schuyler JA. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases. Anesthesiology. 2005;102(3):606–15.PubMedCrossRef
78.
go back to reference Sakai H, Sheng H, Yates RB, Ishida K, Pearlstein RD, Warner DS. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology. 2007;106(1):92–9 .discussion 8-10PubMedCrossRef Sakai H, Sheng H, Yates RB, Ishida K, Pearlstein RD, Warner DS. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology. 2007;106(1):92–9 .discussion 8-10PubMedCrossRef
79.
go back to reference Warner DS, McFarlane C, Todd MM, Ludwig P, McAllister AM. Sevoflurane and halothane reduce focal ischemic brain damage in the rat. Possible influence on thermoregulation. Anesthesiology. 1993;79(5):985–92.PubMedCrossRef Warner DS, McFarlane C, Todd MM, Ludwig P, McAllister AM. Sevoflurane and halothane reduce focal ischemic brain damage in the rat. Possible influence on thermoregulation. Anesthesiology. 1993;79(5):985–92.PubMedCrossRef
80.
go back to reference Pape M, Engelhard K, Eberspacher E, Hollweck R, Kellermann K, Zintner S, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. Anesth Analg. 2006;103(1):173–9.PubMedCrossRef Pape M, Engelhard K, Eberspacher E, Hollweck R, Kellermann K, Zintner S, et al. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. Anesth Analg. 2006;103(1):173–9.PubMedCrossRef
81.
go back to reference Elsersy H, Sheng H, Lynch JR, Moldovan M, Pearlstein RD, Warner DS. Effects of isoflurane versus fentanyl-nitrous oxide anesthesia on long-term outcome from severe forebrain ischemia in the rat. Anesthesiology. 2004;100(5):1160–6.PubMedCrossRef Elsersy H, Sheng H, Lynch JR, Moldovan M, Pearlstein RD, Warner DS. Effects of isoflurane versus fentanyl-nitrous oxide anesthesia on long-term outcome from severe forebrain ischemia in the rat. Anesthesiology. 2004;100(5):1160–6.PubMedCrossRef
82.
go back to reference Inoue S, Davis DP, Drummond JC, Cole DJ, Patel PM. The combination of isoflurane and caspase 8 inhibition results in sustained neuroprotection in rats subject to focal cerebral ischemia. Anesth Analg. 2006;102(5):1548–55.PubMedCrossRef Inoue S, Davis DP, Drummond JC, Cole DJ, Patel PM. The combination of isoflurane and caspase 8 inhibition results in sustained neuroprotection in rats subject to focal cerebral ischemia. Anesth Analg. 2006;102(5):1548–55.PubMedCrossRef
83.
go back to reference Jevtovic-Todorovic V, Todorovic S, Mennerick S, Powell K, Dikranian K, Benshoff ND, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nature Med. 1998;4:460–3.PubMedCrossRef Jevtovic-Todorovic V, Todorovic S, Mennerick S, Powell K, Dikranian K, Benshoff ND, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nature Med. 1998;4:460–3.PubMedCrossRef
84.
go back to reference Yokoo N, Sheng H, Mixco J, Homi HM, Pearlstein RD, Warner DS. Intraischemic nitrous oxide alters neither neurologic nor histologic outcome: a comparison with dizocilpine. Anesth Analg. 2004;99(3):896–903.PubMedCrossRef Yokoo N, Sheng H, Mixco J, Homi HM, Pearlstein RD, Warner DS. Intraischemic nitrous oxide alters neither neurologic nor histologic outcome: a comparison with dizocilpine. Anesth Analg. 2004;99(3):896–903.PubMedCrossRef
85.
go back to reference David HN, Leveille F, Chazalviel L, MacKenzie ET, Buisson A, Lemaire M, et al. Reduction of ischemic brain damage by nitrous oxide and xenon. J Cereb Blood Flow Metab. 2003;23(10):1168–73.PubMedCrossRef David HN, Leveille F, Chazalviel L, MacKenzie ET, Buisson A, Lemaire M, et al. Reduction of ischemic brain damage by nitrous oxide and xenon. J Cereb Blood Flow Metab. 2003;23(10):1168–73.PubMedCrossRef
86.
go back to reference Haelewyn B, David HN, Rouillon C, Chazalviel L, Lecocq M, Risso JJ, et al. Neuroprotection by nitrous oxide: facts and evidence. Crit Care Med. 2008;36(9):2651–9.PubMedCrossRef Haelewyn B, David HN, Rouillon C, Chazalviel L, Lecocq M, Risso JJ, et al. Neuroprotection by nitrous oxide: facts and evidence. Crit Care Med. 2008;36(9):2651–9.PubMedCrossRef
87.
go back to reference Taninishi H, Takeda Y, Kobayashi M, Sasaki T, Arai M, Morita K. Effect of nitrous oxide on neuronal damage and extracellular glutamate concentration as a function of mild, moderate, or severe ischemia in halothane-anesthetized gerbils. Anesthesiology. 2008;108(6):1063–70.PubMedCrossRef Taninishi H, Takeda Y, Kobayashi M, Sasaki T, Arai M, Morita K. Effect of nitrous oxide on neuronal damage and extracellular glutamate concentration as a function of mild, moderate, or severe ischemia in halothane-anesthetized gerbils. Anesthesiology. 2008;108(6):1063–70.PubMedCrossRef
88.
go back to reference Pasternak JJ, McGregor DG, Lanier WL, Schroeder DR, Rusy DA, Hindman B, et al. Effect of nitrous oxide use on long-term neurologic and neuropsychological outcome in patients who received temporary proximal artery occlusion during cerebral aneurysm clipping surgery. Anesthesiology. 2009;110(3):563–73.PubMedPubMedCentralCrossRef Pasternak JJ, McGregor DG, Lanier WL, Schroeder DR, Rusy DA, Hindman B, et al. Effect of nitrous oxide use on long-term neurologic and neuropsychological outcome in patients who received temporary proximal artery occlusion during cerebral aneurysm clipping surgery. Anesthesiology. 2009;110(3):563–73.PubMedPubMedCentralCrossRef
89.
go back to reference Nehls DG, Todd MM, Spetzler RF, Drummond JC, Thompson RA, Johnson PC. A comparison of the cerebral protective effects of isoflurane and barbiturates during temporary focal ischemia in primates. Anesthesiology. 1987;66(4):453–64.PubMedCrossRef Nehls DG, Todd MM, Spetzler RF, Drummond JC, Thompson RA, Johnson PC. A comparison of the cerebral protective effects of isoflurane and barbiturates during temporary focal ischemia in primates. Anesthesiology. 1987;66(4):453–64.PubMedCrossRef
90.
go back to reference Warner DS, Takaoka S, Wu B, Ludwig PS, Pearlstein RD, Brinkhous AD, et al. Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia. Anesthesiology. 1996;84(6):1475–84.PubMedCrossRef Warner DS, Takaoka S, Wu B, Ludwig PS, Pearlstein RD, Brinkhous AD, et al. Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia. Anesthesiology. 1996;84(6):1475–84.PubMedCrossRef
91.
go back to reference Gisvold SE, Safar P, Hendrickx HH, Rao G, Moossy J, Alexander H. Thiopental treatment after global brain ischemia in pigtailed monkeys. Anesthesiology. 1984;60(2):88–96.PubMedCrossRef Gisvold SE, Safar P, Hendrickx HH, Rao G, Moossy J, Alexander H. Thiopental treatment after global brain ischemia in pigtailed monkeys. Anesthesiology. 1984;60(2):88–96.PubMedCrossRef
92.
go back to reference Bleyaert AL, Nemoto EM, Safar P, Stezoski SM, Mickell JJ, Moossy J, et al. Thiopental amelioration of brain damage after global ischemia in monkeys. Anesthesiology. 1978;49(6):390–8.PubMedCrossRef Bleyaert AL, Nemoto EM, Safar P, Stezoski SM, Mickell JJ, Moossy J, et al. Thiopental amelioration of brain damage after global ischemia in monkeys. Anesthesiology. 1978;49(6):390–8.PubMedCrossRef
93.
go back to reference Smith DS, Rehncrona S, Westerberg E, Akesson B, Siesjo BK. Lipid peroxidation in brain tissue in vitro: antioxidant effects of barbiturates. Acta Physiol Scand. 1979;105(4):527–9.PubMedCrossRef Smith DS, Rehncrona S, Westerberg E, Akesson B, Siesjo BK. Lipid peroxidation in brain tissue in vitro: antioxidant effects of barbiturates. Acta Physiol Scand. 1979;105(4):527–9.PubMedCrossRef
95.
go back to reference Hudetz JA, Pagel PS. Neuroprotection by ketamine: a review of the experimental and clinical evidence. J Cardiothorac Vasc Anesth. 2010;24(1):131–42.PubMedCrossRef Hudetz JA, Pagel PS. Neuroprotection by ketamine: a review of the experimental and clinical evidence. J Cardiothorac Vasc Anesth. 2010;24(1):131–42.PubMedCrossRef
96.
go back to reference Jensen ML, Auer RN. Ketamine fails to protect against ischaemic neuronal necrosis in the rat. Br J Anaesth. 1988;61(2):206–10.PubMedCrossRef Jensen ML, Auer RN. Ketamine fails to protect against ischaemic neuronal necrosis in the rat. Br J Anaesth. 1988;61(2):206–10.PubMedCrossRef
97.
go back to reference Ridenour TR, Warner DS, Todd MM, Baker MT. Effects of ketamine on outcome from temporary middle cerebral artery occlusion in the spontaneously hypertensive rat. Brain Res. 1991;565(1):116–22.PubMedCrossRef Ridenour TR, Warner DS, Todd MM, Baker MT. Effects of ketamine on outcome from temporary middle cerebral artery occlusion in the spontaneously hypertensive rat. Brain Res. 1991;565(1):116–22.PubMedCrossRef
98.
go back to reference Engelhard K, Werner C, Eberspacher E, Bachl M, Blobner M, Hildt E, et al. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg. 2003;96(2):524–31.PubMed Engelhard K, Werner C, Eberspacher E, Bachl M, Blobner M, Hildt E, et al. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg. 2003;96(2):524–31.PubMed
99.
go back to reference Winkelheide U, Lasarzik I, Kaeppel B, Winkler J, Werner C, Kochs E, et al. Dose-dependent effect of S(+) ketamine on post-ischemic endogenous neurogenesis in rats. Acta Anaesthesiol Scand. 2009;53(4):528–33.PubMedCrossRef Winkelheide U, Lasarzik I, Kaeppel B, Winkler J, Werner C, Kochs E, et al. Dose-dependent effect of S(+) ketamine on post-ischemic endogenous neurogenesis in rats. Acta Anaesthesiol Scand. 2009;53(4):528–33.PubMedCrossRef
100.
go back to reference Nurse S, Corbett D. Neuroprotection after several days of mild, drug-induced hypothermia. J Cereb Blood Flow Metab. 1996;16(3):474–80.PubMedCrossRef Nurse S, Corbett D. Neuroprotection after several days of mild, drug-induced hypothermia. J Cereb Blood Flow Metab. 1996;16(3):474–80.PubMedCrossRef
101.
go back to reference Zhang L, Mitani A, Yanase H, Kataoka K. Continuous monitoring and regulating of brain temperature in the conscious and freely moving ischemic gerbil: effect of MK-801 on delayed neuronal death in hippocampal CA1. J Neurosci Res. 1997;47(4):440–8.PubMedCrossRef Zhang L, Mitani A, Yanase H, Kataoka K. Continuous monitoring and regulating of brain temperature in the conscious and freely moving ischemic gerbil: effect of MK-801 on delayed neuronal death in hippocampal CA1. J Neurosci Res. 1997;47(4):440–8.PubMedCrossRef
102.
go back to reference Pohorecki R, Becker GL, Reilly PJ, Landers DF. Ischemic brain injury in vitro: protective effects of NMDA receptor antagonists and calmidazolium. Brain Res. 1990;528(1):133–7.PubMedCrossRef Pohorecki R, Becker GL, Reilly PJ, Landers DF. Ischemic brain injury in vitro: protective effects of NMDA receptor antagonists and calmidazolium. Brain Res. 1990;528(1):133–7.PubMedCrossRef
103.
go back to reference Cai J, Hu Y, Li W, Li L, Li S, Zhang M, et al. The neuroprotective effect of propofol against brain ischemia mediated by the glutamatergic signaling pathway in rats. Neurochem Res. 2011;36(10):1724–31.PubMedCrossRef Cai J, Hu Y, Li W, Li L, Li S, Zhang M, et al. The neuroprotective effect of propofol against brain ischemia mediated by the glutamatergic signaling pathway in rats. Neurochem Res. 2011;36(10):1724–31.PubMedCrossRef
104.
go back to reference Basu S, Miclescu A, Sharma H, Wiklund L. Propofol mitigates systemic oxidative injury during experimental cardiopulmonary cerebral resuscitation. Prostaglandins Leukot Essent Fatty Acids. 2011;84(5–6):123–30.PubMedCrossRef Basu S, Miclescu A, Sharma H, Wiklund L. Propofol mitigates systemic oxidative injury during experimental cardiopulmonary cerebral resuscitation. Prostaglandins Leukot Essent Fatty Acids. 2011;84(5–6):123–30.PubMedCrossRef
105.
go back to reference Engelhard K, Werner C, Eberspacher E, Pape M, Blobner M, Hutzler P, et al. Sevoflurane and propofol influence the expression of apoptosis-regulating proteins after cerebral ischaemia and reperfusion in rats. Eur J Anaesthesiol. 2004;21(7):530–7.PubMedCrossRef Engelhard K, Werner C, Eberspacher E, Pape M, Blobner M, Hutzler P, et al. Sevoflurane and propofol influence the expression of apoptosis-regulating proteins after cerebral ischaemia and reperfusion in rats. Eur J Anaesthesiol. 2004;21(7):530–7.PubMedCrossRef
106.
go back to reference Wang W, Lu R, Feng DY, Liang LR, Liu B, Zhang H. Inhibition of microglial activation contributes to propofol-induced protection against post-cardiac arrest brain injury in rats. J Neurochem. 2015;134(5):892–903.PubMedCrossRef Wang W, Lu R, Feng DY, Liang LR, Liu B, Zhang H. Inhibition of microglial activation contributes to propofol-induced protection against post-cardiac arrest brain injury in rats. J Neurochem. 2015;134(5):892–903.PubMedCrossRef
107.
go back to reference Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One. 2012;7(4):e35324.PubMedPubMedCentralCrossRef Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One. 2012;7(4):e35324.PubMedPubMedCentralCrossRef
108.
go back to reference Pittman JE, Sheng H, Pearlstein R, Brinkhous A, Dexter F, Warner DS. Comparison of the effects of propofol and pentobarbital on neurologic outcome and cerebral infarct size after temporary focal ischemia in the rat. Anesthesiology. 1997;87(5):1139–44.PubMedCrossRef Pittman JE, Sheng H, Pearlstein R, Brinkhous A, Dexter F, Warner DS. Comparison of the effects of propofol and pentobarbital on neurologic outcome and cerebral infarct size after temporary focal ischemia in the rat. Anesthesiology. 1997;87(5):1139–44.PubMedCrossRef
109.
go back to reference Wang H, Luo M, Li C, Wang G. Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem. 2011;119(1):210–9.PubMedCrossRef Wang H, Luo M, Li C, Wang G. Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem. 2011;119(1):210–9.PubMedCrossRef
110.
go back to reference Kochs E, Hoffman WE, Werner C, Thomas C, Albrecht RF, Schulte am Esch J. The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats. Anesthesiology. 1992;76(2):245–52.PubMedCrossRef Kochs E, Hoffman WE, Werner C, Thomas C, Albrecht RF, Schulte am Esch J. The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats. Anesthesiology. 1992;76(2):245–52.PubMedCrossRef
111.
go back to reference Ito H, Watanabe Y, Isshiki A, Uchino H. Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand. 1999;43(2):153–62.PubMedCrossRef Ito H, Watanabe Y, Isshiki A, Uchino H. Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand. 1999;43(2):153–62.PubMedCrossRef
112.
go back to reference Yamasaki T, Nakakimura K, Matsumoto M, Xiong L, Ishikawa T, Sakabe T. Effects of graded suppression of the EEG with propofol on the neurological outcome following incomplete cerebral ischaemia in rats. Eur J Anaesthesiol. 1999;16(5):320–9.PubMedCrossRef Yamasaki T, Nakakimura K, Matsumoto M, Xiong L, Ishikawa T, Sakabe T. Effects of graded suppression of the EEG with propofol on the neurological outcome following incomplete cerebral ischaemia in rats. Eur J Anaesthesiol. 1999;16(5):320–9.PubMedCrossRef
113.
go back to reference Ichinose K, Okamoto T, Tanimoto H, Taguchi H, Tashiro M, Sugita M, et al. A moderate dose of propofol and rapidly induced mild hypothermia with extracorporeal lung and heart assist (ECLHA) improve the neurological outcome after prolonged cardiac arrest in dogs. Resuscitation. 2006;70(2):275–84.PubMedCrossRef Ichinose K, Okamoto T, Tanimoto H, Taguchi H, Tashiro M, Sugita M, et al. A moderate dose of propofol and rapidly induced mild hypothermia with extracorporeal lung and heart assist (ECLHA) improve the neurological outcome after prolonged cardiac arrest in dogs. Resuscitation. 2006;70(2):275–84.PubMedCrossRef
114.
go back to reference Tsai YC, Huang SJ, Lai YY, Chang CL, Cheng JT. Propofol does not reduce infarct volume in rats undergoing permanent middle cerebral artery occlusion. Acta Anaesthesiol Sin. 1994;32(2):99–104.PubMed Tsai YC, Huang SJ, Lai YY, Chang CL, Cheng JT. Propofol does not reduce infarct volume in rats undergoing permanent middle cerebral artery occlusion. Acta Anaesthesiol Sin. 1994;32(2):99–104.PubMed
115.
go back to reference Young Y, Menon DK, Tisavipat N, Matta BF, Jones JG. Propofol neuroprotection in a rat model of ischaemia reperfusion injury. Eur J Anaesthesiol. 1997;14(3):320–6.PubMedCrossRef Young Y, Menon DK, Tisavipat N, Matta BF, Jones JG. Propofol neuroprotection in a rat model of ischaemia reperfusion injury. Eur J Anaesthesiol. 1997;14(3):320–6.PubMedCrossRef
116.
go back to reference Lasarzik I, Winkelheide U, Stallmann S, Orth C, Schneider A, Tresch A, et al. Assessment of postischemic neurogenesis in rats with cerebral ischemia and propofol anesthesia. Anesthesiology. 2009;110(3):529–37.PubMedCrossRef Lasarzik I, Winkelheide U, Stallmann S, Orth C, Schneider A, Tresch A, et al. Assessment of postischemic neurogenesis in rats with cerebral ischemia and propofol anesthesia. Anesthesiology. 2009;110(3):529–37.PubMedCrossRef
117.
go back to reference Zeng X, Wang H, Xing X, Wang Q, Li W. Dexmedetomidine protects against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats. PLoS One. 2016;11(3):e0151620.PubMedPubMedCentralCrossRef Zeng X, Wang H, Xing X, Wang Q, Li W. Dexmedetomidine protects against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats. PLoS One. 2016;11(3):e0151620.PubMedPubMedCentralCrossRef
118.
go back to reference Maier C, Steinberg GK, Sun GH, Zhi GT, Maze M. Neuroprotection by the alpha-2 adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology 1993;79(2):306–12. Maier C, Steinberg GK, Sun GH, Zhi GT, Maze M. Neuroprotection by the alpha-2 adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology 1993;79(2):306–12.
119.
go back to reference Nakano T, Okamoto H. Dexmedetomidine-induced cerebral hypoperfusion exacerbates ischemic brain injury in rats. J Anesth. 2009;23(3):378–84.PubMedCrossRef Nakano T, Okamoto H. Dexmedetomidine-induced cerebral hypoperfusion exacerbates ischemic brain injury in rats. J Anesth. 2009;23(3):378–84.PubMedCrossRef
120.
go back to reference Soonthon-Brant V, Patel PM, Drummond JC, Cole DJ, Kelly PJ, Watson M. Fentanyl does not increase brain injury after focal cerebral ischemia in rats. Anesth Analg. 1999;88(1):49–55.PubMed Soonthon-Brant V, Patel PM, Drummond JC, Cole DJ, Kelly PJ, Watson M. Fentanyl does not increase brain injury after focal cerebral ischemia in rats. Anesth Analg. 1999;88(1):49–55.PubMed
121.
go back to reference Drummond JC, Cole DJ, Patel PM, Reynolds LW. Focal cerebral ischemia during anesthesia with etomidate, isoflurane, or thiopental: a comparison of the extent of cerebral injury. Neurosurgery. 1995;37(4):742–8 .discussion 8-9PubMedCrossRef Drummond JC, Cole DJ, Patel PM, Reynolds LW. Focal cerebral ischemia during anesthesia with etomidate, isoflurane, or thiopental: a comparison of the extent of cerebral injury. Neurosurgery. 1995;37(4):742–8 .discussion 8-9PubMedCrossRef
122.
go back to reference Yuan T, Li Z, Li X, Yu G, Wang N, Yang X. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia. J Surg Res. 2014;192(1):150–62.PubMedCrossRef Yuan T, Li Z, Li X, Yu G, Wang N, Yang X. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia. J Surg Res. 2014;192(1):150–62.PubMedCrossRef
123.
go back to reference Block L, Jorneberg P, Bjorklund U, Westerlund A, Biber B, Hansson E. Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes. Eur J Neurosci. 2013;38(11):3669–78.PubMedPubMedCentralCrossRef Block L, Jorneberg P, Bjorklund U, Westerlund A, Biber B, Hansson E. Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes. Eur J Neurosci. 2013;38(11):3669–78.PubMedPubMedCentralCrossRef
124.
go back to reference Upton RN, Rasmussen M, Grant C, Martinez AM, Cold GE, Ludbrook GL. Pharmacokinetics and pharmacodynamics of indomethacin: effects on cerebral blood flow in anaesthetized sheep. Clin Exp Pharmacol Physiol. 2008;35(3):317–23.PubMedCrossRef Upton RN, Rasmussen M, Grant C, Martinez AM, Cold GE, Ludbrook GL. Pharmacokinetics and pharmacodynamics of indomethacin: effects on cerebral blood flow in anaesthetized sheep. Clin Exp Pharmacol Physiol. 2008;35(3):317–23.PubMedCrossRef
125.
go back to reference Park EM, Cho BP, Volpe BT, Cruz MO, Joh TH, Cho S. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression. Neuroscience. 2005;132(3):625–31.PubMedCrossRef Park EM, Cho BP, Volpe BT, Cruz MO, Joh TH, Cho S. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression. Neuroscience. 2005;132(3):625–31.PubMedCrossRef
126.
go back to reference Cho HJ, Staikopoulos V, Furness JB, Jennings EA. Inflammation-induced increase in hyperpolarization-activated, cyclic nucleotide-gated channel protein in trigeminal ganglion neurons and the effect of buprenorphine. Neuroscience. 2009;162(2):453–61.PubMedCrossRef Cho HJ, Staikopoulos V, Furness JB, Jennings EA. Inflammation-induced increase in hyperpolarization-activated, cyclic nucleotide-gated channel protein in trigeminal ganglion neurons and the effect of buprenorphine. Neuroscience. 2009;162(2):453–61.PubMedCrossRef
127.
go back to reference Jacobsen KR, Fauerby N, Raida Z, Kalliokoski O, Hau J, Johansen FF, et al. Effects of buprenorphine and meloxicam analgesia on induced cerebral ischemia in C57BL/6 male mice. Comp Med. 2013;63(2):105–13.PubMedPubMedCentral Jacobsen KR, Fauerby N, Raida Z, Kalliokoski O, Hau J, Johansen FF, et al. Effects of buprenorphine and meloxicam analgesia on induced cerebral ischemia in C57BL/6 male mice. Comp Med. 2013;63(2):105–13.PubMedPubMedCentral
128.
go back to reference Yulug B, Cam E, Yildiz A, Kilic E. Buprenorphine does not aggravate ischemic neuronal injury in experimental focal cerebral ischemia. J Neuropsychiatry Clin Neurosci. 2007;19(3):331–4.PubMedCrossRef Yulug B, Cam E, Yildiz A, Kilic E. Buprenorphine does not aggravate ischemic neuronal injury in experimental focal cerebral ischemia. J Neuropsychiatry Clin Neurosci. 2007;19(3):331–4.PubMedCrossRef
129.
go back to reference Bhardwaj A, Castro IA, Alkayed NJ, Hurn PD, Kirsch JR. Anesthetic choice of halothane versus propofol: impact on experimental perioperative stroke. Stroke. 2001;32(8):1920–5.PubMedCrossRef Bhardwaj A, Castro IA, Alkayed NJ, Hurn PD, Kirsch JR. Anesthetic choice of halothane versus propofol: impact on experimental perioperative stroke. Stroke. 2001;32(8):1920–5.PubMedCrossRef
130.
go back to reference Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK, et al. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke. 2002;33(7):1889–98.PubMedCrossRef Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK, et al. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke. 2002;33(7):1889–98.PubMedCrossRef
131.
go back to reference Payne RS, Akca O, Roewer N, Schurr A, Kehl F. Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res. 2005;1034(1–2):147–52.PubMedCrossRef Payne RS, Akca O, Roewer N, Schurr A, Kehl F. Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res. 2005;1034(1–2):147–52.PubMedCrossRef
132.
go back to reference Ding XD, Zheng NN, Cao YY, Zhao GY, Zhao P. Dexmedetomidine preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest. Int J Neurosci. 2016;126(3):249–56.PubMedCrossRef Ding XD, Zheng NN, Cao YY, Zhao GY, Zhao P. Dexmedetomidine preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest. Int J Neurosci. 2016;126(3):249–56.PubMedCrossRef
133.
go back to reference Liu JH, Feng D, Zhang YF, Shang Y, Wu Y, Li XF, et al. Chloral hydrate preconditioning protects against ischemic stroke via upregulating Annexin A1. CNS Neurosci Ther. 2015;21(9):718–26.PubMedCrossRef Liu JH, Feng D, Zhang YF, Shang Y, Wu Y, Li XF, et al. Chloral hydrate preconditioning protects against ischemic stroke via upregulating Annexin A1. CNS Neurosci Ther. 2015;21(9):718–26.PubMedCrossRef
134.
go back to reference Li L, Zuo Z. Isoflurane preconditioning improves short-term and long-term neurological outcome after focal brain ischemia in adult rats. Neuroscience. 2009;164(2):497–506.PubMedPubMedCentralCrossRef Li L, Zuo Z. Isoflurane preconditioning improves short-term and long-term neurological outcome after focal brain ischemia in adult rats. Neuroscience. 2009;164(2):497–506.PubMedPubMedCentralCrossRef
135.
go back to reference Ye R, Yang Q, Kong X, Li N, Zhang Y, Han J, et al. Sevoflurane preconditioning improves mitochondrial function and long-term neurologic sequelae after transient cerebral ischemia: role of mitochondrial permeability transition. Crit Care Med. 2012;40(9):2685–93.PubMedCrossRef Ye R, Yang Q, Kong X, Li N, Zhang Y, Han J, et al. Sevoflurane preconditioning improves mitochondrial function and long-term neurologic sequelae after transient cerebral ischemia: role of mitochondrial permeability transition. Crit Care Med. 2012;40(9):2685–93.PubMedCrossRef
136.
go back to reference Li C, Han D, Zhang F, Zhou C, Yu HM, Zhang GY. Preconditioning ischemia attenuates increased neurexin-neuroligin1-PSD-95 interaction after transient cerebral ischemia in rat hippocampus. Neurosci Lett. 2007;426(3):192–7.PubMedCrossRef Li C, Han D, Zhang F, Zhou C, Yu HM, Zhang GY. Preconditioning ischemia attenuates increased neurexin-neuroligin1-PSD-95 interaction after transient cerebral ischemia in rat hippocampus. Neurosci Lett. 2007;426(3):192–7.PubMedCrossRef
137.
go back to reference Zhao P, Ji G, Xue H, Yu W, Zhao X, Ding M, et al. Isoflurane postconditioning improved long-term neurological outcome possibly via inhibiting the mitochondrial permeability transition pore in neonatal rats after brain hypoxia-ischemia. Neuroscience. 2014;280:193–203.PubMedCrossRef Zhao P, Ji G, Xue H, Yu W, Zhao X, Ding M, et al. Isoflurane postconditioning improved long-term neurological outcome possibly via inhibiting the mitochondrial permeability transition pore in neonatal rats after brain hypoxia-ischemia. Neuroscience. 2014;280:193–203.PubMedCrossRef
138.
go back to reference Lai Z, Zhang L, Su J, Cai D, Xu Q. Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway. Brain Res. 2016;1630:25–37.PubMedCrossRef Lai Z, Zhang L, Su J, Cai D, Xu Q. Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway. Brain Res. 2016;1630:25–37.PubMedCrossRef
139.
go back to reference Cole DJ, Drummond JC, Shapiro HM, Zornow MH. Influence of hypotension and hypotensive technique on the area of profound reduction in cerebral blood flow during focal cerebral ischaemia in the rat. Br J Anaesth. 1990;64(4):498–502.PubMedCrossRef Cole DJ, Drummond JC, Shapiro HM, Zornow MH. Influence of hypotension and hypotensive technique on the area of profound reduction in cerebral blood flow during focal cerebral ischaemia in the rat. Br J Anaesth. 1990;64(4):498–502.PubMedCrossRef
140.
go back to reference Sukhotinsky I, Dilekoz E, Moskowitz MA, Ayata C. Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat. J Cereb Blood Flow Metab. 2008;28(7):1369–76.PubMedCrossRef Sukhotinsky I, Dilekoz E, Moskowitz MA, Ayata C. Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat. J Cereb Blood Flow Metab. 2008;28(7):1369–76.PubMedCrossRef
141.
go back to reference Sukhotinsky I, Yaseen MA, Sakadzic S, Ruvinskaya S, Sims JR, Boas DA, et al. Perfusion pressure-dependent recovery of cortical spreading depression is independent of tissue oxygenation over a wide physiologic range. J Cereb Blood Flow Metab. 2010;30(6):1168–77.PubMedPubMedCentralCrossRef Sukhotinsky I, Yaseen MA, Sakadzic S, Ruvinskaya S, Sims JR, Boas DA, et al. Perfusion pressure-dependent recovery of cortical spreading depression is independent of tissue oxygenation over a wide physiologic range. J Cereb Blood Flow Metab. 2010;30(6):1168–77.PubMedPubMedCentralCrossRef
Metadata
Title
Anesthesia in Experimental Stroke Research
Authors
Ulrike Hoffmann
Huaxin Sheng
Cenk Ayata
David S. Warner
Publication date
01-10-2016
Publisher
Springer US
Published in
Translational Stroke Research / Issue 5/2016
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-016-0491-5

Other articles of this Issue 5/2016

Translational Stroke Research 5/2016 Go to the issue

SI: Challenges and Controversies in Translational Stroke Research

Neuroimaging as a Selection Tool and Endpoint in Clinical and Pre-clinical Trials

SI: Challenges and Controversies in Translational Stroke Research

Stem Cell Therapy and Administration Routes After Stroke

SI: Challenges and Controversies in Translational Stroke Research

Rodent Models of Vascular Cognitive Impairment

SI: Challenges and Controversies in Translational Stroke Research

How to Measure Recovery? Revisiting Concepts and Methods for Stroke Studies