Skip to main content
Top
Published in: Translational Stroke Research 6/2014

01-12-2014 | Original Article

Rat Endovascular Perforation Model

Author: Fatima A. Sehba

Published in: Translational Stroke Research | Issue 6/2014

Login to get access

Abstract

Experimental animal models of aneurysmal subarachnoid hemorrhage (SAH) have provided a wealth of information on the mechanisms of brain injury. The rat endovascular perforation (EVP) model replicates the early pathophysiology of SAH and hence is frequently used to study early brain injury following SAH. This paper presents a brief review of historical development of the EVP model and details the technique used to create SAH and considerations necessary to overcome technical challenges.
Literature
1.
go back to reference Prunell G, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport. 2002;13:2553–6.PubMedCrossRef Prunell G, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport. 2002;13:2553–6.PubMedCrossRef
2.
3.
go back to reference Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 1995;26:1086–91.PubMedCrossRef Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 1995;26:1086–91.PubMedCrossRef
4.
go back to reference Lee JY, Sagher O, Keep R, et al. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 2009;65:331–43. discussion 343.PubMedCrossRef Lee JY, Sagher O, Keep R, et al. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 2009;65:331–43. discussion 343.PubMedCrossRef
5.
go back to reference Kooijman E, Nijboer CH, van Velthoven CT, et al. The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation. 2014;11:2.PubMedCrossRefPubMedCentral Kooijman E, Nijboer CH, van Velthoven CT, et al. The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation. 2014;11:2.PubMedCrossRefPubMedCentral
6.
go back to reference Sehba FA. The rat endovascular perforation model of subarachnoid hemorrhage. Acta neurochirurgica Supplement 2014; In press Sehba FA. The rat endovascular perforation model of subarachnoid hemorrhage. Acta neurochirurgica Supplement 2014; In press
7.
go back to reference Barry KJ, Gogjian MA, Stein BM. Small animal model for investigation of subarachnoid hemorrhage and cerebral vasospasm. Stroke. 1979;10:538–41.PubMedCrossRef Barry KJ, Gogjian MA, Stein BM. Small animal model for investigation of subarachnoid hemorrhage and cerebral vasospasm. Stroke. 1979;10:538–41.PubMedCrossRef
8.
go back to reference Kader A, Krauss WE, Onesti ST, et al. Chronic cerebral blood flow changes following experimental subarachnoid hemorrhage in rats. Stroke. 1990;21:577–81.PubMedCrossRef Kader A, Krauss WE, Onesti ST, et al. Chronic cerebral blood flow changes following experimental subarachnoid hemorrhage in rats. Stroke. 1990;21:577–81.PubMedCrossRef
9.
go back to reference Veelken JA, Laing RJ, Jakubowski J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke. 1995;26:1279–83. discussion 1284.PubMedCrossRef Veelken JA, Laing RJ, Jakubowski J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke. 1995;26:1279–83. discussion 1284.PubMedCrossRef
10.
go back to reference Suzuki T, Koike Y, Yanaura S, et al. Sex differences in physical dependence on pentobarbital in four inbred strains of rats. Gen Pharmacol. 1992;23:487–92.PubMedCrossRef Suzuki T, Koike Y, Yanaura S, et al. Sex differences in physical dependence on pentobarbital in four inbred strains of rats. Gen Pharmacol. 1992;23:487–92.PubMedCrossRef
11.
go back to reference Torbati D, Ramirez J, Hon E, et al. Experimental critical care in rats: gender differences in anesthesia, ventilation, and gas exchange. Crit Care Med. 1999;27:1878–84.PubMedCrossRef Torbati D, Ramirez J, Hon E, et al. Experimental critical care in rats: gender differences in anesthesia, ventilation, and gas exchange. Crit Care Med. 1999;27:1878–84.PubMedCrossRef
12.
go back to reference Zambricki EA, Dalecy LG. Rat sex differences in anesthesia. Comp Med. 2004;54:49–53.PubMed Zambricki EA, Dalecy LG. Rat sex differences in anesthesia. Comp Med. 2004;54:49–53.PubMed
13.
14.
go back to reference Greenhalgh AD, Rothwell NJ, Allan SM. An endovascular perforation model of subarachnoid haemorrhage in rat produces heterogeneous infarcts that increase with blood load. Transl Stroke Res. 2012;3:164–72.PubMedCrossRef Greenhalgh AD, Rothwell NJ, Allan SM. An endovascular perforation model of subarachnoid haemorrhage in rat produces heterogeneous infarcts that increase with blood load. Transl Stroke Res. 2012;3:164–72.PubMedCrossRef
15.
go back to reference Fuzik J, Gellert L, Olah G, et al. Fundamental interstrain differences in cortical activity between Wistar and Sprague–Dawley rats during global ischemia. Neuroscience. 2013;228:371–81.PubMedCrossRef Fuzik J, Gellert L, Olah G, et al. Fundamental interstrain differences in cortical activity between Wistar and Sprague–Dawley rats during global ischemia. Neuroscience. 2013;228:371–81.PubMedCrossRef
16.
go back to reference Dittmar MS, Vatankhah B, Fehm NP, et al. Fischer-344 rats are unsuitable for the MCAO filament model due to their cerebrovascular anatomy. J Neurosci Methods. 2006;156:50–4.PubMedCrossRef Dittmar MS, Vatankhah B, Fehm NP, et al. Fischer-344 rats are unsuitable for the MCAO filament model due to their cerebrovascular anatomy. J Neurosci Methods. 2006;156:50–4.PubMedCrossRef
17.
go back to reference Bederson JB, Levy AL, Ding WH, et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 1998;42:352–60.PubMedCrossRef Bederson JB, Levy AL, Ding WH, et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 1998;42:352–60.PubMedCrossRef
18.
go back to reference Sehba FA, Mostafa G, Knopman J, et al. Acute alterations in microvascular basal lamina after subarachnoid hemorrhage. J Neurosurg. 2004;101:633–40.PubMedCrossRef Sehba FA, Mostafa G, Knopman J, et al. Acute alterations in microvascular basal lamina after subarachnoid hemorrhage. J Neurosurg. 2004;101:633–40.PubMedCrossRef
19.
go back to reference Friedrich V, Flores R, Muller A, et al. Luminal platelet aggregates in functional deficits in parenchymal vessels after subarachnoid hemorrhage. Brain Res. 2010;1354:179–87.PubMedCrossRef Friedrich V, Flores R, Muller A, et al. Luminal platelet aggregates in functional deficits in parenchymal vessels after subarachnoid hemorrhage. Brain Res. 2010;1354:179–87.PubMedCrossRef
20.
go back to reference Friedrich V, Flores R, Muller A, et al. Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience. 2010;165:968–75.PubMedCrossRefPubMedCentral Friedrich V, Flores R, Muller A, et al. Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience. 2010;165:968–75.PubMedCrossRefPubMedCentral
21.
go back to reference Scholler K, Trinkl A, Klopotowski M, et al. Characterization of microvascular basal lamina damage and blood–brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res. 2007;1142:237–46.PubMedCrossRef Scholler K, Trinkl A, Klopotowski M, et al. Characterization of microvascular basal lamina damage and blood–brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res. 2007;1142:237–46.PubMedCrossRef
22.
go back to reference Sehba FA, Makonnen G, Friedrich V, et al. Acute cerebral vascular injury occurs after subarachnoid hemorrhage and can be prevented by administration of a nitric oxide donor. J Neurosurg. 2007;106:321–9.PubMedCrossRef Sehba FA, Makonnen G, Friedrich V, et al. Acute cerebral vascular injury occurs after subarachnoid hemorrhage and can be prevented by administration of a nitric oxide donor. J Neurosurg. 2007;106:321–9.PubMedCrossRef
23.
go back to reference Prunell GF, Svendgaard NA, Alkass K, et al. Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery. 2005;56:1082–92. discussion 1082–1092.PubMed Prunell GF, Svendgaard NA, Alkass K, et al. Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery. 2005;56:1082–92. discussion 1082–1092.PubMed
24.
go back to reference Kooijman E, Nijboer CH, van Velthoven CT, et al. Long-term functional consequences and ongoing cerebral inflammation after subarachnoid hemorrhage in the rat. PLoS ONE. 2014;9:e90584.PubMedCrossRefPubMedCentral Kooijman E, Nijboer CH, van Velthoven CT, et al. Long-term functional consequences and ongoing cerebral inflammation after subarachnoid hemorrhage in the rat. PLoS ONE. 2014;9:e90584.PubMedCrossRefPubMedCentral
25.
go back to reference Sehba FA, Mustafa G, Friedrich V, et al. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102:1094–100.PubMedCrossRef Sehba FA, Mustafa G, Friedrich V, et al. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102:1094–100.PubMedCrossRef
26.
go back to reference Ishikawa M, Kusaka G, Yamaguchi N, et al. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery. 2009;64:546–53. discussion 553–544.PubMedCrossRef Ishikawa M, Kusaka G, Yamaguchi N, et al. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery. 2009;64:546–53. discussion 553–544.PubMedCrossRef
27.
go back to reference Friedrich V, Flores R, Muller A, et al. Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage. J Neuroinflammation. 2011;8:103.PubMedCrossRefPubMedCentral Friedrich V, Flores R, Muller A, et al. Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage. J Neuroinflammation. 2011;8:103.PubMedCrossRefPubMedCentral
28.
go back to reference Park S, Yamaguchi M, Zhou C, et al. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004;35:2412–7.PubMedCrossRef Park S, Yamaguchi M, Zhou C, et al. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004;35:2412–7.PubMedCrossRef
29.
go back to reference Yatsushige H, Ostrowski RP, Tsubokawa T, et al. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res. 2007;85:1436–48.PubMedCrossRef Yatsushige H, Ostrowski RP, Tsubokawa T, et al. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res. 2007;85:1436–48.PubMedCrossRef
30.
go back to reference Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1341–53.PubMedCrossRef Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1341–53.PubMedCrossRef
32.
go back to reference Prunell GF, Svendgaard NA, Alkass K, et al. Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg. 2005;102:1046–54.PubMedCrossRef Prunell GF, Svendgaard NA, Alkass K, et al. Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg. 2005;102:1046–54.PubMedCrossRef
33.
go back to reference Lee JY, He Y, Sagher O, et al. Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res. 2009;1287:126–35.PubMedCrossRef Lee JY, He Y, Sagher O, et al. Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res. 2009;1287:126–35.PubMedCrossRef
34.
go back to reference Endo H, Nito C, Kamada H, et al. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab. 2007;27:975–82.PubMedPubMedCentral Endo H, Nito C, Kamada H, et al. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab. 2007;27:975–82.PubMedPubMedCentral
35.
go back to reference Zhan Y, Chen C, Suzuki H, et al. Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2012;40:1291–6.PubMedCrossRef Zhan Y, Chen C, Suzuki H, et al. Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2012;40:1291–6.PubMedCrossRef
36.
37.
go back to reference Zausinger S, Thal SC, Kreimeier U, et al. Hypertonic fluid resuscitation from subarachnoid hemorrhage in rats. Neurosurgery. 2004;55:679–86. discussion 686–677.PubMedCrossRef Zausinger S, Thal SC, Kreimeier U, et al. Hypertonic fluid resuscitation from subarachnoid hemorrhage in rats. Neurosurgery. 2004;55:679–86. discussion 686–677.PubMedCrossRef
38.
go back to reference Bermueller C, Thal SC, Plesnila N, et al. Hypertonic fluid resuscitation from subarachnoid hemorrhage in rats: a comparison between small volume resuscitation and mannitol. J Neurol Sci. 2006;241:73–82.PubMedCrossRef Bermueller C, Thal SC, Plesnila N, et al. Hypertonic fluid resuscitation from subarachnoid hemorrhage in rats: a comparison between small volume resuscitation and mannitol. J Neurol Sci. 2006;241:73–82.PubMedCrossRef
39.
go back to reference Silasi G, Colbourne F. Long-term assessment of motor and cognitive behaviours in the intraluminal perforation model of subarachnoid hemorrhage in rats. Behav Brain Res. 2009;198:380–7.PubMedCrossRef Silasi G, Colbourne F. Long-term assessment of motor and cognitive behaviours in the intraluminal perforation model of subarachnoid hemorrhage in rats. Behav Brain Res. 2009;198:380–7.PubMedCrossRef
40.
go back to reference Sherchan P, Lekic T, Suzuki H, et al. Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J Neurotrauma 2011 Sherchan P, Lekic T, Suzuki H, et al. Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J Neurotrauma 2011
41.
42.
go back to reference Marbacher S, Fandino J, Kitchen ND. Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg. 2010;24:415–34.PubMedCrossRef Marbacher S, Fandino J, Kitchen ND. Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg. 2010;24:415–34.PubMedCrossRef
43.
go back to reference Gules I, Satoh M, Clower BR, et al. Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol. 2002;283:H2551–9.PubMed Gules I, Satoh M, Clower BR, et al. Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol. 2002;283:H2551–9.PubMed
44.
go back to reference Sayama T, Suzuki S, Fukui M. Role of inducible nitric oxide synthase in the cerebral vasospasm after subarachnoid hemorrhage in rats. Neurol Res. 1999;21:293–8.PubMed Sayama T, Suzuki S, Fukui M. Role of inducible nitric oxide synthase in the cerebral vasospasm after subarachnoid hemorrhage in rats. Neurol Res. 1999;21:293–8.PubMed
45.
go back to reference Cahill J, Calvert JW, Solaroglu I, et al. Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke. 2006;37:1868–74.PubMedCrossRef Cahill J, Calvert JW, Solaroglu I, et al. Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke. 2006;37:1868–74.PubMedCrossRef
46.
go back to reference He Z, Ostrowski RP, Sun X, et al. Targeting C/EBP homologous protein with siRNA attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Exp Neurol. 2012;238:218–24.PubMedCrossRefPubMedCentral He Z, Ostrowski RP, Sun X, et al. Targeting C/EBP homologous protein with siRNA attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Exp Neurol. 2012;238:218–24.PubMedCrossRefPubMedCentral
47.
go back to reference Suzuki H, Hasegawa Y, Kanamaru K, et al. Effect of recombinant osteopontin on cerebral vasospasm after subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2011;110:29–32.PubMed Suzuki H, Hasegawa Y, Kanamaru K, et al. Effect of recombinant osteopontin on cerebral vasospasm after subarachnoid hemorrhage in rats. Acta Neurochir Suppl. 2011;110:29–32.PubMed
48.
go back to reference Sugawara T, Ayer R, Jadhav V, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.PubMedCrossRefPubMedCentral Sugawara T, Ayer R, Jadhav V, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167:327–34.PubMedCrossRefPubMedCentral
49.
go back to reference Furnish EJ, Brophy CM, Harris VA, et al. Treatment with transducible phosphopeptide analogues of the small heat shock-related protein, HSP20, after experimental subarachnoid hemorrhage: prevention and reversal of delayed decreases in cerebral perfusion. J Neurosurg. 2010;112:631–9.PubMedCrossRef Furnish EJ, Brophy CM, Harris VA, et al. Treatment with transducible phosphopeptide analogues of the small heat shock-related protein, HSP20, after experimental subarachnoid hemorrhage: prevention and reversal of delayed decreases in cerebral perfusion. J Neurosurg. 2010;112:631–9.PubMedCrossRef
50.
go back to reference Shiba M, Suzuki H, Fujimoto M, et al. Imatinib mesylate prevents cerebral vasospasm after subarachnoid hemorrhage via inhibiting tenascin-C expression in rats. Neurobiol Dis. 2012;46:172–9.PubMedCrossRef Shiba M, Suzuki H, Fujimoto M, et al. Imatinib mesylate prevents cerebral vasospasm after subarachnoid hemorrhage via inhibiting tenascin-C expression in rats. Neurobiol Dis. 2012;46:172–9.PubMedCrossRef
51.
go back to reference Zheng JS, Zhan RY, Zheng SS, et al. Inhibition of NADPH oxidase attenuates vasospasm after experimental subarachnoid hemorrhage in rats. Stroke J Cereb Circ. 2005;36:1059–64.CrossRef Zheng JS, Zhan RY, Zheng SS, et al. Inhibition of NADPH oxidase attenuates vasospasm after experimental subarachnoid hemorrhage in rats. Stroke J Cereb Circ. 2005;36:1059–64.CrossRef
52.
go back to reference Lee JS, Morrow D, Andresen MC, et al. Isoflurane depresses baroreflex control of heart rate in decerebrate rats. Anesthesiology. 2002;96:1214–22.PubMedCrossRef Lee JS, Morrow D, Andresen MC, et al. Isoflurane depresses baroreflex control of heart rate in decerebrate rats. Anesthesiology. 2002;96:1214–22.PubMedCrossRef
53.
go back to reference Gorelova NA, Koroleva VI, Amemori T, et al. Ketamine blockade of cortical spreading depression in rats. Electroencephalogr Clin Neurophysiol. 1987;66:440–7.PubMedCrossRef Gorelova NA, Koroleva VI, Amemori T, et al. Ketamine blockade of cortical spreading depression in rats. Electroencephalogr Clin Neurophysiol. 1987;66:440–7.PubMedCrossRef
54.
go back to reference Hockel K, Trabold R, Scholler K, et al. Impact of anesthesia on pathophysiology and mortality following subarachnoid hemorrhage in rats. Exp Transl Stroke Med. 2012;4:5.PubMedCrossRefPubMedCentral Hockel K, Trabold R, Scholler K, et al. Impact of anesthesia on pathophysiology and mortality following subarachnoid hemorrhage in rats. Exp Transl Stroke Med. 2012;4:5.PubMedCrossRefPubMedCentral
55.
go back to reference Westermaier T, Jauss A, Eriskat J, et al. Time-course of cerebral perfusion and tissue oxygenation in the first 6 h after experimental subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab. 2009;29:771–9.PubMedCrossRef Westermaier T, Jauss A, Eriskat J, et al. Time-course of cerebral perfusion and tissue oxygenation in the first 6 h after experimental subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab. 2009;29:771–9.PubMedCrossRef
56.
go back to reference Park IS, Meno JR, Witt CE, et al. Subarachnoid hemorrhage model in the rat: modification of the endovascular filament model. J Neurosci Methods. 2008;172:195–200.PubMedCrossRef Park IS, Meno JR, Witt CE, et al. Subarachnoid hemorrhage model in the rat: modification of the endovascular filament model. J Neurosci Methods. 2008;172:195–200.PubMedCrossRef
57.
go back to reference Prunell GF, Mathiesen T, Diemer NH, et al. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52:165–75. discussion 175–166.PubMed Prunell GF, Mathiesen T, Diemer NH, et al. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52:165–75. discussion 175–166.PubMed
58.
go back to reference Schwartz AY, Masago A, Sehba FA, et al. Experimental models of subarachnoid hemorrhage in the rat: A refinement of the endovascular filament model. J Neurosci Methods. 2000;96:161–7.PubMedCrossRef Schwartz AY, Masago A, Sehba FA, et al. Experimental models of subarachnoid hemorrhage in the rat: A refinement of the endovascular filament model. J Neurosci Methods. 2000;96:161–7.PubMedCrossRef
59.
go back to reference Sehba F, Bederson JB. Rodent models of Hemorrhagic stroke. In: Tatlisumak T, Fisher MJ, editors. Handbook of experimental neurology: methods & techniques in animal research. Cambridge, UK: Cambridge University Press; 2006. p. 345–65.CrossRef Sehba F, Bederson JB. Rodent models of Hemorrhagic stroke. In: Tatlisumak T, Fisher MJ, editors. Handbook of experimental neurology: methods & techniques in animal research. Cambridge, UK: Cambridge University Press; 2006. p. 345–65.CrossRef
60.
go back to reference Sehba FA, Ding WH, Chereshnev I, et al. Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 1999; 30:1955–1961 Sehba FA, Ding WH, Chereshnev I, et al. Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 1999; 30:1955–1961
61.
go back to reference Sehba FA, Hou J, Pluta RM, et al. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 2012;97:14–37 Sehba FA, Hou J, Pluta RM, et al. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 2012;97:14–37
Metadata
Title
Rat Endovascular Perforation Model
Author
Fatima A. Sehba
Publication date
01-12-2014
Publisher
Springer US
Published in
Translational Stroke Research / Issue 6/2014
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-014-0368-4

Other articles of this Issue 6/2014

Translational Stroke Research 6/2014 Go to the issue