Skip to main content
Top
Published in: Translational Stroke Research 6/2014

01-12-2014 | Original Article

miRNA Expression Profiles in Cerebrospinal Fluid and Blood of Patients with Acute Ischemic Stroke

Authors: Sofie Sølvsten Sørensen, Ann-Britt Nygaard, Ming-Yuan Nielsen, Kai Jensen, Thomas Christensen

Published in: Translational Stroke Research | Issue 6/2014

Login to get access

Abstract

The aims of the study were (1) to determine whether miRNAs (microRNAs) can be detected in the cerebrospinal fluid (CSF) and blood of patients with ischemic stroke and (2) to compare these miRNA profiles with corresponding profiles from other neurological patients to address whether the miRNA profiles of CSF or blood have potential usefulness as diagnostic biomarkers of ischemic stroke. CSF from patients with acute ischemic stroke (n = 10) and patients with other neurological diseases (n = 10) was collected by lumbar puncture. Blood samples were taken immediately after. Expression profiles in the cell-free fractions of CSF and blood were analyzed by a microarray technique (miRCURY LNA™ microRNA Array, Exiqon A/S, Denmark) using a quantitative PCR (qPCR) platform containing 378 miRNA primers. In total, 183 different miRNAs were detected in the CSF, of which two miRNAs (let-7c and miR-221-3p) were found upregulated in relation to stroke. In the blood, 287 different miRNAs were detected of which two miRNAs (miR-151a-3p and miR-140-5p) were found upregulated and one miRNA (miR-18b-5p) was found downregulated in the stroke group. Some miRNAs occurred exclusively in the CSF including miR-523-3p which was detected in 50 % of the stroke patients, whereas it was completely absent in controls. Our preliminary results demonstrate that it is possible to detect and profile miRNAs in CSF and blood from patients with neurological diseases. Some miRNAs appear differentially expressed in the CSF and others in the blood of stroke patients. Currently, we are validating our results in larger groups of patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Christensen T. Experimental focal cerebral ischemia—pathophysiology, metabolism and pharmacology of the ischemic penumbra. Thesis from University of Copenhagen; 2007. ISBN: 9788799213801. Christensen T. Experimental focal cerebral ischemia—pathophysiology, metabolism and pharmacology of the ischemic penumbra. Thesis from University of Copenhagen; 2007. ISBN: 9788799213801.
2.
go back to reference Hossmann K-A. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006;26:1057–83.PubMedCrossRef Hossmann K-A. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006;26:1057–83.PubMedCrossRef
3.
go back to reference Schmidt-Kastner R, Zhang B, Belayev L, Khoutorova L, Amin R, Busto R, et al. DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res Mol Brain Res. 2002;108:81–93.PubMedCrossRef Schmidt-Kastner R, Zhang B, Belayev L, Khoutorova L, Amin R, Busto R, et al. DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res Mol Brain Res. 2002;108:81–93.PubMedCrossRef
7.
go back to reference Gauthier BR, Wollheim CB. MicroRNAs: “ribo-regulators” of glucose homeostasis. Nat Med. 2006;12:36–8.PubMedCrossRef Gauthier BR, Wollheim CB. MicroRNAs: “ribo-regulators” of glucose homeostasis. Nat Med. 2006;12:36–8.PubMedCrossRef
8.
go back to reference Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.PubMedCrossRef Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.PubMedCrossRef
9.
go back to reference Bi Y, Liu G, Yang R. MicroRNAs: novel regulators during the immune response. J Cell Physiol. 2009;218:467–72.PubMedCrossRef Bi Y, Liu G, Yang R. MicroRNAs: novel regulators during the immune response. J Cell Physiol. 2009;218:467–72.PubMedCrossRef
10.
go back to reference Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003;9:1274–81.PubMedCrossRefPubMedCentral Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003;9:1274–81.PubMedCrossRefPubMedCentral
11.
go back to reference Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004;5:R13.PubMedCrossRefPubMedCentral Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004;5:R13.PubMedCrossRefPubMedCentral
12.
go back to reference Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39:959–66.PubMedCrossRef Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39:959–66.PubMedCrossRef
13.
go back to reference Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PTH, et al. MicroRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One. 2013;8:e66393.PubMedCrossRefPubMedCentral Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PTH, et al. MicroRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One. 2013;8:e66393.PubMedCrossRefPubMedCentral
14.
go back to reference Liu D-Z, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30:92–101.PubMedCrossRefPubMedCentral Liu D-Z, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30:92–101.PubMedCrossRefPubMedCentral
15.
go back to reference Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M. Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS One. 2011;6:e14724.PubMedCrossRefPubMedCentral Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M. Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS One. 2011;6:e14724.PubMedCrossRefPubMedCentral
16.
go back to reference Lim K-Y, Chua J-H, Tan J-R, Swaminathan P, Sepramaniam S, Armugam A, et al. MicroRNAs in cerebral ischemia. Transl Stroke Res. 2010;1:287–303.PubMedCrossRef Lim K-Y, Chua J-H, Tan J-R, Swaminathan P, Sepramaniam S, Armugam A, et al. MicroRNAs in cerebral ischemia. Transl Stroke Res. 2010;1:287–303.PubMedCrossRef
17.
go back to reference Dharap A, Bowen K, Place R, Li L. Translational focal ischemia induces extensive temporal changes in rat cerebral MiroRNAome. J Cereb Blood Flow Metab. 2009;29:675–87.PubMedCrossRefPubMedCentral Dharap A, Bowen K, Place R, Li L. Translational focal ischemia induces extensive temporal changes in rat cerebral MiroRNAome. J Cereb Blood Flow Metab. 2009;29:675–87.PubMedCrossRefPubMedCentral
18.
go back to reference Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, et al. Expression profile of microRNAs in young stroke patients. PLoS One. 2009;4:e7689.PubMedCrossRefPubMedCentral Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, et al. Expression profile of microRNAs in young stroke patients. PLoS One. 2009;4:e7689.PubMedCrossRefPubMedCentral
19.
go back to reference Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 2008;14:27–41.PubMed Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 2008;14:27–41.PubMed
20.
go back to reference Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Walter J. MicroRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol. 2012;3:365–73.PubMedPubMedCentral Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Walter J. MicroRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol. 2012;3:365–73.PubMedPubMedCentral
21.
go back to reference Pacifici M, Delbue S, Ferrante P, Jeansonne D, Kadri F, Nelson S, et al. Cerebrospinal fluid miRNA profile in HIV-encephalitis. J Cell Physiol. 2013;228:1070–5.PubMedCrossRefPubMedCentral Pacifici M, Delbue S, Ferrante P, Jeansonne D, Kadri F, Nelson S, et al. Cerebrospinal fluid miRNA profile in HIV-encephalitis. J Cell Physiol. 2013;228:1070–5.PubMedCrossRefPubMedCentral
22.
go back to reference Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood. 2011;117:3140–6.PubMedCrossRef Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood. 2011;117:3140–6.PubMedCrossRef
23.
go back to reference Baraniskin A, Kuhnhenn J, Schlegel U, Maghnouj A, Zöllner H, Schmiegel W, et al. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma. Neuro-Oncol. 2012;14:29–33.PubMedCrossRefPubMedCentral Baraniskin A, Kuhnhenn J, Schlegel U, Maghnouj A, Zöllner H, Schmiegel W, et al. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma. Neuro-Oncol. 2012;14:29–33.PubMedCrossRefPubMedCentral
24.
go back to reference Baraniskin A, Kuhnhenn J, Schlegel U, Schmiegel W, Hahn S, Schroers R. MicroRNAs in cerebrospinal fluid as biomarker for disease course monitoring in primary central nervous system lymphoma. J Neuro-Oncol. 2012;109:239–44.CrossRef Baraniskin A, Kuhnhenn J, Schlegel U, Schmiegel W, Hahn S, Schroers R. MicroRNAs in cerebrospinal fluid as biomarker for disease course monitoring in primary central nervous system lymphoma. J Neuro-Oncol. 2012;109:239–44.CrossRef
25.
go back to reference Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, et al. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-Oncol. 2012;14:689–700.PubMedCrossRefPubMedCentral Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, et al. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-Oncol. 2012;14:689–700.PubMedCrossRefPubMedCentral
26.
go back to reference Haghikia A, Hellwig K, Baraniskin A, Holzmann A, Décard BF, Thum T. Regulated microRNAs in the CSF of patients with multiple sclerosis. Neurology. 2012;79:2133–70.CrossRef Haghikia A, Hellwig K, Baraniskin A, Holzmann A, Décard BF, Thum T. Regulated microRNAs in the CSF of patients with multiple sclerosis. Neurology. 2012;79:2133–70.CrossRef
27.
go back to reference Gallego JA, Gordon ML, Claycomb K, Bhatt M, Lencz T, Malhotra AK. In vivo microRNA detection and quantitation in cerebrospinal fluid. J Mol Neurosci. 2012;47:243–8.PubMedCrossRefPubMedCentral Gallego JA, Gordon ML, Claycomb K, Bhatt M, Lencz T, Malhotra AK. In vivo microRNA detection and quantitation in cerebrospinal fluid. J Mol Neurosci. 2012;47:243–8.PubMedCrossRefPubMedCentral
28.
go back to reference Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35–41.PubMedCrossRef Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35–41.PubMedCrossRef
29.
go back to reference Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184:101–22.PubMedCrossRef Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184:101–22.PubMedCrossRef
30.
go back to reference Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50.PubMedCrossRef Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50.PubMedCrossRef
31.
go back to reference Pfaffl MW. Quantification strategies in real-time PCR. In: Bustin SA, editor. A-Z of quantitative PCR. La Jolla: International University Line; 2004. p. 89–120. Pfaffl MW. Quantification strategies in real-time PCR. In: Bustin SA, editor. A-Z of quantitative PCR. La Jolla: International University Line; 2004. p. 89–120.
32.
go back to reference Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurorodiol Sci. 2001;184:101–22.CrossRef Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurorodiol Sci. 2001;184:101–22.CrossRef
33.
go back to reference Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476–87.PubMedCrossRefPubMedCentral Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476–87.PubMedCrossRefPubMedCentral
34.
go back to reference Zhang Q, Kandic I, Kutryk MJ. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun. 2011;405:42–6.PubMedCrossRef Zhang Q, Kandic I, Kutryk MJ. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun. 2011;405:42–6.PubMedCrossRef
35.
go back to reference Wang Y-T, Tsai P-C, Liao Y-C, Hsu C-Y, Juo S-HH. Circulating microRNAs have a sex-specific association with metabolic syndrome. J Biomed Sci. 2013;20:72.PubMedCrossRefPubMedCentral Wang Y-T, Tsai P-C, Liao Y-C, Hsu C-Y, Juo S-HH. Circulating microRNAs have a sex-specific association with metabolic syndrome. J Biomed Sci. 2013;20:72.PubMedCrossRefPubMedCentral
36.
go back to reference Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.PubMedCrossRef Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.PubMedCrossRef
37.
go back to reference Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucl Acids Res. 2010;38:7248–59.PubMedCrossRefPubMedCentral Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucl Acids Res. 2010;38:7248–59.PubMedCrossRefPubMedCentral
38.
go back to reference Hata R, Gillardon F, Michaelidis TM, Hossmann KA. Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab Brain Dis. 1999;14:117–24.PubMedCrossRef Hata R, Gillardon F, Michaelidis TM, Hossmann KA. Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab Brain Dis. 1999;14:117–24.PubMedCrossRef
39.
go back to reference Gregersen R, Lambertsen K, Finsen B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab. 2000;20:53–65.PubMedCrossRef Gregersen R, Lambertsen K, Finsen B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab. 2000;20:53–65.PubMedCrossRef
40.
go back to reference Kinouchi H, Sharp FR, Hill MP, Koistinaho J, Sagar SM, Chan PH. Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1993;13:105–15.PubMedCrossRef Kinouchi H, Sharp FR, Hill MP, Koistinaho J, Sagar SM, Chan PH. Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1993;13:105–15.PubMedCrossRef
41.
go back to reference Christensen T, Jørgensen MB, Diemer NH. Impairment of Fos protein formation in the rat infarct borderzone by MK-801, but not by NBQX. Acta Neurol Scand. 1993;87:510–5.PubMedCrossRef Christensen T, Jørgensen MB, Diemer NH. Impairment of Fos protein formation in the rat infarct borderzone by MK-801, but not by NBQX. Acta Neurol Scand. 1993;87:510–5.PubMedCrossRef
42.
go back to reference Shi B, Guo Y, Wang J, Gao W. Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction. BMC Cardiovasc Disord. 2010;10:11.PubMedCrossRefPubMedCentral Shi B, Guo Y, Wang J, Gao W. Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction. BMC Cardiovasc Disord. 2010;10:11.PubMedCrossRefPubMedCentral
43.
go back to reference Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37:1375–83.PubMedCrossRef Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37:1375–83.PubMedCrossRef
Metadata
Title
miRNA Expression Profiles in Cerebrospinal Fluid and Blood of Patients with Acute Ischemic Stroke
Authors
Sofie Sølvsten Sørensen
Ann-Britt Nygaard
Ming-Yuan Nielsen
Kai Jensen
Thomas Christensen
Publication date
01-12-2014
Publisher
Springer US
Published in
Translational Stroke Research / Issue 6/2014
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-014-0364-8

Other articles of this Issue 6/2014

Translational Stroke Research 6/2014 Go to the issue