Skip to main content
Top
Published in: Translational Stroke Research 2/2014

01-04-2014 | Original Article

Intracisternal Administration of Tissue Plasminogen Activator Improves Cerebrospinal Fluid Flow and Cortical Perfusion After Subarachnoid Hemorrhage in Mice

Authors: Dominic A. Siler, Jorge A. Gonzalez, Ruikang K. Wang, Justin S. Cetas, Nabil J. Alkayed

Published in: Translational Stroke Research | Issue 2/2014

Login to get access

Abstract

Early brain injury (EBI) during the first 72 h after subarachnoid hemorrhage (SAH) is an important determinant of clinical outcome. A hallmark of EBI, global cerebral ischemia, occurs within seconds of SAH and is thought to be related to increased intracranial pressure (ICP). We tested the hypothesis that ICP elevation and cortical hypoperfusion are the result of physical blockade of cerebrospinal fluid (CSF) flow pathways by cisternal microthrombi. In mice subjected to SAH, we measured cortical blood volume (CBV) using optical imaging, ICP using pressure transducers, and patency of CSF flow pathways using intracisternally injected tracer dye. We then assessed the effects of intracisternal injection of recombinant tissue plasminogen activator (tPA). ICP rose immediately after SAH and remained elevated for 24 h. This was accompanied by a decrease in CBV and impaired dye movement. Intracisternal administration of tPA immediately after SAH lowered ICP, increased CBV, and partially restored CSF flow at 24 h after SAH. Lowering ICP without tPA, by draining CSF, improved CBV at 1 h, but not 24 h after SAH. These findings suggest that blockade of CSF flow by microthrombi contributes to the early decline in cortical perfusion in an ICP-dependent and ICP-independent manner and that intracisternal tPA may reduce EBI and improve outcome after SAH.
Literature
1.
go back to reference Johanson C, Duncan J, Klinge P, Brinker T, Stopa E, Silverberg G. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5(1):10.PubMedCentralPubMedCrossRef Johanson C, Duncan J, Klinge P, Brinker T, Stopa E, Silverberg G. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5(1):10.PubMedCentralPubMedCrossRef
4.
go back to reference de Rooij NK, Greving JP, Rinkel GJE, Frijns CJM. Early prediction of delayed cerebral ischemia after subarachnoid hemorrhage: development and validation of a practical risk chart. Stroke. 2013; 44(5):1288-94. doi:10.1161/strokeaha.113.001125. de Rooij NK, Greving JP, Rinkel GJE, Frijns CJM. Early prediction of delayed cerebral ischemia after subarachnoid hemorrhage: development and validation of a practical risk chart. Stroke. 2013; 44(5):1288-94. doi:10.​1161/​strokeaha.​113.​001125.
6.
go back to reference Yan J, Li L, Khatibi NH, Yang L, Wang K, Zhang W, et al. Blood–brain barrier disruption following subarchnoid hemorrhage may be faciliated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Exp Neurol. 2011;230(2):240–7. doi:10.1016/j.expneurol.2011.04.022.PubMedCrossRef Yan J, Li L, Khatibi NH, Yang L, Wang K, Zhang W, et al. Blood–brain barrier disruption following subarchnoid hemorrhage may be faciliated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Exp Neurol. 2011;230(2):240–7. doi:10.​1016/​j.​expneurol.​2011.​04.​022.PubMedCrossRef
7.
go back to reference Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, et al. Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke. 2003;34(6):1382–8. doi:10.1161/01.str.0000074036.97859.02.PubMedCrossRef Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, et al. Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke. 2003;34(6):1382–8. doi:10.​1161/​01.​str.​0000074036.​97859.​02.PubMedCrossRef
8.
go back to reference Sakowitz OW, Santos E, Nagel A, Krajewski KL, Hertle DN, Vajkoczy P, et al. Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients wwith aneurysmal subarachnoid hemorrhage. Stroke. 2013;44(1):220–3. doi:10.1161/strokeaha.112.672352.PubMedCrossRef Sakowitz OW, Santos E, Nagel A, Krajewski KL, Hertle DN, Vajkoczy P, et al. Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients wwith aneurysmal subarachnoid hemorrhage. Stroke. 2013;44(1):220–3. doi:10.​1161/​strokeaha.​112.​672352.PubMedCrossRef
10.
go back to reference Endo H, Nito C, Kamada H, Yu F, Chan PH. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab. 2007;27(5):975–82. doi:10.1038/sj.jcbfm.9600399.PubMedCentralPubMed Endo H, Nito C, Kamada H, Yu F, Chan PH. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab. 2007;27(5):975–82. doi:10.​1038/​sj.​jcbfm.​9600399.PubMedCentralPubMed
11.
go back to reference Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K. Acute vasoconstriction: decrease and recovery of cerebral blood flow after various intensities of experimental subarachnoid hemorrhage in rats. J Neurosurg. 2009;110(5):996–1002. doi:10.3171/2008.8.JNS08591.PubMedCrossRef Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K. Acute vasoconstriction: decrease and recovery of cerebral blood flow after various intensities of experimental subarachnoid hemorrhage in rats. J Neurosurg. 2009;110(5):996–1002. doi:10.​3171/​2008.​8.​JNS08591.PubMedCrossRef
13.
go back to reference Schubert G, Seiz M, Hegewald A, Manville J, Thomé C. Hypoperfusion in the acute phase of subarachnoid hemorrhage. In: Feng H, Mao Y, Zhang J, editors. Early brain injury or cerebral vasospasm. Acta neurochirurgica supplements. Vienna: Springer; 2011. p. 35–8.CrossRef Schubert G, Seiz M, Hegewald A, Manville J, Thomé C. Hypoperfusion in the acute phase of subarachnoid hemorrhage. In: Feng H, Mao Y, Zhang J, editors. Early brain injury or cerebral vasospasm. Acta neurochirurgica supplements. Vienna: Springer; 2011. p. 35–8.CrossRef
14.
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra11. doi:10.1126/scitranslmed.3003748.CrossRef Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra11. doi:10.​1126/​scitranslmed.​3003748.CrossRef
15.
go back to reference Jackowski A, Crockard A, Burnstock G, Russell RR, Kristek F. The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. J Cereb Blood Flow Metab. 1990;10(6):835–49. doi:10.1038/jcbfm.1990.140.PubMedCrossRef Jackowski A, Crockard A, Burnstock G, Russell RR, Kristek F. The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. J Cereb Blood Flow Metab. 1990;10(6):835–49. doi:10.​1038/​jcbfm.​1990.​140.PubMedCrossRef
16.
go back to reference Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, Gruber A. Three dimensional optical angiography. Opt Express. 2007;15(7):4083–97.PubMedCrossRef Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, Gruber A. Three dimensional optical angiography. Opt Express. 2007;15(7):4083–97.PubMedCrossRef
20.
22.
go back to reference Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO. Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid β from the human brain. Neuropathol Appl Neurobiol. 2003;29(2):106–17. doi:10.1046/j.1365-2990.2003.00424.x.PubMedCrossRef Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO. Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid β from the human brain. Neuropathol Appl Neurobiol. 2003;29(2):106–17. doi:10.​1046/​j.​1365-2990.​2003.​00424.​x.PubMedCrossRef
23.
go back to reference Schubert GA, Poli S, Mendelowitsch A, Schilling L, Thome C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats. J Neurotrauma. 2008;25(5):539–48. doi:10.1089/neu.2007.0500.PubMedCrossRef Schubert GA, Poli S, Mendelowitsch A, Schilling L, Thome C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats. J Neurotrauma. 2008;25(5):539–48. doi:10.​1089/​neu.​2007.​0500.PubMedCrossRef
24.
go back to reference Chung WY, Lee LS. The effect of tissue plasminogen activator (t-PA) on cerebral vasospasm in canine subarachnoid hemorrhage. Zhonghua Yi Xue Za Zhi (Taipei). 1993;52(5):298–306. Chung WY, Lee LS. The effect of tissue plasminogen activator (t-PA) on cerebral vasospasm in canine subarachnoid hemorrhage. Zhonghua Yi Xue Za Zhi (Taipei). 1993;52(5):298–306.
25.
go back to reference Findlay JM, Weir BKA, Kanamaru K, Grace M, Baughman R. The effect of timing of intrathecal fibrinolytic therapy on cerebral vasospasm in a primate model of subarachnoid hemorrhage. Neurosurgery. 1990;26(2):201–6.PubMedCrossRef Findlay JM, Weir BKA, Kanamaru K, Grace M, Baughman R. The effect of timing of intrathecal fibrinolytic therapy on cerebral vasospasm in a primate model of subarachnoid hemorrhage. Neurosurgery. 1990;26(2):201–6.PubMedCrossRef
27.
go back to reference Suzuki H, Kanamaru K, Kuroki M, Sun H, Waga S, Miyazawa T. Effects of unilateral intrathecal administrations of low dose tissue-type plasminogen activator on clot lysis, vasospasm and brain phospholipid hydroperoxidation in a primate model of bilateral subarachnoid hemorrhage. Neurol Res. 1998;20(7):625–31.PubMed Suzuki H, Kanamaru K, Kuroki M, Sun H, Waga S, Miyazawa T. Effects of unilateral intrathecal administrations of low dose tissue-type plasminogen activator on clot lysis, vasospasm and brain phospholipid hydroperoxidation in a primate model of bilateral subarachnoid hemorrhage. Neurol Res. 1998;20(7):625–31.PubMed
28.
go back to reference Asada M, Kong J, Nakamura M, Tamaki N. Thrombolytic therapy with tissue plasminogen activator for prevention of vasospasm in experimental subarachnoid hemorrhage: its efficacy and problems. Neurol Res. 1996;18(4):342–4.PubMed Asada M, Kong J, Nakamura M, Tamaki N. Thrombolytic therapy with tissue plasminogen activator for prevention of vasospasm in experimental subarachnoid hemorrhage: its efficacy and problems. Neurol Res. 1996;18(4):342–4.PubMed
29.
go back to reference Kawada S, Kinugasa K, Meguro T, Hirotsune N, Tokunaga K, Kamata I, et al. Experimental study of intracisternal administration of tissue-type plasminogen activator followed by cerebrospinal fluid drainage in the ultra-early stage of subarachnoid haemorrhage. Acta Neurochir (Wien). 1999;141(12):1331–8. doi:10.1007/s007010050438.CrossRef Kawada S, Kinugasa K, Meguro T, Hirotsune N, Tokunaga K, Kamata I, et al. Experimental study of intracisternal administration of tissue-type plasminogen activator followed by cerebrospinal fluid drainage in the ultra-early stage of subarachnoid haemorrhage. Acta Neurochir (Wien). 1999;141(12):1331–8. doi:10.​1007/​s007010050438.CrossRef
30.
go back to reference Brinker T, Seifert V, Dietz H. Subacute hydrocephalus after experimental subarachnoid hemorrhage: its prevention by intrathecal fibrinolysis with recombinant tissue plasminogen activator. Neurosurgery. 1992;31(2):306–11. discussion 11–2.PubMedCrossRef Brinker T, Seifert V, Dietz H. Subacute hydrocephalus after experimental subarachnoid hemorrhage: its prevention by intrathecal fibrinolysis with recombinant tissue plasminogen activator. Neurosurgery. 1992;31(2):306–11. discussion 11–2.PubMedCrossRef
32.
go back to reference Litrico S, Almairac F, Gaberel T, Ramakrishna R, Fontaine D, Sedat J et al. Intraventricular fibrinolysis for severe aneurysmal intraventricular hemorrhage: a randomized controlled trial and meta-analysis. Neurosurg Rev. 2013;36(4):523–30. doi:10.1007/s10143-013-0469-7. Litrico S, Almairac F, Gaberel T, Ramakrishna R, Fontaine D, Sedat J et al. Intraventricular fibrinolysis for severe aneurysmal intraventricular hemorrhage: a randomized controlled trial and meta-analysis. Neurosurg Rev. 2013;36(4):523–30. doi:10.​1007/​s10143-013-0469-7.
33.
go back to reference Kinouchi H, Ogasawara K, Shimizu H, Mizoi K, Yoshimoto T. Prevention of symptomatic vasospasm after aneurysmal subarachnoid hemorrhage by intraoperative cisternal fibrinolysis using tissue-type plasminogen activator combined with continuous cisternal drainage. Neurol Med Chir. 2004;44(11):569–77.CrossRef Kinouchi H, Ogasawara K, Shimizu H, Mizoi K, Yoshimoto T. Prevention of symptomatic vasospasm after aneurysmal subarachnoid hemorrhage by intraoperative cisternal fibrinolysis using tissue-type plasminogen activator combined with continuous cisternal drainage. Neurol Med Chir. 2004;44(11):569–77.CrossRef
34.
35.
go back to reference Varelas PN, Rickert KL, Cusick J, Hacein-Bey L, Sinson G, Torbey M, et al. Intraventricular hemorrhage after aneurysmal subarachnoid hemorrhage: pilot study of treatment with intraventricular tissue plasminogen activator. Neurosurgery. 2005;56(2):205–13. discussion −13.PubMedCrossRef Varelas PN, Rickert KL, Cusick J, Hacein-Bey L, Sinson G, Torbey M, et al. Intraventricular hemorrhage after aneurysmal subarachnoid hemorrhage: pilot study of treatment with intraventricular tissue plasminogen activator. Neurosurgery. 2005;56(2):205–13. discussion −13.PubMedCrossRef
36.
go back to reference Findlay JM, Jacka MJ. Cohort study of intraventricular thrombolysis with recombinant tissue plasminogen activator for aneurysmal intraventricular hemorrhage. Neurosurgery. 2004;55(3):532–7. discussion 7–8.PubMedCrossRef Findlay JM, Jacka MJ. Cohort study of intraventricular thrombolysis with recombinant tissue plasminogen activator for aneurysmal intraventricular hemorrhage. Neurosurgery. 2004;55(3):532–7. discussion 7–8.PubMedCrossRef
37.
go back to reference Amin-Hanjani S, Ogilvy CS, Barker 2nd FG. Does intracisternal thrombolysis prevent vasospasm after aneurysmal subarachnoid hemorrhage? A meta-analysis. Neurosurgery. 2004;54(2):326–34. discussion 34–5.PubMedCrossRef Amin-Hanjani S, Ogilvy CS, Barker 2nd FG. Does intracisternal thrombolysis prevent vasospasm after aneurysmal subarachnoid hemorrhage? A meta-analysis. Neurosurgery. 2004;54(2):326–34. discussion 34–5.PubMedCrossRef
39.
go back to reference Hillman J, Fridriksson S, Nilsson O, Yu Z, Säveland H, Jakobsson K-E. Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J Neurosurg. 2002;97(4):771–8. doi:10.3171/jns.2002.97.4.0771.PubMedCrossRef Hillman J, Fridriksson S, Nilsson O, Yu Z, Säveland H, Jakobsson K-E. Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J Neurosurg. 2002;97(4):771–8. doi:10.​3171/​jns.​2002.​97.​4.​0771.PubMedCrossRef
Metadata
Title
Intracisternal Administration of Tissue Plasminogen Activator Improves Cerebrospinal Fluid Flow and Cortical Perfusion After Subarachnoid Hemorrhage in Mice
Authors
Dominic A. Siler
Jorge A. Gonzalez
Ruikang K. Wang
Justin S. Cetas
Nabil J. Alkayed
Publication date
01-04-2014
Publisher
Springer US
Published in
Translational Stroke Research / Issue 2/2014
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-014-0329-y

Other articles of this Issue 2/2014

Translational Stroke Research 2/2014 Go to the issue