Skip to main content
Top
Published in: Translational Stroke Research 2/2013

01-04-2013

Vascular Endothelial Growth Factors A and C are Induced in the SVZ Following Neonatal Hypoxia–Ischemia and Exert Different Effects on Neonatal Glial Progenitors

Authors: Jennifer M. Bain, Lisamarie Moore, Zhihua Ren, Sophia Simonishvili, Steven W. Levison

Published in: Translational Stroke Research | Issue 2/2013

Login to get access

Abstract

Episodes of neonatal hypoxia–ischemia (H-I) are strongly associated with cerebral palsy and a wide spectrum of other neurological deficits in children. Two key processes required to repair damaged organs are to amplify the number of precursors capable of regenerating damaged cells and to direct their differentiation towards the cell types that need to be replaced. Since hypoxia induces vascular endothelial growth factor (VEGF) production, it is logical to predict that VEGFs are key mediators of tissue repair after H-I injury. The goal of this study was to test the hypothesis that certain VEGF isoforms increase during recovery from neonatal H-I and that they would differentially affect the proliferation and differentiation of subventricular zone (SVZ) progenitors. During the acute recovery period from H-I, both VEGF-A and VEGF-C were transiently induced in the SVZ, which correlated with an increase in SVZ blood vessel diameter. These growth factors were produced by glial progenitors, astrocytes, and to a lesser extent, microglia. VEGF-A promoted the production of astrocytes from SVZ glial progenitors, while VEGF-C stimulated the proliferation of both early and late oligodendrocyte progenitor cells (OPCs), which was abolished by blocking VEGFR-3. Altogether, these results provide new insights into the signals that coordinate the reactive responses of the progenitors in the SVZ to neonatal H-I. Our studies further suggest that therapeutics that can extend VEGF-C production and/or agonists that stimulate VEGFR-3 will promote OPC development to enhance myelination after perinatal brain injury.
Literature
1.
go back to reference Levison SW, DeVellis J, Goldman JE. Astrocyte development. In: Jacobsen M, Rao MS, editors. Developmental neurobiology. 4th ed. New York: Plenum; 2005. p. 197–222.CrossRef Levison SW, DeVellis J, Goldman JE. Astrocyte development. In: Jacobsen M, Rao MS, editors. Developmental neurobiology. 4th ed. New York: Plenum; 2005. p. 197–222.CrossRef
2.
go back to reference Back SA. Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev. 2006;12(2):129–40.PubMedCrossRef Back SA. Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev. 2006;12(2):129–40.PubMedCrossRef
3.
go back to reference Stevenson DK, Benitz WE, Sunshine P. Fetal and neonatal brain injury: mechanisms, management and the risks of practice. 3rd ed. New York: Cambridge University Press; 2003.CrossRef Stevenson DK, Benitz WE, Sunshine P. Fetal and neonatal brain injury: mechanisms, management and the risks of practice. 3rd ed. New York: Cambridge University Press; 2003.CrossRef
4.
go back to reference Hagberg B, Sanner G, Steen M. The disequilibrium syndrome in cerebral palsy. Acta Paediatr Scand (suppl). 1972;226:1–63. Hagberg B, Sanner G, Steen M. The disequilibrium syndrome in cerebral palsy. Acta Paediatr Scand (suppl). 1972;226:1–63.
5.
go back to reference Towfighi J, Mauger D, Vannucci RC, Vannucci SJ. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia–ischemia: a light microscopic study. Dev Brain Res. 1997;100:149–60.CrossRef Towfighi J, Mauger D, Vannucci RC, Vannucci SJ. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia–ischemia: a light microscopic study. Dev Brain Res. 1997;100:149–60.CrossRef
6.
go back to reference Vannucci R, Vannucci SJ. Glucose, acidosis, and perinatal hypoxic–ischemic brain damage. Ment Retard Dev Disabil Res Rev. 1997;3(1):69–75.CrossRef Vannucci R, Vannucci SJ. Glucose, acidosis, and perinatal hypoxic–ischemic brain damage. Ment Retard Dev Disabil Res Rev. 1997;3(1):69–75.CrossRef
7.
go back to reference Vannucci RC. Hypoxic–ischemic encephalopathy: clinical aspects. In: Fanaroff AA, Martin RJ, editors. Neonatal perinatal medicine IV. Philadelphia: Mosby-Yearbook, Inc.; 1997. p. 877–91. Vannucci RC. Hypoxic–ischemic encephalopathy: clinical aspects. In: Fanaroff AA, Martin RJ, editors. Neonatal perinatal medicine IV. Philadelphia: Mosby-Yearbook, Inc.; 1997. p. 877–91.
8.
go back to reference Vannucci RC, Vannucci SJ. A model of perinatal hypoxic–ischemic brain damage. Ann N Y Acad Sci. 1997;835:234–49.PubMedCrossRef Vannucci RC, Vannucci SJ. A model of perinatal hypoxic–ischemic brain damage. Ann N Y Acad Sci. 1997;835:234–49.PubMedCrossRef
9.
go back to reference Saliba E, Henrot A. Inflammatory mediators and neonatal brain damage. Biol Neonate. 2001;79(3–4):224–7.PubMed Saliba E, Henrot A. Inflammatory mediators and neonatal brain damage. Biol Neonate. 2001;79(3–4):224–7.PubMed
10.
go back to reference Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol. 1998;56(2):149–71.PubMedCrossRef Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol. 1998;56(2):149–71.PubMedCrossRef
11.
go back to reference Tan DX, Manchester LC, Sainz R, Mayo JC, Reiter RJ. Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin Ther Patents. 2003;13:1513–43.CrossRef Tan DX, Manchester LC, Sainz R, Mayo JC, Reiter RJ. Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin Ther Patents. 2003;13:1513–43.CrossRef
12.
go back to reference Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia–ischemia. J Neurosci. 2002;22(2):455–63.PubMed Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia–ischemia. J Neurosci. 2002;22(2):455–63.PubMed
13.
go back to reference Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol. 2002;61(2):197–211.PubMed Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol. 2002;61(2):197–211.PubMed
14.
go back to reference Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW. Perinatal hypoxia–ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors. Dev Neurosci. 2001;23(3):203–8.PubMedCrossRef Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW. Perinatal hypoxia–ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors. Dev Neurosci. 2001;23(3):203–8.PubMedCrossRef
15.
go back to reference Maurer MH, Tripps WK, Feldmann Jr RE, Kuschinsky W. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett. 2003;344(3):165–8.PubMedCrossRef Maurer MH, Tripps WK, Feldmann Jr RE, Kuschinsky W. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett. 2003;344(3):165–8.PubMedCrossRef
16.
go back to reference Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A. 2002;99(18):11946–50.PubMedCrossRef Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A. 2002;99(18):11946–50.PubMedCrossRef
17.
18.
go back to reference Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals. 2005;14(5):207–21.PubMedCrossRef Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals. 2005;14(5):207–21.PubMedCrossRef
19.
go back to reference Galvan V, Greenberg DA, Jin K. The role of vascular endothelial growth factor in neurogenesis in adult brain. Mini Rev Med Chem. 2006;6(6):667–9.PubMedCrossRef Galvan V, Greenberg DA, Jin K. The role of vascular endothelial growth factor in neurogenesis in adult brain. Mini Rev Med Chem. 2006;6(6):667–9.PubMedCrossRef
20.
go back to reference Hashimoto T, Zhang XM, Chen BY, Yang XJ. VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development. 2006;133(11):2201–10.PubMedCrossRef Hashimoto T, Zhang XM, Chen BY, Yang XJ. VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development. 2006;133(11):2201–10.PubMedCrossRef
21.
go back to reference Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111(12):1843–51.PubMed Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111(12):1843–51.PubMed
22.
go back to reference Sun Y, Jin K, Childs JT, Xie L, Mao XO, Greenberg DA. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration. Dev Biol. 2006;289(2):329–35.PubMedCrossRef Sun Y, Jin K, Childs JT, Xie L, Mao XO, Greenberg DA. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration. Dev Biol. 2006;289(2):329–35.PubMedCrossRef
23.
go back to reference Zhu Y, Jin K, Mao XO, Greenberg DA. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J. 2003;17(2):186–93.PubMedCrossRef Zhu Y, Jin K, Mao XO, Greenberg DA. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J. 2003;17(2):186–93.PubMedCrossRef
24.
go back to reference Mani N, Khaibullina A, Krum JM, Rosenstein JM. Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: receptor mediation and signal transduction pathways. Exp Neurol. 2005;192(2):394–406.PubMedCrossRef Mani N, Khaibullina A, Krum JM, Rosenstein JM. Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants: receptor mediation and signal transduction pathways. Exp Neurol. 2005;192(2):394–406.PubMedCrossRef
25.
go back to reference Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci. 2006;9(3):340–8.PubMedCrossRef Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci. 2006;9(3):340–8.PubMedCrossRef
26.
go back to reference Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol. 1981;9:131–41.PubMedCrossRef Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol. 1981;9:131–41.PubMedCrossRef
27.
go back to reference Vannucci RC, Lyons DT, Vasta F. Regional cerebral blood flow during hypoxia–ischemia in immature rats. Stroke. 1988;19:245–50.PubMedCrossRef Vannucci RC, Lyons DT, Vasta F. Regional cerebral blood flow during hypoxia–ischemia in immature rats. Stroke. 1988;19:245–50.PubMedCrossRef
28.
go back to reference Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, et al. Rat model of perinatal hypoxic–ischemic brain damage. J Neurosci Res. 1999;55(2):158–63.PubMedCrossRef Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, et al. Rat model of perinatal hypoxic–ischemic brain damage. J Neurosci Res. 1999;55(2):158–63.PubMedCrossRef
29.
go back to reference Young G, Levison S. An improved method for propagating oligodendrocyte progenitors in vitro. J Neurosci Methods. 1997;77:163–8.PubMedCrossRef Young G, Levison S. An improved method for propagating oligodendrocyte progenitors in vitro. J Neurosci Methods. 1997;77:163–8.PubMedCrossRef
30.
go back to reference Levison S, McCarthy K. Astroglia in culture. In: Banker G, Goslin K, editors. Culturing nerve cells. Cambridge: MIT; 1991. p. 309–36. Levison S, McCarthy K. Astroglia in culture. In: Banker G, Goslin K, editors. Culturing nerve cells. Cambridge: MIT; 1991. p. 309–36.
31.
go back to reference Ness JK, Mitchell NE, Wood TL. IGF-I and NT-3 signaling pathways in developing oligodendrocytes: differential regulation and activation of receptors and the downstream effector Akt. Dev Neurosci. 2002;24(5):437–45.PubMedCrossRef Ness JK, Mitchell NE, Wood TL. IGF-I and NT-3 signaling pathways in developing oligodendrocytes: differential regulation and activation of receptors and the downstream effector Akt. Dev Neurosci. 2002;24(5):437–45.PubMedCrossRef
32.
go back to reference Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008;3(3):279–88.PubMedCrossRef Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 2008;3(3):279–88.PubMedCrossRef
33.
go back to reference Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell. 2008;3(3):289–300.PubMedCrossRef Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell. 2008;3(3):289–300.PubMedCrossRef
35.
go back to reference Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 2008;3(3):265–78.PubMedCrossRef Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 2008;3(3):265–78.PubMedCrossRef
36.
go back to reference Wada T, Haigh JJ, Ema M, Hitoshi S, Chaddah R, Rossant J, et al. Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci. 2006;26(25):6803–12.PubMedCrossRef Wada T, Haigh JJ, Ema M, Hitoshi S, Chaddah R, Rossant J, et al. Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci. 2006;26(25):6803–12.PubMedCrossRef
37.
go back to reference Schanzer A, Wachs FP, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H, et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 2004;14(3):237–48.PubMedCrossRef Schanzer A, Wachs FP, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H, et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 2004;14(3):237–48.PubMedCrossRef
38.
go back to reference Krum JM, Rosenstein JM. VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol. 1998;154(1):57–65.PubMedCrossRef Krum JM, Rosenstein JM. VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol. 1998;154(1):57–65.PubMedCrossRef
39.
go back to reference Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience. 2002;110(4):589–604.PubMedCrossRef Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience. 2002;110(4):589–604.PubMedCrossRef
40.
go back to reference Krum JM, Mani N, Rosenstein JM. Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol. 2008;212(1):108–17.PubMedCrossRef Krum JM, Mani N, Rosenstein JM. Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol. 2008;212(1):108–17.PubMedCrossRef
41.
go back to reference Arai Y, Deguchi K, Takashima S. Vascular endothelial growth factor in brains with periventricular leukomalacia. Pediatr Neurol. 1998;19(1):45–9.PubMedCrossRef Arai Y, Deguchi K, Takashima S. Vascular endothelial growth factor in brains with periventricular leukomalacia. Pediatr Neurol. 1998;19(1):45–9.PubMedCrossRef
42.
go back to reference Moreno-Lopez B, Romero-Grimaldi C, Noval JA, Murillo-Carretero M, Matarredona ER, Estrada C. Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. J Neurosci. 2004;24(1):85–95.PubMedCrossRef Moreno-Lopez B, Romero-Grimaldi C, Noval JA, Murillo-Carretero M, Matarredona ER, Estrada C. Nitric oxide is a physiological inhibitor of neurogenesis in the adult mouse subventricular zone and olfactory bulb. J Neurosci. 2004;24(1):85–95.PubMedCrossRef
43.
go back to reference Matarredona ER, Murillo-Carretero M, Moreno-Lopez B, Estrada C. Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Res. 2004;995(2):274–84.PubMedCrossRef Matarredona ER, Murillo-Carretero M, Moreno-Lopez B, Estrada C. Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Res. 2004;995(2):274–84.PubMedCrossRef
44.
go back to reference Massaro AR, Sbriccoli A, Tonali P. Reactive astrocytes within the acute plaques of multiple sclerosis are PSA-NCAM positive. Neurol Sci. 2002;23(5):255–6.PubMedCrossRef Massaro AR, Sbriccoli A, Tonali P. Reactive astrocytes within the acute plaques of multiple sclerosis are PSA-NCAM positive. Neurol Sci. 2002;23(5):255–6.PubMedCrossRef
45.
go back to reference Hirayama A, Okoshi Y, Hachiya Y, Ozawa Y, Ito M, Kida Y, et al. Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol. 2001;20(2):87–91.PubMed Hirayama A, Okoshi Y, Hachiya Y, Ozawa Y, Ito M, Kida Y, et al. Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol. 2001;20(2):87–91.PubMed
46.
go back to reference Sizonenko SV, Camm EJ, Dayer A, Kiss JZ. Glial responses to neonatal hypoxic–ischemic injury in the rat cerebral cortex. Int J Dev Neurosci. 2008;26(1):37–45.PubMedCrossRef Sizonenko SV, Camm EJ, Dayer A, Kiss JZ. Glial responses to neonatal hypoxic–ischemic injury in the rat cerebral cortex. Int J Dev Neurosci. 2008;26(1):37–45.PubMedCrossRef
47.
go back to reference Kinney HC, Armstrong DD. Perinatal neuropathology. In: Graham DI, Lantos PL, editors. Greenfield’s neuropathology. New York: Oxford; 2002. p. 519–606. Kinney HC, Armstrong DD. Perinatal neuropathology. In: Graham DI, Lantos PL, editors. Greenfield’s neuropathology. New York: Oxford; 2002. p. 519–606.
48.
go back to reference Shin YJ, Choi JS, Choi JY, Cha JH, Chun MH, Lee MY. Enhanced expression of vascular endothelial growth factor receptor-3 in the subventricular zone of stroke-lesioned rats. Neurosci Lett. 2010;469(2):194–8.PubMedCrossRef Shin YJ, Choi JS, Choi JY, Cha JH, Chun MH, Lee MY. Enhanced expression of vascular endothelial growth factor receptor-3 in the subventricular zone of stroke-lesioned rats. Neurosci Lett. 2010;469(2):194–8.PubMedCrossRef
Metadata
Title
Vascular Endothelial Growth Factors A and C are Induced in the SVZ Following Neonatal Hypoxia–Ischemia and Exert Different Effects on Neonatal Glial Progenitors
Authors
Jennifer M. Bain
Lisamarie Moore
Zhihua Ren
Sophia Simonishvili
Steven W. Levison
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Translational Stroke Research / Issue 2/2013
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-012-0213-6

Other articles of this Issue 2/2013

Translational Stroke Research 2/2013 Go to the issue