Skip to main content
Top
Published in: Discover Oncology 2/2011

01-04-2011

Estrogen and Progesterone in Normal Mammary Gland Development and in Cancer

Author: John Stingl

Published in: Discover Oncology | Issue 2/2011

Login to get access

Abstract

There is emerging evidence that the mammary epithelium in both mice and humans is arranged as a hierarchy that spans from stem cells to differentiated hormone-sensing, milk-producing and myoepithelial cells. It is well established that estrogen is an important mediator of mammary gland morphogenesis and exposure to this hormone is associated with increased breast cancer risk. Yet surprisingly, the primitive cells of the mammary epithelium do not express the estrogen receptor-α (ERα) or the progesterone receptor. This article will review the mammary epithelial cell hierarchy, possible cells of origin of different types of breast tumors, and the potential mechanisms on how estrogen and progesterone may influence the different subcomponents in normal development and in cancer. Also presented are some hypothetical scenarios on how this underlying biology may be reflected in the behavior of ERα+ and ERα breast tumors.
Literature
1.
go back to reference Mueller SO, Clark JA, Myers PH, Korach KS (2002) Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology 143:2357–2365PubMedCrossRef Mueller SO, Clark JA, Myers PH, Korach KS (2002) Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology 143:2357–2365PubMedCrossRef
2.
go back to reference Daniel CW, Silberstein GB, Strickland P (1987) Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 47:6052–6057PubMed Daniel CW, Silberstein GB, Strickland P (1987) Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 47:6052–6057PubMed
3.
go back to reference Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15:17–35PubMed Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15:17–35PubMed
4.
5.
go back to reference Clarke R, Leonessa F, Welch JN, Skaar TC (2001) Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol Rev 53:25–71PubMed Clarke R, Leonessa F, Welch JN, Skaar TC (2001) Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol Rev 53:25–71PubMed
6.
go back to reference Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991PubMed Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991PubMed
7.
go back to reference Russo J, Ao X, Grill C, Russo IH (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227PubMedCrossRef Russo J, Ao X, Grill C, Russo IH (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227PubMedCrossRef
8.
go back to reference Seagroves TN, Lydon JP, Hovey RC, Vonderhaar BK, Rosen JM (2000) C/EBPbeta (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol Endocrinol 14:359–368PubMedCrossRef Seagroves TN, Lydon JP, Hovey RC, Vonderhaar BK, Rosen JM (2000) C/EBPbeta (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol Endocrinol 14:359–368PubMedCrossRef
9.
go back to reference Anderson WF, Matsuno R (2006) Breast cancer heterogeneity: a mixture of at least two main types? J Natl Cancer Inst 98:948–951PubMedCrossRef Anderson WF, Matsuno R (2006) Breast cancer heterogeneity: a mixture of at least two main types? J Natl Cancer Inst 98:948–951PubMedCrossRef
10.
go back to reference Asselin-Labat ML, Sutherland KD, Barker H et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9:201–209PubMedCrossRef Asselin-Labat ML, Sutherland KD, Barker H et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9:201–209PubMedCrossRef
11.
go back to reference Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88PubMedCrossRef Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88PubMedCrossRef
12.
go back to reference Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ (2007) Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 176:19–26PubMedCrossRef Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ (2007) Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 176:19–26PubMedCrossRef
13.
go back to reference Smalley MJ, Titley J, Paterson H, Perusinghe N, Clarke C, O’Hare MJ (1999) Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analyzed by indirect immunofluorescence of cytoskeletal antigens. J Histochem Cytochem 47:1513–1524PubMed Smalley MJ, Titley J, Paterson H, Perusinghe N, Clarke C, O’Hare MJ (1999) Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analyzed by indirect immunofluorescence of cytoskeletal antigens. J Histochem Cytochem 47:1513–1524PubMed
14.
go back to reference Stingl J, Eaves CJ, Zandieh I, Emerman JT (2001) Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 67:93–109PubMedCrossRef Stingl J, Eaves CJ, Zandieh I, Emerman JT (2001) Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 67:93–109PubMedCrossRef
15.
go back to reference Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997PubMed Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997PubMed
16.
go back to reference Asselin-Labat ML, Shackleton M, Stingl J et al (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98:1011–1014PubMedCrossRef Asselin-Labat ML, Shackleton M, Stingl J et al (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98:1011–1014PubMedCrossRef
17.
go back to reference Jeselsohn R, Brown NE, Arendt L et al (2010) Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell 17:65–76PubMedCrossRef Jeselsohn R, Brown NE, Arendt L et al (2010) Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell 17:65–76PubMedCrossRef
18.
go back to reference Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456:804–808PubMedCrossRef Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456:804–808PubMedCrossRef
19.
go back to reference Wang X, Kruithof-de Julio M, Economides KD et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500PubMedCrossRef Wang X, Kruithof-de Julio M, Economides KD et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500PubMedCrossRef
20.
go back to reference Eirew P, Stingl J, Raouf A et al (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14:1384–1389PubMedCrossRef Eirew P, Stingl J, Raouf A et al (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14:1384–1389PubMedCrossRef
21.
go back to reference Lim E, Vaillant F, Wu D et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913PubMedCrossRef Lim E, Vaillant F, Wu D et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913PubMedCrossRef
22.
go back to reference Raouf A, Zhao Y, To K et al (2008) Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3:109–118PubMedCrossRef Raouf A, Zhao Y, To K et al (2008) Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3:109–118PubMedCrossRef
23.
go back to reference Oakes SR, Naylor MJ, Asselin-Labat ML et al (2008) The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 22:581–586PubMedCrossRef Oakes SR, Naylor MJ, Asselin-Labat ML et al (2008) The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 22:581–586PubMedCrossRef
24.
go back to reference Booth BW, Smith GH (2006) Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res 8:R49PubMedCrossRef Booth BW, Smith GH (2006) Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res 8:R49PubMedCrossRef
25.
go back to reference Li W, Ferguson BJ, Khaled WT et al (2009) PML depletion disrupts normal mammary gland development and skews the composition of the mammary luminal cell progenitor pool. Proc Natl Acad Sci USA 106:4725–4730PubMedCrossRef Li W, Ferguson BJ, Khaled WT et al (2009) PML depletion disrupts normal mammary gland development and skews the composition of the mammary luminal cell progenitor pool. Proc Natl Acad Sci USA 106:4725–4730PubMedCrossRef
26.
go back to reference Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456PubMedCrossRef Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456PubMedCrossRef
27.
go back to reference Wilson CL, Sims AH, Howell A, Miller CJ, Clarke RB (2006) Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocr-Relat Cancer 13:617–628PubMedCrossRef Wilson CL, Sims AH, Howell A, Miller CJ, Clarke RB (2006) Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocr-Relat Cancer 13:617–628PubMedCrossRef
28.
go back to reference Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA 103:2196–2201PubMedCrossRef Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA 103:2196–2201PubMedCrossRef
29.
go back to reference Booth BW, Boulanger CA, Anderson LH, Jimenez-Rojo L, Brisken C, Smith GH (2010) Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics. Exp Cell Res 316:422–432PubMedCrossRef Booth BW, Boulanger CA, Anderson LH, Jimenez-Rojo L, Brisken C, Smith GH (2010) Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics. Exp Cell Res 316:422–432PubMedCrossRef
30.
go back to reference Imagawa W, Pedchenko VK, Helber J, Zhang H (2002) Hormone/growth factor interactions mediating epithelial/stromal communication in mammary gland development and carcinogenesis. J Steroid Biochem Mol Biol 80:213–230PubMedCrossRef Imagawa W, Pedchenko VK, Helber J, Zhang H (2002) Hormone/growth factor interactions mediating epithelial/stromal communication in mammary gland development and carcinogenesis. J Steroid Biochem Mol Biol 80:213–230PubMedCrossRef
31.
go back to reference Haslam SZ, Shyamala G (1979) Effect of oestradiol on progesterone receptors in normal mammary glands and its relationship with lactation. Biochem J 182:127–131PubMed Haslam SZ, Shyamala G (1979) Effect of oestradiol on progesterone receptors in normal mammary glands and its relationship with lactation. Biochem J 182:127–131PubMed
32.
go back to reference Asselin-Labat ML, Vaillant F, Sheridan JM et al (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802PubMedCrossRef Asselin-Labat ML, Vaillant F, Sheridan JM et al (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802PubMedCrossRef
33.
go back to reference Joshi PA, Jackson HW, Beristain AG et al (2010) Progesterone induces adult mammary stem cell expansion. Nature 465:803–807PubMedCrossRef Joshi PA, Jackson HW, Beristain AG et al (2010) Progesterone induces adult mammary stem cell expansion. Nature 465:803–807PubMedCrossRef
34.
go back to reference Haslam SZ, Drolet A, Smith K, Tan M, Aupperlee M (2008) Progestin-regulated luminal cell and myoepithelial cell-specific responses in mammary organoid culture. Endocrinology 149:2098–2107PubMedCrossRef Haslam SZ, Drolet A, Smith K, Tan M, Aupperlee M (2008) Progestin-regulated luminal cell and myoepithelial cell-specific responses in mammary organoid culture. Endocrinology 149:2098–2107PubMedCrossRef
35.
go back to reference Cao Y, Bonizzi G, Seagroves TN et al (2001) IKKalpha provides an essential link between rank signaling and cyclin D1 expression during mammary gland development. Cell 107:763–775PubMedCrossRef Cao Y, Bonizzi G, Seagroves TN et al (2001) IKKalpha provides an essential link between rank signaling and cyclin D1 expression during mammary gland development. Cell 107:763–775PubMedCrossRef
36.
go back to reference Mukherjee A, Soyal SM, Li J et al (2010) Targeting RANKL to a specific subset of murine mammary epithelial cells induces ordered branching morphogenesis and alveologenesis in the absence of progesterone receptor expression. FASEB J 24(11):4408–4419PubMedCrossRef Mukherjee A, Soyal SM, Li J et al (2010) Targeting RANKL to a specific subset of murine mammary epithelial cells induces ordered branching morphogenesis and alveologenesis in the absence of progesterone receptor expression. FASEB J 24(11):4408–4419PubMedCrossRef
37.
go back to reference Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM (2003) Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci USA 100:9744–9749PubMedCrossRef Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM (2003) Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci USA 100:9744–9749PubMedCrossRef
38.
go back to reference Brisken C, Heineman A, Chavarria T et al (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14:650–654PubMed Brisken C, Heineman A, Chavarria T et al (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14:650–654PubMed
39.
go back to reference Beleut M, Rajaram RD, Caikovski M et al (2010) Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci USA 107:2989–2994PubMedCrossRef Beleut M, Rajaram RD, Caikovski M et al (2010) Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci USA 107:2989–2994PubMedCrossRef
40.
go back to reference Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRef Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRef
41.
go back to reference Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedCrossRef Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedCrossRef
42.
go back to reference Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124PubMedCrossRef Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124PubMedCrossRef
43.
go back to reference Reis-Filho JS, Milanezi F, Steele D et al (2006) Metaplastic breast carcinomas are basal-like tumours. Histopathology 49:10–21PubMedCrossRef Reis-Filho JS, Milanezi F, Steele D et al (2006) Metaplastic breast carcinomas are basal-like tumours. Histopathology 49:10–21PubMedCrossRef
44.
45.
go back to reference Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E (2007) Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 67:8671–8681PubMedCrossRef Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E (2007) Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 67:8671–8681PubMedCrossRef
46.
go back to reference Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE (2008) The mammary progenitor marker CD61/Beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68:7711–7717PubMedCrossRef Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE (2008) The mammary progenitor marker CD61/Beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68:7711–7717PubMedCrossRef
47.
go back to reference Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112PubMedCrossRef Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112PubMedCrossRef
48.
go back to reference Coser KR, Wittner BS, Rosenthal NF et al (2009) Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor. Proc Natl Acad Sci USA 106:14536–14541PubMedCrossRef Coser KR, Wittner BS, Rosenthal NF et al (2009) Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor. Proc Natl Acad Sci USA 106:14536–14541PubMedCrossRef
49.
go back to reference Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA (2008) Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA 105:5774–5779PubMedCrossRef Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA (2008) Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA 105:5774–5779PubMedCrossRef
50.
go back to reference Kabos P, Haughian JM, Wang X, et al (2010) Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat (in press). doi:10.1007/s10549-010-1078-6 Kabos P, Haughian JM, Wang X, et al (2010) Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat (in press). doi:10.​1007/​s10549-010-1078-6
51.
go back to reference Boiko AD, Razorenova OV, van de Rijn M et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–177PubMedCrossRef Boiko AD, Razorenova OV, van de Rijn M et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–177PubMedCrossRef
52.
go back to reference Meyer MJ, Fleming JM, Ali MA, Pesesky MW, Ginsburg E, Vonderhaar BK (2009) Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast Cancer Res 11:R82PubMedCrossRef Meyer MJ, Fleming JM, Ali MA, Pesesky MW, Ginsburg E, Vonderhaar BK (2009) Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast Cancer Res 11:R82PubMedCrossRef
53.
go back to reference Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594PubMedCrossRef Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594PubMedCrossRef
54.
go back to reference Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547PubMedCrossRef Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547PubMedCrossRef
55.
go back to reference Lewis MT (2010) The more things change... the more things change: developmental plasticity of tumor-initiating mammary epithelial cells. Breast Cancer Res 12:101PubMedCrossRef Lewis MT (2010) The more things change... the more things change: developmental plasticity of tumor-initiating mammary epithelial cells. Breast Cancer Res 12:101PubMedCrossRef
56.
go back to reference Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9:631–643PubMedCrossRef Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9:631–643PubMedCrossRef
57.
go back to reference Dontu G, El-Ashry D, Wicha MS (2004) Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 15:193–197PubMedCrossRef Dontu G, El-Ashry D, Wicha MS (2004) Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 15:193–197PubMedCrossRef
58.
go back to reference van der Burg B, de Groot RP, Isbrucker L, Kruijer W, de Laat SW (1991) Oestrogen directly stimulates growth factor signal transduction pathways in human breast cancer cells. J Steroid Biochem Mol Biol 40:215–221PubMedCrossRef van der Burg B, de Groot RP, Isbrucker L, Kruijer W, de Laat SW (1991) Oestrogen directly stimulates growth factor signal transduction pathways in human breast cancer cells. J Steroid Biochem Mol Biol 40:215–221PubMedCrossRef
59.
go back to reference van der Burg B, Rutteman GR, Blankenstein MA, de Laat SW, van Zoelen EJ (1988) Mitogenic stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen. J Cell Physiol 134:101–108PubMedCrossRef van der Burg B, Rutteman GR, Blankenstein MA, de Laat SW, van Zoelen EJ (1988) Mitogenic stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen. J Cell Physiol 134:101–108PubMedCrossRef
Metadata
Title
Estrogen and Progesterone in Normal Mammary Gland Development and in Cancer
Author
John Stingl
Publication date
01-04-2011
Publisher
Springer-Verlag
Published in
Discover Oncology / Issue 2/2011
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-010-0055-1

Other articles of this Issue 2/2011

Discover Oncology 2/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine