Skip to main content
Top
Published in: Anatomical Science International 1/2024

Open Access 14-10-2023 | Review Article

Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective

Author: Jaerin Sohn

Published in: Anatomical Science International | Issue 1/2024

Login to get access

Abstract

Brain computation relies on the neural networks. Neurons extend the neurites such as dendrites and axons, and the contacts of these neurites that form chemical synapses are the biological basis of signal transmissions in the central nervous system. Individual neuronal outputs can influence the other neurons within the range of the axonal spread, while the activities of single neurons can be affected by the afferents in their somatodendritic fields. The morphological profile, therefore, binds the functional role each neuron can play. In addition, synaptic connectivity among neurons displays preference based on the characteristics of presynaptic and postsynaptic neurons. Here, the author reviews the “spatial” and “temporal” connection selectivity in the neocortex. The histological description of the neocortical circuitry depends primarily on the classification of cell types, and the development of gene engineering techniques allows the cell type-specific visualization of dendrites and axons as well as somata. Using genetic labeling of particular cell populations combined with immunohistochemistry and imaging at a subcellular spatial resolution, we revealed the “spatial selectivity” of cortical wirings in which synapses are non-uniformly distributed on the subcellular somatodendritic domains in a presynaptic cell type-specific manner. In addition, cortical synaptic dynamics in learning exhibit presynaptic cell type-dependent “temporal selectivity”: corticocortical synapses appear only transiently during the learning phase, while learning-induced new thalamocortical synapses persist, indicating that distinct circuits may supervise learning-specific ephemeral synapse and memory-specific immortal synapse formation. The selectivity of spatial configuration and temporal reconfiguration in the neural circuitry may govern diverse functions in the neocortex.
Literature
go back to reference Abbas AI, Sundiang MJM, Henoch B et al (2018) Somatostatin interneurons facilitate hippocampal-prefrontal synchrony and prefrontal spatial encoding. Neuron 100:926-939.e923PubMedPubMedCentralCrossRef Abbas AI, Sundiang MJM, Henoch B et al (2018) Somatostatin interneurons facilitate hippocampal-prefrontal synchrony and prefrontal spatial encoding. Neuron 100:926-939.e923PubMedPubMedCentralCrossRef
go back to reference Adler A, Zhao R, Shin ME, Yasuda R, Gan WB (2019) Somatostatin-expressing interneurons enable and maintain learning-dependent sequential activation of pyramidal neurons. Neuron 102:202-216.e207PubMedPubMedCentralCrossRef Adler A, Zhao R, Shin ME, Yasuda R, Gan WB (2019) Somatostatin-expressing interneurons enable and maintain learning-dependent sequential activation of pyramidal neurons. Neuron 102:202-216.e207PubMedPubMedCentralCrossRef
go back to reference Allen WE, Kauvar IV, Chen MZ et al (2017) Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94:891-907.e896PubMedPubMedCentralCrossRef Allen WE, Kauvar IV, Chen MZ et al (2017) Global representations of goal-directed behavior in distinct cell types of mouse neocortex. Neuron 94:891-907.e896PubMedPubMedCentralCrossRef
go back to reference Altman-Hamamdzic S, Groseclose C, Ma JX et al (1997) Expression of beta-galactosidase in mouse brain: utilization of a novel nonreplicative Sindbis virus vector as a neuronal gene delivery system. Gene Ther 4:815–822PubMedCrossRef Altman-Hamamdzic S, Groseclose C, Ma JX et al (1997) Expression of beta-galactosidase in mouse brain: utilization of a novel nonreplicative Sindbis virus vector as a neuronal gene delivery system. Gene Ther 4:815–822PubMedCrossRef
go back to reference Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116PubMedCrossRef Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23:108–116PubMedCrossRef
go back to reference Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45:207–221PubMedCrossRef Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45:207–221PubMedCrossRef
go back to reference Arnold PB, Li CX, Waters RS (2001) Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat. Exp Brain Res 136:152–168PubMedCrossRef Arnold PB, Li CX, Waters RS (2001) Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat. Exp Brain Res 136:152–168PubMedCrossRef
go back to reference Artola A, Singer W (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330:649–652PubMedCrossRef Artola A, Singer W (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330:649–652PubMedCrossRef
go back to reference Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568PubMedCrossRef Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568PubMedCrossRef
go back to reference Bear MF, Press WA, Connors BW (1992) Long-term potentiation in slices of kitten visual cortex and the effects of NMDA receptor blockade. J Neurophysiol 67:841–851PubMedCrossRef Bear MF, Press WA, Connors BW (1992) Long-term potentiation in slices of kitten visual cortex and the effects of NMDA receptor blockade. J Neurophysiol 67:841–851PubMedCrossRef
go back to reference Brucato FH, Levin ED, Mott DD, Lewis DV, Wilson WA, Swartzwelder HS (1996) Hippocampal long-term potentiation and spatial learning in the rat: effects of GABAB receptor blockade. Neuroscience 74:331–339PubMedCrossRef Brucato FH, Levin ED, Mott DD, Lewis DV, Wilson WA, Swartzwelder HS (1996) Hippocampal long-term potentiation and spatial learning in the rat: effects of GABAB receptor blockade. Neuroscience 74:331–339PubMedCrossRef
go back to reference Callaway EM (2005) A molecular and genetic arsenal for systems neuroscience. Trends Neurosci 28:196–201PubMedCrossRef Callaway EM (2005) A molecular and genetic arsenal for systems neuroscience. Trends Neurosci 28:196–201PubMedCrossRef
go back to reference Canto-Bustos M, Friason FK, Bassi C, Oswald AM (2022) Disinhibitory circuitry gates associative synaptic plasticity in olfactory cortex. J Neurosci 42:2942–2950PubMedPubMedCentralCrossRef Canto-Bustos M, Friason FK, Bassi C, Oswald AM (2022) Disinhibitory circuitry gates associative synaptic plasticity in olfactory cortex. J Neurosci 42:2942–2950PubMedPubMedCentralCrossRef
go back to reference Casello SM, Flores RJ, Yarur HE et al (2022) Neuropeptide system regulation of prefrontal cortex circuitry: implications for neuropsychiatric disorders. Front Neural Circuits 16:796443PubMedPubMedCentralCrossRef Casello SM, Flores RJ, Yarur HE et al (2022) Neuropeptide system regulation of prefrontal cortex circuitry: implications for neuropsychiatric disorders. Front Neural Circuits 16:796443PubMedPubMedCentralCrossRef
go back to reference Challis RC, Ravindra Kumar S, Chen X et al (2022) Adeno-associated virus toolkit to target diverse brain cells. Annu Rev Neurosci 45:447–469PubMedCrossRef Challis RC, Ravindra Kumar S, Chen X et al (2022) Adeno-associated virus toolkit to target diverse brain cells. Annu Rev Neurosci 45:447–469PubMedCrossRef
go back to reference Chapman CA, Perez Y, Lacaille JC (1998) Effects of GABA(A) inhibition on the expression of long-term potentiation in CA1 pyramidal cells are dependent on tetanization parameters. Hippocampus 8:289–298PubMedCrossRef Chapman CA, Perez Y, Lacaille JC (1998) Effects of GABA(A) inhibition on the expression of long-term potentiation in CA1 pyramidal cells are dependent on tetanization parameters. Hippocampus 8:289–298PubMedCrossRef
go back to reference Chen JL, Lin WC, Cha JW, So PT, Kubota Y, Nedivi E (2011) Structural basis for the role of inhibition in facilitating adult brain plasticity. Nat Neurosci 14:587–594PubMedPubMedCentralCrossRef Chen JL, Lin WC, Cha JW, So PT, Kubota Y, Nedivi E (2011) Structural basis for the role of inhibition in facilitating adult brain plasticity. Nat Neurosci 14:587–594PubMedPubMedCentralCrossRef
go back to reference Chen JL, Villa KL, Cha JW, So PT, Kubota Y, Nedivi E (2012) Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74:361–373PubMedPubMedCentralCrossRef Chen JL, Villa KL, Cha JW, So PT, Kubota Y, Nedivi E (2012) Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74:361–373PubMedPubMedCentralCrossRef
go back to reference Chen SX, Kim AN, Peters AJ, Komiyama T (2015) Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat Neurosci 18:1109–1115PubMedPubMedCentralCrossRef Chen SX, Kim AN, Peters AJ, Komiyama T (2015) Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat Neurosci 18:1109–1115PubMedPubMedCentralCrossRef
go back to reference Cowan RL, Wilson CJ (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J Neurophysiol 71:17–32PubMedCrossRef Cowan RL, Wilson CJ (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J Neurophysiol 71:17–32PubMedCrossRef
go back to reference Cummings KA, Clem RL (2020) Prefrontal somatostatin interneurons encode fear memory. Nat Neurosci 23:61–74PubMedCrossRef Cummings KA, Clem RL (2020) Prefrontal somatostatin interneurons encode fear memory. Nat Neurosci 23:61–74PubMedCrossRef
go back to reference Cummings KA, Bayshtok S, Dong TN, Kenny PJ, Clem RL (2022) Control of fear by discrete prefrontal GABAergic populations encoding valence-specific information. Neuron 110:3036-3052.e3035PubMedPubMedCentralCrossRef Cummings KA, Bayshtok S, Dong TN, Kenny PJ, Clem RL (2022) Control of fear by discrete prefrontal GABAergic populations encoding valence-specific information. Neuron 110:3036-3052.e3035PubMedPubMedCentralCrossRef
go back to reference Daigle TL, Madisen L, Hage TA et al (2018) A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174:465-480.e422PubMedPubMedCentralCrossRef Daigle TL, Madisen L, Hage TA et al (2018) A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174:465-480.e422PubMedPubMedCentralCrossRef
go back to reference Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4:353–364PubMedCrossRef Davidson BL, Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4:353–364PubMedCrossRef
go back to reference Economo MN, Viswanathan S, Tasic B et al (2018) Distinct descending motor cortex pathways and their roles in movement. Nature 563:79–84PubMedCrossRef Economo MN, Viswanathan S, Tasic B et al (2018) Distinct descending motor cortex pathways and their roles in movement. Nature 563:79–84PubMedCrossRef
go back to reference Feldmeyer D, Qi G, Emmenegger V, Staiger JF (2018) Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex. Neuroscience 368:132–151PubMedCrossRef Feldmeyer D, Qi G, Emmenegger V, Staiger JF (2018) Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex. Neuroscience 368:132–151PubMedCrossRef
go back to reference Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51PubMedCrossRef Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51PubMedCrossRef
go back to reference Furuta T, Tomioka R, Taki K, Nakamura K, Tamamaki N, Kaneko T (2001) In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem 49:1497–1508PubMedCrossRef Furuta T, Tomioka R, Taki K, Nakamura K, Tamamaki N, Kaneko T (2001) In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem 49:1497–1508PubMedCrossRef
go back to reference Furuta T, Kaneko T, Deschênes M (2009) Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway. J Neurosci 29:4089–4095PubMedPubMedCentralCrossRef Furuta T, Kaneko T, Deschênes M (2009) Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway. J Neurosci 29:4089–4095PubMedPubMedCentralCrossRef
go back to reference Furuta T, Yamauchi K, Okamoto S et al (2022) Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method. ScaleSF Iscience 25:103601PubMedCrossRef Furuta T, Yamauchi K, Okamoto S et al (2022) Multi-scale light microscopy/electron microscopy neuronal imaging from brain to synapse with a tissue clearing method. ScaleSF Iscience 25:103601PubMedCrossRef
go back to reference Gentet LJ, Kremer Y, Taniguchi H, Huang ZJ, Staiger JF, Petersen CC (2012) Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat Neurosci 15:607–612PubMedCrossRef Gentet LJ, Kremer Y, Taniguchi H, Huang ZJ, Staiger JF, Petersen CC (2012) Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat Neurosci 15:607–612PubMedCrossRef
go back to reference Gerfen CR, Paletzki R, Heintz N (2013) GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80:1368–1383PubMedCrossRef Gerfen CR, Paletzki R, Heintz N (2013) GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80:1368–1383PubMedCrossRef
go back to reference Goldberg JH, Tamas G, Yuste R (2003) Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation. J Physiol 551:49–65PubMedPubMedCentralCrossRef Goldberg JH, Tamas G, Yuste R (2003) Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation. J Physiol 551:49–65PubMedPubMedCentralCrossRef
go back to reference Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7:347–358PubMedCrossRef Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7:347–358PubMedCrossRef
go back to reference Gouwens NW, Sorensen SA, Baftizadeh F et al (2020) Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183:935-953.e919PubMedPubMedCentralCrossRef Gouwens NW, Sorensen SA, Baftizadeh F et al (2020) Integrated morphoelectric and transcriptomic classification of cortical GABAergic cells. Cell 183:935-953.e919PubMedPubMedCentralCrossRef
go back to reference Grover LM, Yan C (1999) Blockade of GABAA receptors facilitates induction of NMDA receptor-independent long-term potentiation. J Neurophysiol 81:2814–2822PubMedCrossRef Grover LM, Yan C (1999) Blockade of GABAA receptors facilitates induction of NMDA receptor-independent long-term potentiation. J Neurophysiol 81:2814–2822PubMedCrossRef
go back to reference Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816PubMedCrossRef Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816PubMedCrossRef
go back to reference Guo ZV, Li N, Huber D et al (2014) Flow of cortical activity underlying a tactile decision in mice. Neuron 81:179–194PubMedCrossRef Guo ZV, Li N, Huber D et al (2014) Flow of cortical activity underlying a tactile decision in mice. Neuron 81:179–194PubMedCrossRef
go back to reference Gwag BJ, Kim EY, Ryu BR et al (1998) A neuron-specific gene transfer by a recombinant defective Sindbis virus. Brain Res Mol Brain Res 63:53–61PubMedCrossRef Gwag BJ, Kim EY, Ryu BR et al (1998) A neuron-specific gene transfer by a recombinant defective Sindbis virus. Brain Res Mol Brain Res 63:53–61PubMedCrossRef
go back to reference Hajós F, Zilles K (1988) Quantitative immunohistochemical analysis of VIP-neurons in the rat visual cortex. Histochemistry 90:139–144PubMedCrossRef Hajós F, Zilles K (1988) Quantitative immunohistochemical analysis of VIP-neurons in the rat visual cortex. Histochemistry 90:139–144PubMedCrossRef
go back to reference Hallman LE, Schofield BR, Lin CS (1988) Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat. J Comp Neurol 272:149–160PubMedCrossRef Hallman LE, Schofield BR, Lin CS (1988) Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat. J Comp Neurol 272:149–160PubMedCrossRef
go back to reference Hama H, Hioki H, Namiki K et al (2015) ScaleS: an optical clearing palette for biological imaging. Nat Neurosci 18:1518–1529PubMedCrossRef Hama H, Hioki H, Namiki K et al (2015) ScaleS: an optical clearing palette for biological imaging. Nat Neurosci 18:1518–1529PubMedCrossRef
go back to reference Hart G, Bradfield LA, Fok SY, Chieng B, Balleine BW (2018) The bilateral prefronto-striatal pathway is necessary for learning new goal-directed actions. Curr Biol 28:2218-2229.e2217PubMedCrossRef Hart G, Bradfield LA, Fok SY, Chieng B, Balleine BW (2018) The bilateral prefronto-striatal pathway is necessary for learning new goal-directed actions. Curr Biol 28:2218-2229.e2217PubMedCrossRef
go back to reference Hartung J, Letzkus JJ (2021) Inhibitory plasticity in layer 1—dynamic gatekeeper of neocortical associations. Curr Opin Neurobiol 67:26–33PubMedCrossRef Hartung J, Letzkus JJ (2021) Inhibitory plasticity in layer 1—dynamic gatekeeper of neocortical associations. Curr Opin Neurobiol 67:26–33PubMedCrossRef
go back to reference Hasegawa R, Ebina T, Tanaka YR, Kobayashi K, Matsuzaki M (2020) Structural dynamics and stability of corticocortical and thalamocortical axon terminals during motor learning. PLoS ONE 15:e0234930PubMedPubMedCentralCrossRef Hasegawa R, Ebina T, Tanaka YR, Kobayashi K, Matsuzaki M (2020) Structural dynamics and stability of corticocortical and thalamocortical axon terminals during motor learning. PLoS ONE 15:e0234930PubMedPubMedCentralCrossRef
go back to reference Hayashi-Takagi A, Yagishita S, Nakamura M et al (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:333–338PubMedPubMedCentralCrossRef Hayashi-Takagi A, Yagishita S, Nakamura M et al (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:333–338PubMedPubMedCentralCrossRef
go back to reference He M, Tucciarone J, Lee S et al (2016) Strategies and tools for combinatorial targeting of GABAergic neurons in mouse cerebral cortex. Neuron 91:1228–1243PubMedPubMedCentralCrossRef He M, Tucciarone J, Lee S et al (2016) Strategies and tools for combinatorial targeting of GABAergic neurons in mouse cerebral cortex. Neuron 91:1228–1243PubMedPubMedCentralCrossRef
go back to reference Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888PubMedCrossRef Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888PubMedCrossRef
go back to reference Hilscher MM, Leão RN, Edwards SJ, Leão KE, Kullander K (2017) Chrna2-martinotti cells synchronize layer 5 type a pyramidal cells via rebound excitation. PLoS Biol 15:e2001392PubMedPubMedCentralCrossRef Hilscher MM, Leão RN, Edwards SJ, Leão KE, Kullander K (2017) Chrna2-martinotti cells synchronize layer 5 type a pyramidal cells via rebound excitation. PLoS Biol 15:e2001392PubMedPubMedCentralCrossRef
go back to reference Hioki H, Kameda H, Nakamura H et al (2007) Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther 14:872–882PubMedCrossRef Hioki H, Kameda H, Nakamura H et al (2007) Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther 14:872–882PubMedCrossRef
go back to reference Hioki H, Kuramoto E, Konno M et al (2009) High-level transgene expression in neurons by lentivirus with tet-off system. Neurosci Res 63:149–154PubMedCrossRef Hioki H, Kuramoto E, Konno M et al (2009) High-level transgene expression in neurons by lentivirus with tet-off system. Neurosci Res 63:149–154PubMedCrossRef
go back to reference Hioki H, Okamoto S, Konno M et al (2013) Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. J Neurosci 33:544–555PubMedPubMedCentralCrossRef Hioki H, Okamoto S, Konno M et al (2013) Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. J Neurosci 33:544–555PubMedPubMedCentralCrossRef
go back to reference Hioki H, Sohn J, Nakamura H et al (2018) Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Res 1695:18–30PubMedCrossRef Hioki H, Sohn J, Nakamura H et al (2018) Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Res 1695:18–30PubMedCrossRef
go back to reference Hirai Y, Morishima M, Karube F, Kawaguchi Y (2012) Specialized cortical subnetworks differentially connect frontal cortex to parahippocampal areas. J Neurosci 32:1898–1913PubMedPubMedCentralCrossRef Hirai Y, Morishima M, Karube F, Kawaguchi Y (2012) Specialized cortical subnetworks differentially connect frontal cortex to parahippocampal areas. J Neurosci 32:1898–1913PubMedPubMedCentralCrossRef
go back to reference Hirano M, Kato S, Kobayashi K, Okada T, Yaginuma H, Kobayashi K (2013) Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein. PLoS ONE 8:e75896PubMedPubMedCentralCrossRef Hirano M, Kato S, Kobayashi K, Okada T, Yaginuma H, Kobayashi K (2013) Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein. PLoS ONE 8:e75896PubMedPubMedCentralCrossRef
go back to reference Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GM (2013) Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J Neurosci 33:748–760PubMedPubMedCentralCrossRef Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GM (2013) Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J Neurosci 33:748–760PubMedPubMedCentralCrossRef
go back to reference Hostetler RE, Hu H, Agmon A (2023) Genetically defined subtypes of somatostatin-containing cortical interneurons. eNeuro 10:ENEURO.0204–23.2023 Hostetler RE, Hu H, Agmon A (2023) Genetically defined subtypes of somatostatin-containing cortical interneurons. eNeuro 10:ENEURO.0204–23.2023
go back to reference Hsu KS, Ho WC, Huang CC, Tsai JJ (1999) Prior short-term synaptic disinhibition facilitates long-term potentiation and suppresses long-term depression at CA1 hippocampal synapses. Eur J Neurosci 11:4059–4069PubMedCrossRef Hsu KS, Ho WC, Huang CC, Tsai JJ (1999) Prior short-term synaptic disinhibition facilitates long-term potentiation and suppresses long-term depression at CA1 hippocampal synapses. Eur J Neurosci 11:4059–4069PubMedCrossRef
go back to reference Im S, Ueta Y, Otsuka T et al (2023) Corticocortical innervation subtypes of layer 5 intratelencephalic cells in the murine secondary motor cortex. Cereb Cortex 33:50–67CrossRef Im S, Ueta Y, Otsuka T et al (2023) Corticocortical innervation subtypes of layer 5 intratelencephalic cells in the murine secondary motor cortex. Cereb Cortex 33:50–67CrossRef
go back to reference Iwano S, Sugiyama M, Hama H et al (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359:935–939PubMedCrossRef Iwano S, Sugiyama M, Hama H et al (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359:935–939PubMedCrossRef
go back to reference Jiang X, Shen S, Cadwell CR et al. (2015) Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350:aac9462 Jiang X, Shen S, Cadwell CR et al. (2015) Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350:aac9462
go back to reference Jones-Tabah J, Mohammad H, Hadj-Youssef S et al (2020) Dopamine D1 receptor signalling in dyskinetic Parkinsonian rats revealed by fiber photometry using FRET-based biosensors. Sci Rep 10:14426PubMedPubMedCentralCrossRef Jones-Tabah J, Mohammad H, Hadj-Youssef S et al (2020) Dopamine D1 receptor signalling in dyskinetic Parkinsonian rats revealed by fiber photometry using FRET-based biosensors. Sci Rep 10:14426PubMedPubMedCentralCrossRef
go back to reference Junyent F, Kremer EJ (2015) CAV-2–why a canine virus is a neurobiologist’s best friend. Curr Opin Pharmacol 24:86–93PubMedCrossRef Junyent F, Kremer EJ (2015) CAV-2–why a canine virus is a neurobiologist’s best friend. Curr Opin Pharmacol 24:86–93PubMedCrossRef
go back to reference Kameda H, Hioki H, Tanaka YH et al (2012) Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci 35:838–854PubMedCrossRef Kameda H, Hioki H, Tanaka YH et al (2012) Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci 35:838–854PubMedCrossRef
go back to reference Kaneko R, Takatsuru Y, Morita A et al (2018) Inhibitory neuron-specific Cre-dependent red fluorescent labeling using VGAT BAC-based transgenic mouse lines with identified transgene integration sites. J Comp Neurol 526:373–396PubMedCrossRef Kaneko R, Takatsuru Y, Morita A et al (2018) Inhibitory neuron-specific Cre-dependent red fluorescent labeling using VGAT BAC-based transgenic mouse lines with identified transgene integration sites. J Comp Neurol 526:373–396PubMedCrossRef
go back to reference Kaplitt MG, Leone P, Samulski RJ et al (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154PubMedCrossRef Kaplitt MG, Leone P, Samulski RJ et al (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154PubMedCrossRef
go back to reference Kasthuri N, Hayworth KJ, Berger DR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661PubMedCrossRef Kasthuri N, Hayworth KJ, Berger DR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661PubMedCrossRef
go back to reference Kato S, Kobayashi K (2020) Pseudotyped lentiviral vectors for tract-targeting and application for the functional control of selective neural circuits. J Neurosci Methods 344:108854PubMedCrossRef Kato S, Kobayashi K (2020) Pseudotyped lentiviral vectors for tract-targeting and application for the functional control of selective neural circuits. J Neurosci Methods 344:108854PubMedCrossRef
go back to reference Kawaguchi Y (2017) Pyramidal cell subtypes and their synaptic connections in layer 5 of rat frontal cortex. Cereb Cortex 27:5755–5771PubMedCrossRef Kawaguchi Y (2017) Pyramidal cell subtypes and their synaptic connections in layer 5 of rat frontal cortex. Cereb Cortex 27:5755–5771PubMedCrossRef
go back to reference Kawaguchi Y, Kubota Y (1996) Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J Neurosci 16:2701–2715PubMedPubMedCentralCrossRef Kawaguchi Y, Kubota Y (1996) Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J Neurosci 16:2701–2715PubMedPubMedCentralCrossRef
go back to reference Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486PubMedCrossRef Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486PubMedCrossRef
go back to reference Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71PubMedCrossRef Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71PubMedCrossRef
go back to reference Khan AG, Poort J, Chadwick A et al (2018) Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nat Neurosci 21:851–859PubMedCrossRef Khan AG, Poort J, Chadwick A et al (2018) Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nat Neurosci 21:851–859PubMedCrossRef
go back to reference Kita T, Kita H (2012) The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J Neurosci 32:5990–5999PubMedPubMedCentralCrossRef Kita T, Kita H (2012) The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J Neurosci 32:5990–5999PubMedPubMedCentralCrossRef
go back to reference Kubota Y (2014) Untangling GABAergic wiring in the cortical microcircuit. Curr Opin Neurobiol 26:7–14PubMedCrossRef Kubota Y (2014) Untangling GABAergic wiring in the cortical microcircuit. Curr Opin Neurobiol 26:7–14PubMedCrossRef
go back to reference Kubota Y, Hattori R, Yui Y (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res 649:159–173PubMedCrossRef Kubota Y, Hattori R, Yui Y (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res 649:159–173PubMedCrossRef
go back to reference Kubota Y, Shigematsu N, Karube F et al (2011) Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex 21:1803–1817PubMedCrossRef Kubota Y, Shigematsu N, Karube F et al (2011) Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex 21:1803–1817PubMedCrossRef
go back to reference Kubota Y, Kondo S, Nomura M et al. (2015) Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. Elife 4 Kubota Y, Kondo S, Nomura M et al. (2015) Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. Elife 4
go back to reference Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T (2009) Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex 19:2065–2077PubMedCrossRef Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T (2009) Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex 19:2065–2077PubMedCrossRef
go back to reference Kuramoto E, Fujiyama F, Nakamura KC, Tanaka Y, Hioki H, Kaneko T (2011) Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. Eur J Neurosci 33:95–109PubMedCrossRef Kuramoto E, Fujiyama F, Nakamura KC, Tanaka Y, Hioki H, Kaneko T (2011) Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. Eur J Neurosci 33:95–109PubMedCrossRef
go back to reference Kuramoto E, Ohno S, Furuta T et al (2015) Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior-ventral lateral nuclear complex in the rat. Cereb Cortex 25:221–235PubMedCrossRef Kuramoto E, Ohno S, Furuta T et al (2015) Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior-ventral lateral nuclear complex in the rat. Cereb Cortex 25:221–235PubMedCrossRef
go back to reference Kuramoto E, Pan S, Furuta T et al (2017) Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: a single neuron-tracing study using virus vectors. J Comp Neurol 525:166–185PubMedCrossRef Kuramoto E, Pan S, Furuta T et al (2017) Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: a single neuron-tracing study using virus vectors. J Comp Neurol 525:166–185PubMedCrossRef
go back to reference Kuramoto E, Tanaka YR, Hioki H, Goto T, Kaneko T (2022) Local connections of pyramidal neurons to parvalbumin-producing interneurons in motor-associated cortical areas of mice. eNeuro 9 Kuramoto E, Tanaka YR, Hioki H, Goto T, Kaneko T (2022) Local connections of pyramidal neurons to parvalbumin-producing interneurons in motor-associated cortical areas of mice. eNeuro 9
go back to reference Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30:16796–16808PubMedPubMedCentralCrossRef Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30:16796–16808PubMedPubMedCentralCrossRef
go back to reference Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci 16:1662–1670PubMedPubMedCentralCrossRef Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci 16:1662–1670PubMedPubMedCentralCrossRef
go back to reference Lee AJ, Wang G, Jiang X et al (2015) Canonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuits. Cereb Cortex 25:2114–2126PubMedCrossRef Lee AJ, Wang G, Jiang X et al (2015) Canonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuits. Cereb Cortex 25:2114–2126PubMedCrossRef
go back to reference Lee AT, Cunniff MM, See JZ et al (2019) VIP interneurons contribute to avoidance behavior by regulating information flow across hippocampal-prefrontal networks. Neuron 102:1223-1234.e1224PubMedPubMedCentralCrossRef Lee AT, Cunniff MM, See JZ et al (2019) VIP interneurons contribute to avoidance behavior by regulating information flow across hippocampal-prefrontal networks. Neuron 102:1223-1234.e1224PubMedPubMedCentralCrossRef
go back to reference Lee C, Harkin EF, Yin X, Naud R, Chen S (2022) Cell-type-specific responses to associative learning in the primary motor cortex. Elife 11 Lee C, Harkin EF, Yin X, Naud R, Chen S (2022) Cell-type-specific responses to associative learning in the primary motor cortex. Elife 11
go back to reference Letzkus JJ, Wolff SB, Meyer EM et al (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480:331–335PubMedCrossRef Letzkus JJ, Wolff SB, Meyer EM et al (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480:331–335PubMedCrossRef
go back to reference Levy S, Lavzin M, Benisty H et al (2020) Cell-type-specific outcome representation in the primary motor cortex. Neuron 107:954-971.e959PubMedCrossRef Levy S, Lavzin M, Benisty H et al (2020) Cell-type-specific outcome representation in the primary motor cortex. Neuron 107:954-971.e959PubMedCrossRef
go back to reference Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K (2015) A motor cortex circuit for motor planning and movement. Nature 519:51–56PubMedCrossRef Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K (2015) A motor cortex circuit for motor planning and movement. Nature 519:51–56PubMedCrossRef
go back to reference Little JP, Carter AG (2012) Subcellular synaptic connectivity of layer 2 pyramidal neurons in the medial prefrontal cortex. J Neurosci 32:12808–12819PubMedPubMedCentralCrossRef Little JP, Carter AG (2012) Subcellular synaptic connectivity of layer 2 pyramidal neurons in the medial prefrontal cortex. J Neurosci 32:12808–12819PubMedPubMedCentralCrossRef
go back to reference Liu X, Carter AG (2018) Ventral hippocampal inputs preferentially drive corticocortical neurons in the infralimbic prefrontal cortex. J Neurosci 38:7351–7363PubMedPubMedCentralCrossRef Liu X, Carter AG (2018) Ventral hippocampal inputs preferentially drive corticocortical neurons in the infralimbic prefrontal cortex. J Neurosci 38:7351–7363PubMedPubMedCentralCrossRef
go back to reference Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62PubMedCrossRef Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62PubMedCrossRef
go back to reference Loh R, Collins S, Galvez R (2017) Neocortical prodynorphin expression is transiently increased with learning: Implications for time- and learning-dependent neocortical kappa opioid receptor activation. Behav Brain Res 335:145–150PubMedCrossRef Loh R, Collins S, Galvez R (2017) Neocortical prodynorphin expression is transiently increased with learning: Implications for time- and learning-dependent neocortical kappa opioid receptor activation. Behav Brain Res 335:145–150PubMedCrossRef
go back to reference Lorente de Nó R (1938) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of Nervous System, 2nd edn. Oxford University Press, London, pp 291–339 Lorente de Nó R (1938) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of Nervous System, 2nd edn. Oxford University Press, London, pp 291–339
go back to reference Lovett-Barron M, Turi GF, Kaifosh P et al (2012) Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci 15(423–430):s421-423 Lovett-Barron M, Turi GF, Kaifosh P et al (2012) Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci 15(423–430):s421-423
go back to reference Lu J, Tucciarone J, Padilla-Coreano N, He M, Gordon JA, Huang ZJ (2017) Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat Neurosci 20:1377–1383PubMedPubMedCentralCrossRef Lu J, Tucciarone J, Padilla-Coreano N, He M, Gordon JA, Huang ZJ (2017) Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat Neurosci 20:1377–1383PubMedPubMedCentralCrossRef
go back to reference Lucas EK, Clem RL (2018) GABAergic interneurons: The orchestra or the conductor in fear learning and memory? Brain Res Bull 141:13–19PubMedCrossRef Lucas EK, Clem RL (2018) GABAergic interneurons: The orchestra or the conductor in fear learning and memory? Brain Res Bull 141:13–19PubMedCrossRef
go back to reference Lukashchuk V, Lewis KE, Coldicott I, Grierson AJ, Azzouz M (2016) AAV9-mediated central nervous system-targeted gene delivery via cisterna magna route in mice. Mol Ther Methods Clin Dev 3:15055PubMedPubMedCentralCrossRef Lukashchuk V, Lewis KE, Coldicott I, Grierson AJ, Azzouz M (2016) AAV9-mediated central nervous system-targeted gene delivery via cisterna magna route in mice. Mol Ther Methods Clin Dev 3:15055PubMedPubMedCentralCrossRef
go back to reference Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A (2006) Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci 26:5069–5082PubMedPubMedCentralCrossRef Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A (2006) Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci 26:5069–5082PubMedPubMedCentralCrossRef
go back to reference Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140PubMedCrossRef Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140PubMedCrossRef
go back to reference Manita S, Suzuki T, Homma C et al (2015) A top-down cortical circuit for accurate sensory perception. Neuron 86:1304–1316PubMedCrossRef Manita S, Suzuki T, Homma C et al (2015) A top-down cortical circuit for accurate sensory perception. Neuron 86:1304–1316PubMedCrossRef
go back to reference Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K (2011) Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72:111–123PubMedPubMedCentralCrossRef Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K (2011) Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72:111–123PubMedPubMedCentralCrossRef
go back to reference Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807PubMedCrossRef Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807PubMedCrossRef
go back to reference Meng JH, Schuman B, Rudy B, Wang XJ (2023) Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons. J Neurosci Meng JH, Schuman B, Rudy B, Wang XJ (2023) Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons. J Neurosci
go back to reference Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437PubMedCrossRef Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437PubMedCrossRef
go back to reference Moriyoshi K, Richards LJ, Akazawa C, O’Leary DD, Nakanishi S (1996) Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16:255–260PubMedCrossRef Moriyoshi K, Richards LJ, Akazawa C, O’Leary DD, Nakanishi S (1996) Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16:255–260PubMedCrossRef
go back to reference Mott DD, Lewis DV (1991) Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252:1718–1720PubMedCrossRef Mott DD, Lewis DV (1991) Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252:1718–1720PubMedCrossRef
go back to reference Muñoz W, Tremblay R, Levenstein D, Rudy B (2017) Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355:954–959PubMedCrossRef Muñoz W, Tremblay R, Levenstein D, Rudy B (2017) Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355:954–959PubMedCrossRef
go back to reference Murayama M, Pérez-Garci E, Nevian T, Bock T, Senn W, Larkum ME (2009) Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457:1137–1141PubMedCrossRef Murayama M, Pérez-Garci E, Nevian T, Bock T, Senn W, Larkum ME (2009) Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457:1137–1141PubMedCrossRef
go back to reference Nakamura H, Hioki H, Furuta T, Kaneko T (2015) Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors. Eur J Neurosci 41:1294–1310PubMedCrossRef Nakamura H, Hioki H, Furuta T, Kaneko T (2015) Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors. Eur J Neurosci 41:1294–1310PubMedCrossRef
go back to reference Naldini L, Blömer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedCrossRef Naldini L, Blömer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedCrossRef
go back to reference Nigro MJ, Hashikawa-Yamasaki Y, Rudy B (2018) Diversity and connectivity of layer 5 somatostatin-expressing interneurons in the mouse barrel cortex. J Neurosci 38:1622–1633PubMedPubMedCentralCrossRef Nigro MJ, Hashikawa-Yamasaki Y, Rudy B (2018) Diversity and connectivity of layer 5 somatostatin-expressing interneurons in the mouse barrel cortex. J Neurosci 38:1622–1633PubMedPubMedCentralCrossRef
go back to reference Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199PubMedCrossRef Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199PubMedCrossRef
go back to reference Ohno S, Kuramoto E, Furuta T et al (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex 22:2840–2857PubMedCrossRef Ohno S, Kuramoto E, Furuta T et al (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex 22:2840–2857PubMedCrossRef
go back to reference Oswald MJ, Tantirigama ML, Sonntag I, Hughes SM, Empson RM (2013) Diversity of layer 5 projection neurons in the mouse motor cortex. Front Cell Neurosci 7:174PubMedPubMedCentralCrossRef Oswald MJ, Tantirigama ML, Sonntag I, Hughes SM, Empson RM (2013) Diversity of layer 5 projection neurons in the mouse motor cortex. Front Cell Neurosci 7:174PubMedPubMedCentralCrossRef
go back to reference Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME (2012) The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science 335:989–993PubMedCrossRef Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME (2012) The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science 335:989–993PubMedCrossRef
go back to reference Peters AJ, Chen SX, Komiyama T (2014) Emergence of reproducible spatiotemporal activity during motor learning. Nature 510:263–267PubMedCrossRef Peters AJ, Chen SX, Komiyama T (2014) Emergence of reproducible spatiotemporal activity during motor learning. Nature 510:263–267PubMedCrossRef
go back to reference Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668PubMedCrossRef Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668PubMedCrossRef
go back to reference Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16:1068–1076PubMedPubMedCentralCrossRef Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16:1068–1076PubMedPubMedCentralCrossRef
go back to reference Phelps JS, Hildebrand DGC, Graham BJ et al (2021) Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184:759-774.e718PubMedPubMedCentralCrossRef Phelps JS, Hildebrand DGC, Graham BJ et al (2021) Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184:759-774.e718PubMedPubMedCentralCrossRef
go back to reference Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503:521–524PubMedPubMedCentralCrossRef Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503:521–524PubMedPubMedCentralCrossRef
go back to reference Poort J, Wilmes KA, Blot A et al (2022) Learning and attention increase visual response selectivity through distinct mechanisms. Neuron 110:686-697.e686PubMedPubMedCentralCrossRef Poort J, Wilmes KA, Blot A et al (2022) Learning and attention increase visual response selectivity through distinct mechanisms. Neuron 110:686-697.e686PubMedPubMedCentralCrossRef
go back to reference Porter JT, Cauli B, Staiger JF, Lambolez B, Rossier J, Audinat E (1998) Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur J Neurosci 10:3617–3628PubMedCrossRef Porter JT, Cauli B, Staiger JF, Lambolez B, Rossier J, Audinat E (1998) Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur J Neurosci 10:3617–3628PubMedCrossRef
go back to reference Posluszny A, Liguz-Lecznar M, Turzynska D, Zakrzewska R, Bielecki M, Kossut M (2015) Learning-dependent plasticity of the barrel cortex is impaired by restricting GABA-Ergic transmission. PLoS ONE 10:e0144415PubMedPubMedCentralCrossRef Posluszny A, Liguz-Lecznar M, Turzynska D, Zakrzewska R, Bielecki M, Kossut M (2015) Learning-dependent plasticity of the barrel cortex is impaired by restricting GABA-Ergic transmission. PLoS ONE 10:e0144415PubMedPubMedCentralCrossRef
go back to reference Reiner A, Jiao Y, Del Mar N, Laverghetta AV, Lei WL (2003) Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J Comp Neurol 457:420–440PubMedCrossRef Reiner A, Jiao Y, Del Mar N, Laverghetta AV, Lei WL (2003) Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J Comp Neurol 457:420–440PubMedCrossRef
go back to reference Ren C, Peng K, Yang R, Liu W, Liu C, Komiyama T (2022) Global and subtype-specific modulation of cortical inhibitory neurons regulated by acetylcholine during motor learning. Neuron 110:2334-2350.e2338PubMedPubMedCentralCrossRef Ren C, Peng K, Yang R, Liu W, Liu C, Komiyama T (2022) Global and subtype-specific modulation of cortical inhibitory neurons regulated by acetylcholine during motor learning. Neuron 110:2334-2350.e2338PubMedPubMedCentralCrossRef
go back to reference Rockland KS (2020) What we can learn from the complex architecture of single axons. Brain Struct Funct 225:1327–1347PubMedCrossRef Rockland KS (2020) What we can learn from the complex architecture of single axons. Brain Struct Funct 225:1327–1347PubMedCrossRef
go back to reference Rozov A, Jerecic J, Sakmann B, Burnashev N (2001) AMPA receptor channels with long-lasting desensitization in bipolar interneurons contribute to synaptic depression in a novel feedback circuit in layer 2/3 of rat neocortex. J Neurosci 21:8062–8071PubMedPubMedCentralCrossRef Rozov A, Jerecic J, Sakmann B, Burnashev N (2001) AMPA receptor channels with long-lasting desensitization in bipolar interneurons contribute to synaptic depression in a novel feedback circuit in layer 2/3 of rat neocortex. J Neurosci 21:8062–8071PubMedPubMedCentralCrossRef
go back to reference Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71:45–61PubMedPubMedCentralCrossRef Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71:45–61PubMedPubMedCentralCrossRef
go back to reference Rupert DD, Shea SD (2022) Parvalbumin-positive interneurons regulate cortical sensory plasticity in adulthood and development through shared mechanisms. Front Neural Circuits 16:886629PubMedPubMedCentralCrossRef Rupert DD, Shea SD (2022) Parvalbumin-positive interneurons regulate cortical sensory plasticity in adulthood and development through shared mechanisms. Front Neural Circuits 16:886629PubMedPubMedCentralCrossRef
go back to reference Ry C (1911) Histologie du système nerveux de l’homme & des vertébrés. Maloine, Paris Ry C (1911) Histologie du système nerveux de l’homme & des vertébrés. Maloine, Paris
go back to reference Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246PubMedCrossRef Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246PubMedCrossRef
go back to reference Sandler M, Shulman Y, Schiller J (2016) A novel form of local plasticity in tuft dendrites of neocortical somatosensory layer 5 pyramidal neurons. Neuron 90:1028–1042PubMedCrossRef Sandler M, Shulman Y, Schiller J (2016) A novel form of local plasticity in tuft dendrites of neocortical somatosensory layer 5 pyramidal neurons. Neuron 90:1028–1042PubMedCrossRef
go back to reference Schroeder A, Pardi MB, Keijser J et al (2023) Inhibitory top-down projections from zona incerta mediate neocortical memory. Neuron 111:727-738.e728PubMedCrossRef Schroeder A, Pardi MB, Keijser J et al (2023) Inhibitory top-down projections from zona incerta mediate neocortical memory. Neuron 111:727-738.e728PubMedCrossRef
go back to reference Schuman B, Machold RP, Hashikawa Y, Fuzik J, Fishell GJ, Rudy B (2019) Four unique interneuron populations reside in neocortical layer 1. J Neurosci 39:125–139PubMedPubMedCentralCrossRef Schuman B, Machold RP, Hashikawa Y, Fuzik J, Fishell GJ, Rudy B (2019) Four unique interneuron populations reside in neocortical layer 1. J Neurosci 39:125–139PubMedPubMedCentralCrossRef
go back to reference Shigematsu N, Ueta Y, Mohamed AA et al (2016) Selective thalamic innervation of rat frontal cortical neurons. Cereb Cortex 26:2689–2704PubMedCrossRef Shigematsu N, Ueta Y, Mohamed AA et al (2016) Selective thalamic innervation of rat frontal cortical neurons. Cereb Cortex 26:2689–2704PubMedCrossRef
go back to reference Smith SJ, Sümbül U, Graybuck LT et al. (2019) Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. Elife 8 Smith SJ, Sümbül U, Graybuck LT et al. (2019) Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. Elife 8
go back to reference Sohn J, Hioki H, Okamoto S, Kaneko T (2014) Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J Comp Neurol 522:1506–1526PubMedCrossRef Sohn J, Hioki H, Okamoto S, Kaneko T (2014) Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J Comp Neurol 522:1506–1526PubMedCrossRef
go back to reference Sohn J, Okamoto S, Kataoka N, Kaneko T, Nakamura K, Hioki H (2016) Differential inputs to the perisomatic and distal-dendritic compartments of VIP-positive neurons in layer 2/3 of the mouse barrel cortex. Front Neuroanat 10:124PubMedPubMedCentralCrossRef Sohn J, Okamoto S, Kataoka N, Kaneko T, Nakamura K, Hioki H (2016) Differential inputs to the perisomatic and distal-dendritic compartments of VIP-positive neurons in layer 2/3 of the mouse barrel cortex. Front Neuroanat 10:124PubMedPubMedCentralCrossRef
go back to reference Sohn J, Takahashi M, Okamoto S, Ishida Y, Furuta T, Hioki H (2017) A single vector platform for high-level gene transduction of central neurons: adeno-associated virus vector equipped with the tet-off system. PLoS ONE 12:e0169611PubMedPubMedCentralCrossRef Sohn J, Takahashi M, Okamoto S, Ishida Y, Furuta T, Hioki H (2017) A single vector platform for high-level gene transduction of central neurons: adeno-associated virus vector equipped with the tet-off system. PLoS ONE 12:e0169611PubMedPubMedCentralCrossRef
go back to reference Sohn J, Suzuki M, Youssef M et al. (2022) Presynaptic supervision of cortical spine dynamics in motor learning. Sci Adv 8:eabm0531 Sohn J, Suzuki M, Youssef M et al. (2022) Presynaptic supervision of cortical spine dynamics in motor learning. Sci Adv 8:eabm0531
go back to reference Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135PubMedCrossRef Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135PubMedCrossRef
go back to reference Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ (2001) Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. Faseb j 15:2283–2285PubMedCrossRef Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ (2001) Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. Faseb j 15:2283–2285PubMedCrossRef
go back to reference Staiger JF, Zilles K, Freund TF (1996) Innervation of VIP-immunoreactive neurons by the ventroposteromedial thalamic nucleus in the barrel cortex of the rat. J Comp Neurol 367:194–204PubMedCrossRef Staiger JF, Zilles K, Freund TF (1996) Innervation of VIP-immunoreactive neurons by the ventroposteromedial thalamic nucleus in the barrel cortex of the rat. J Comp Neurol 367:194–204PubMedCrossRef
go back to reference Staiger JF, Freund TF, Zilles K (1997) Interneurons immunoreactive for vasoactive intestinal polypeptide (VIP) are extensively innervated by parvalbumin-containing boutons in rat primary somatosensory cortex. Eur J Neurosci 9:2259–2268PubMedCrossRef Staiger JF, Freund TF, Zilles K (1997) Interneurons immunoreactive for vasoactive intestinal polypeptide (VIP) are extensively innervated by parvalbumin-containing boutons in rat primary somatosensory cortex. Eur J Neurosci 9:2259–2268PubMedCrossRef
go back to reference Staiger JF, Schubert D, Zuschratter W, Kötter R, Luhmann HJ, Zilles K (2002) Innervation of interneurons immunoreactive for VIP by intrinsically bursting pyramidal cells and fast-spiking interneurons in infragranular layers of juvenile rat neocortex. Eur J Neurosci 16:11–20PubMedCrossRef Staiger JF, Schubert D, Zuschratter W, Kötter R, Luhmann HJ, Zilles K (2002) Innervation of interneurons immunoreactive for VIP by intrinsically bursting pyramidal cells and fast-spiking interneurons in infragranular layers of juvenile rat neocortex. Eur J Neurosci 16:11–20PubMedCrossRef
go back to reference Stefanelli T, Bertollini C, Lüscher C, Muller D, Mendez P (2016) Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89:1074–1085PubMedCrossRef Stefanelli T, Bertollini C, Lüscher C, Muller D, Mendez P (2016) Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89:1074–1085PubMedCrossRef
go back to reference Sun YC, Chen X, Fischer S et al (2021) Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat Neurosci 24:873–885PubMedPubMedCentralCrossRef Sun YC, Chen X, Fischer S et al (2021) Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat Neurosci 24:873–885PubMedPubMedCentralCrossRef
go back to reference Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872PubMedCrossRef Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872PubMedCrossRef
go back to reference Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T (2000) Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci Res 38:231–236PubMedCrossRef Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T (2000) Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci Res 38:231–236PubMedCrossRef
go back to reference Taniguchi H, He M, Wu P et al (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71:995–1013PubMedPubMedCentralCrossRef Taniguchi H, He M, Wu P et al (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71:995–1013PubMedPubMedCentralCrossRef
go back to reference Tomioka R, Rockland KS (2006) Improved Golgi-like visualization in retrogradely projecting neurons after EGFP-adenovirus infection in adult rat and monkey. J Histochem Cytochem 54:539–548PubMedCrossRef Tomioka R, Rockland KS (2006) Improved Golgi-like visualization in retrogradely projecting neurons after EGFP-adenovirus infection in adult rat and monkey. J Histochem Cytochem 54:539–548PubMedCrossRef
go back to reference Trachtenberg JT, Chen BE, Knott GW et al (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794PubMedCrossRef Trachtenberg JT, Chen BE, Knott GW et al (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794PubMedCrossRef
go back to reference Turner NL, Macrina T, Bae JA et al (2022) Reconstruction of neocortex: organelles, compartments, cells, circuits, and activity. Cell 185:1082-1100.e1024PubMedPubMedCentralCrossRef Turner NL, Macrina T, Bae JA et al (2022) Reconstruction of neocortex: organelles, compartments, cells, circuits, and activity. Cell 185:1082-1100.e1024PubMedPubMedCentralCrossRef
go back to reference Uematsu M, Hirai Y, Karube F et al (2008) Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. Cereb Cortex 18:315–330PubMedCrossRef Uematsu M, Hirai Y, Karube F et al (2008) Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. Cereb Cortex 18:315–330PubMedCrossRef
go back to reference Ueta Y, Hirai Y, Otsuka T, Kawaguchi Y (2013) Direction- and distance-dependent interareal connectivity of pyramidal cell subpopulations in the rat frontal cortex. Front Neural Circuits 7:164PubMedPubMedCentralCrossRef Ueta Y, Hirai Y, Otsuka T, Kawaguchi Y (2013) Direction- and distance-dependent interareal connectivity of pyramidal cell subpopulations in the rat frontal cortex. Front Neural Circuits 7:164PubMedPubMedCentralCrossRef
go back to reference Ueta Y, Otsuka T, Morishima M, Ushimaru M, Kawaguchi Y (2014) Multiple layer 5 pyramidal cell subtypes relay cortical feedback from secondary to primary motor areas in rats. Cereb Cortex 24:2362–2376PubMedCrossRef Ueta Y, Otsuka T, Morishima M, Ushimaru M, Kawaguchi Y (2014) Multiple layer 5 pyramidal cell subtypes relay cortical feedback from secondary to primary motor areas in rats. Cereb Cortex 24:2362–2376PubMedCrossRef
go back to reference Ueta Y, Sohn J, Agahari FA et al (2019) Ipsi- and contralateral corticocortical projection-dependent subcircuits in layer 2 of the rat frontal cortex. J Neurophysiol 122:1461–1472PubMedCrossRef Ueta Y, Sohn J, Agahari FA et al (2019) Ipsi- and contralateral corticocortical projection-dependent subcircuits in layer 2 of the rat frontal cortex. J Neurophysiol 122:1461–1472PubMedCrossRef
go back to reference van Aerde KI, Feldmeyer D (2015) Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex. Cereb Cortex 25:788–805PubMedCrossRef van Aerde KI, Feldmeyer D (2015) Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex. Cereb Cortex 25:788–805PubMedCrossRef
go back to reference van den Pol AN, Ozduman K, Wollmann G et al (2009) Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J Comp Neurol 516:456–481PubMedPubMedCentralCrossRef van den Pol AN, Ozduman K, Wollmann G et al (2009) Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J Comp Neurol 516:456–481PubMedPubMedCentralCrossRef
go back to reference Veinante P, Deschênes M (2003) Single-cell study of motor cortex projections to the barrel field in rats. J Comp Neurol 464:98–103PubMedCrossRef Veinante P, Deschênes M (2003) Single-cell study of motor cortex projections to the barrel field in rats. J Comp Neurol 464:98–103PubMedCrossRef
go back to reference Villa KL, Berry KP, Subramanian J et al (2016) Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron 89:756–769PubMedPubMedCentralCrossRef Villa KL, Berry KP, Subramanian J et al (2016) Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron 89:756–769PubMedPubMedCentralCrossRef
go back to reference Wang L, Conner JM, Rickert J, Tuszynski MH (2011) Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proc Natl Acad Sci U S A 108:2545–2550PubMedPubMedCentralCrossRef Wang L, Conner JM, Rickert J, Tuszynski MH (2011) Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proc Natl Acad Sci U S A 108:2545–2550PubMedPubMedCentralCrossRef
go back to reference Wolff SBE, Ko R, Ölveczky BP (2022) Distinct roles for motor cortical and thalamic inputs to striatum during motor skill learning and execution. Sci Adv 8:eabk0231 Wolff SBE, Ko R, Ölveczky BP (2022) Distinct roles for motor cortical and thalamic inputs to striatum during motor skill learning and execution. Sci Adv 8:eabk0231
go back to reference Xu X, Roby KD, Callaway EM (2006) Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol 499:144–160PubMedCrossRef Xu X, Roby KD, Callaway EM (2006) Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol 499:144–160PubMedCrossRef
go back to reference Xu X, Roby KD, Callaway EM (2010) Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 518:389–404PubMedPubMedCentralCrossRef Xu X, Roby KD, Callaway EM (2010) Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 518:389–404PubMedPubMedCentralCrossRef
go back to reference Xu H, Liu L, Tian Y et al (2019) A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron 102:668-682.e665PubMedCrossRef Xu H, Liu L, Tian Y et al (2019) A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron 102:668-682.e665PubMedCrossRef
go back to reference Xu Z, Geron E, Pérez-Cuesta LM, Bai Y, Gan WB (2023) Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites. Nat Commun 14:503PubMedPubMedCentralCrossRef Xu Z, Geron E, Pérez-Cuesta LM, Bai Y, Gan WB (2023) Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites. Nat Commun 14:503PubMedPubMedCentralCrossRef
go back to reference Yamashita T, Pala A, Pedrido L, Kremer Y, Welker E, Petersen CC (2013) Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 80:1477–1490PubMedCrossRef Yamashita T, Pala A, Pedrido L, Kremer Y, Welker E, Petersen CC (2013) Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 80:1477–1490PubMedCrossRef
go back to reference Yamauchi K, Furuta T, Okamoto S, Takahashi M, Koike M, Hioki H (2022a) Protocol for multi-scale light microscopy/electron microscopy neuronal imaging in mouse brain tissue. STAR Protoc 3:101508PubMedPubMedCentralCrossRef Yamauchi K, Furuta T, Okamoto S, Takahashi M, Koike M, Hioki H (2022a) Protocol for multi-scale light microscopy/electron microscopy neuronal imaging in mouse brain tissue. STAR Protoc 3:101508PubMedPubMedCentralCrossRef
go back to reference Yamauchi K, Okamoto S, Takahashi M, Koike M, Furuta T, Hioki H (2022b) A Tissue Clearing Method for Neuronal Imaging from Mesoscopic to Microscopic Scales. J Vis Exp Yamauchi K, Okamoto S, Takahashi M, Koike M, Furuta T, Hioki H (2022b) A Tissue Clearing Method for Neuronal Imaging from Mesoscopic to Microscopic Scales. J Vis Exp
go back to reference Yang G, Lai CS, Cichon J, Ma L, Li W, Gan WB (2014) Sleep promotes branch-specific formation of dendritic spines after learning. Science 344:1173–1178PubMedPubMedCentralCrossRef Yang G, Lai CS, Cichon J, Ma L, Li W, Gan WB (2014) Sleep promotes branch-specific formation of dendritic spines after learning. Science 344:1173–1178PubMedPubMedCentralCrossRef
go back to reference Yang J, Serrano P, Yin X, Sun X, Lin Y, Chen SX (2022) Functionally distinct NPAS4-expressing somatostatin interneuron ensembles critical for motor skill learning. Neuron 110:3339-3355.e3338PubMedCrossRef Yang J, Serrano P, Yin X, Sun X, Lin Y, Chen SX (2022) Functionally distinct NPAS4-expressing somatostatin interneuron ensembles critical for motor skill learning. Neuron 110:3339-3355.e3338PubMedCrossRef
go back to reference Yap EL, Pettit NL, Davis CP et al (2021) Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network. Nature 590:115–121PubMedCrossRef Yap EL, Pettit NL, Davis CP et al (2021) Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network. Nature 590:115–121PubMedCrossRef
go back to reference Yu J, Hu H, Agmon A, Svoboda K (2019) Recruitment of GABAergic interneurons in the barrel cortex during active tactile behavior. Neuron 104:412-427.e414PubMedPubMedCentralCrossRef Yu J, Hu H, Agmon A, Svoboda K (2019) Recruitment of GABAergic interneurons in the barrel cortex during active tactile behavior. Neuron 104:412-427.e414PubMedPubMedCentralCrossRef
go back to reference Zeisel A, Muñoz-Manchado AB, Codeluppi S et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142PubMedCrossRef Zeisel A, Muñoz-Manchado AB, Codeluppi S et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142PubMedCrossRef
go back to reference Zhang S, Xu M, Kamigaki T et al (2014) Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345:660–665PubMedPubMedCentralCrossRef Zhang S, Xu M, Kamigaki T et al (2014) Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345:660–665PubMedPubMedCentralCrossRef
go back to reference Zhang GR, Zhao H, Abdul-Muneer PM, Cao H, Li X, Geller AI (2015) Neurons can be labeled with unique hues by helper virus-free HSV-1 vectors expressing Brainbow. J Neurosci Methods 240:77–88PubMedCrossRef Zhang GR, Zhao H, Abdul-Muneer PM, Cao H, Li X, Geller AI (2015) Neurons can be labeled with unique hues by helper virus-free HSV-1 vectors expressing Brainbow. J Neurosci Methods 240:77–88PubMedCrossRef
go back to reference Zhao X, Huang L, Guo R et al (2017) Coordinated Plasticity among Glutamatergic and GABAergic Neurons and Synapses in the Barrel Cortex Is Correlated to Learning Efficiency. Front Cell Neurosci 11:221PubMedPubMedCentralCrossRef Zhao X, Huang L, Guo R et al (2017) Coordinated Plasticity among Glutamatergic and GABAergic Neurons and Synapses in the Barrel Cortex Is Correlated to Learning Efficiency. Front Cell Neurosci 11:221PubMedPubMedCentralCrossRef
go back to reference Zhou X, Rickmann M, Hafner G, Staiger JF (2017) Subcellular targeting of VIP boutons in mouse barrel cortex is layer-dependent and not restricted to interneurons. Cereb Cortex 27:5353–5368PubMedPubMedCentralCrossRef Zhou X, Rickmann M, Hafner G, Staiger JF (2017) Subcellular targeting of VIP boutons in mouse barrel cortex is layer-dependent and not restricted to interneurons. Cereb Cortex 27:5353–5368PubMedPubMedCentralCrossRef
go back to reference Zingg B, Chou XL, Zhang ZG et al (2017) AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93:33–47PubMedCrossRef Zingg B, Chou XL, Zhang ZG et al (2017) AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93:33–47PubMedCrossRef
go back to reference Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875PubMedCrossRef Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875PubMedCrossRef
Metadata
Title
Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective
Author
Jaerin Sohn
Publication date
14-10-2023
Publisher
Springer Nature Singapore
Published in
Anatomical Science International / Issue 1/2024
Print ISSN: 1447-6959
Electronic ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-023-00743-5

Other articles of this Issue 1/2024

Anatomical Science International 1/2024 Go to the issue