Skip to main content
Top
Published in: Journal of Nuclear Cardiology 2/2023

27-06-2022 | Original Article

Anthropomorphic cardiac phantom for dynamic SPECT

Authors: A. Krakovich, MSc, U. Zaretsky, PhD, E. Gelbart, MSc, I. Moalem, A. Naimushin, MD, E. Rozen, MD, M. Scheinowitz, PhD, R. Goldkorn, MD

Published in: Journal of Nuclear Cardiology | Issue 2/2023

Login to get access

Abstract

Background

As myocardial blood flow measurement (MBF) in SPECT systems became recently available, significant effort has been devoted to its validation. For that purpose, we have developed a cardiac phantom that is able to mimic physiological radiotracer variation in the left ventricle cavity and in the myocardium, while performing beating-like motion. The new phantom is integrated inside a standard anthropomorphic torso allowing a realistic tissue attenuation and gamma-ray scattering

Methods and Results

A mechanical cardiac phantom was integrated in a commercially available anthropomorphic torso. Using a GE Discovery 530c SPECT, measurements were performed. It was found that gamma-ray attenuation effects are significant and limit the MBF measurements to global/three-vessel resolution. Dynamic SPECT experiments were performed to validate MBF accuracy and showed mean relative error of 14%. Finally, the effect of varying radiotracer dose on the accuracy of dynamic SPECT was studied

Conclusions

A dynamic cardiac phantom has been developed and successfully integrated in a standard SPECT torso. A good agreement was found between SPECT-reported MBF values and the expected results. Despite increased noise-to-signal ratio when radiotracer doses were reduced, MBF uncertainty did not increase significantly down to very low doses, thanks to the temporal integration of the activity during the measurement
Appendix
Available only for authorised users
Literature
1.
go back to reference Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP. Single photon-emission computed tomography. J Nucl Cardiol 2010;5:941‐73.CrossRef Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP. Single photon-emission computed tomography. J Nucl Cardiol 2010;5:941‐73.CrossRef
2.
go back to reference Lima RS, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003;42:64‐70.CrossRefPubMed Lima RS, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003;42:64‐70.CrossRefPubMed
3.
go back to reference Murthy VL, et al. Clinical quantification of myocardial blood flow using PET: Joint position paper of the SNMMI cardiovascular council and the ASNC. J Nuclear Cardiol 2018;25:269‐97.CrossRef Murthy VL, et al. Clinical quantification of myocardial blood flow using PET: Joint position paper of the SNMMI cardiovascular council and the ASNC. J Nuclear Cardiol 2018;25:269‐97.CrossRef
4.
go back to reference Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150‐6.CrossRefPubMed Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150‐6.CrossRefPubMed
8.
go back to reference Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887‐902.CrossRefPubMedPubMedCentral Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887‐902.CrossRefPubMedPubMedCentral
9.
go back to reference Ben-Haim S, Murthy VL, Breault C, Allie R, Sitek A, Roth N, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J Nucl Med 2013;54:873‐9.CrossRefPubMed Ben-Haim S, Murthy VL, Breault C, Allie R, Sitek A, Roth N, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J Nucl Med 2013;54:873‐9.CrossRefPubMed
10.
go back to reference Wells RG, Timmins R, Klein R, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med 2014;55:1685‐91.CrossRefPubMed Wells RG, Timmins R, Klein R, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med 2014;55:1685‐91.CrossRefPubMed
11.
go back to reference Hsu B, Hu LH, Yang BH, et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with N-Ammonia PET myocardial blood flow quantitation. Eur J Nucl Med Mol Imaging 2017;44:117‐28.CrossRefPubMed Hsu B, Hu LH, Yang BH, et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with N-Ammonia PET myocardial blood flow quantitation. Eur J Nucl Med Mol Imaging 2017;44:117‐28.CrossRefPubMed
12.
go back to reference Nkoulou R, Fuchs TA, Pazhenkottil AP, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-tetrofosmin: head-to-head comparison with 13N-ammonia PET. J Nucl Med 2016;57:1887‐92.CrossRefPubMed Nkoulou R, Fuchs TA, Pazhenkottil AP, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-tetrofosmin: head-to-head comparison with 13N-ammonia PET. J Nucl Med 2016;57:1887‐92.CrossRefPubMed
13.
go back to reference Wells RG, et al. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood-binding compared to PET. J Nucl Med 2017;6:117. Wells RG, et al. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood-binding compared to PET. J Nucl Med 2017;6:117.
14.
go back to reference De Bondt P, et al. Validation of gated blood-pool SPECT cardiac measurements tested using a biventricular dynamic physical phantom. J Nucl Med 2003;44:967‐72.PubMed De Bondt P, et al. Validation of gated blood-pool SPECT cardiac measurements tested using a biventricular dynamic physical phantom. J Nucl Med 2003;44:967‐72.PubMed
15.
go back to reference Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol 2005;1:66‐77.CrossRef Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol 2005;1:66‐77.CrossRef
16.
go back to reference Gabrani-Juma H, et al. Validation of a multimodality flow phantom and its application for assessment of dynamic SPECT and PET technologies. IEEE Trans Med Imaging 2017;36:132‐41.CrossRefPubMed Gabrani-Juma H, et al. Validation of a multimodality flow phantom and its application for assessment of dynamic SPECT and PET technologies. IEEE Trans Med Imaging 2017;36:132‐41.CrossRefPubMed
17.
go back to reference Coffey JL, Cristy M, Warner GG. Specific absorbed fractions for photon sources uniformly distributed in the heart chambers and heart wall of a heterogeneous phantom. J Nucl Med 1981;22:65‐71.PubMed Coffey JL, Cristy M, Warner GG. Specific absorbed fractions for photon sources uniformly distributed in the heart chambers and heart wall of a heterogeneous phantom. J Nucl Med 1981;22:65‐71.PubMed
18.
go back to reference Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897‐903.CrossRefPubMed Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897‐903.CrossRefPubMed
19.
go back to reference Bailliez A, et al. Left ventricular function assessment using 2 different cadmium-zinc-telluride cameras compared with a γ-camera with cardiofocal collimators: dynamic cardiac phantom study and clinical validation. J Nucl Med 2016;57:1370‐5.CrossRefPubMed Bailliez A, et al. Left ventricular function assessment using 2 different cadmium-zinc-telluride cameras compared with a γ-camera with cardiofocal collimators: dynamic cardiac phantom study and clinical validation. J Nucl Med 2016;57:1370‐5.CrossRefPubMed
20.
go back to reference Chrysanthou-Baustert I, et al. Characterization of attenuation and respiratory motion artifacts and their influence on SPECT MP image evaluation using a dynamic phantom assembly with variable cardiac defects. J Nucl Cardiol 2017;24:698‐707.CrossRefPubMed Chrysanthou-Baustert I, et al. Characterization of attenuation and respiratory motion artifacts and their influence on SPECT MP image evaluation using a dynamic phantom assembly with variable cardiac defects. J Nucl Cardiol 2017;24:698‐707.CrossRefPubMed
21.
go back to reference De Bondt P, et al. Accuracy of 4 different algorithms for the analysis of tomographic radionuclide ventriculography using a physical, dynamic 4-chamber cardiac phantom. J Nucl Med 2005;46:165‐71.PubMed De Bondt P, et al. Accuracy of 4 different algorithms for the analysis of tomographic radionuclide ventriculography using a physical, dynamic 4-chamber cardiac phantom. J Nucl Med 2005;46:165‐71.PubMed
22.
go back to reference Debrun D, et al. Volume measurements in nuclear medicine gated SPECT and 4D echocardiography: validation using a dynamic cardiac phantom. Int J Cardiovascular Imaging 2005;21:239‐47.CrossRef Debrun D, et al. Volume measurements in nuclear medicine gated SPECT and 4D echocardiography: validation using a dynamic cardiac phantom. Int J Cardiovascular Imaging 2005;21:239‐47.CrossRef
23.
go back to reference Narihiro H, et al. "Development of a 2-layer double-pump dynamic cardiac phantom. J Nucl Med Technol 2016;44:31‐5.CrossRefPubMed Narihiro H, et al. "Development of a 2-layer double-pump dynamic cardiac phantom. J Nucl Med Technol 2016;44:31‐5.CrossRefPubMed
24.
go back to reference Presotto L, et al. A compact dynamic phantom to assess the effect of motion in cardiac PET and SPECT studies. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). IEEE, 2012. Presotto L, et al. A compact dynamic phantom to assess the effect of motion in cardiac PET and SPECT studies. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). IEEE, 2012.
25.
go back to reference Simon TR, et al. A realistic dynamic cardiac phantom for evaluating radionuclide ventriculography: description and initial studies with the left ventricular chamber. J Nucl Med 1989;30:542‐7.PubMed Simon TR, et al. A realistic dynamic cardiac phantom for evaluating radionuclide ventriculography: description and initial studies with the left ventricular chamber. J Nucl Med 1989;30:542‐7.PubMed
26.
go back to reference Jang S, et al. Cardiac ejection fraction and volume measurements using dynamic cardiac phantoms and radionuclide imaging. IEEE Trans Nucl Sci 1994;41:2845‐9.CrossRef Jang S, et al. Cardiac ejection fraction and volume measurements using dynamic cardiac phantoms and radionuclide imaging. IEEE Trans Nucl Sci 1994;41:2845‐9.CrossRef
27.
go back to reference Weise R, et al. A dynamic heart phantom for quality control in functional nuclear cardiac imaging. Z Med Phys 2005;15:274‐8.CrossRefPubMed Weise R, et al. A dynamic heart phantom for quality control in functional nuclear cardiac imaging. Z Med Phys 2005;15:274‐8.CrossRefPubMed
28.
go back to reference Celler A, et al. Dynamic heart-in-thorax phantom for functional SPECT. IEEE Trans Nucl Sci 1997;44:1600‐5.CrossRef Celler A, et al. Dynamic heart-in-thorax phantom for functional SPECT. IEEE Trans Nucl Sci 1997;44:1600‐5.CrossRef
29.
go back to reference Krakovich A, Zaretsky U, Moalem I, Naimushin A, Rozen E, Scheinowitz M, et al. A new cardiac phantom for dynamic SPECT. J Nucl Cardiol 2021;28:2299‐309.CrossRefPubMed Krakovich A, Zaretsky U, Moalem I, Naimushin A, Rozen E, Scheinowitz M, et al. A new cardiac phantom for dynamic SPECT. J Nucl Cardiol 2021;28:2299‐309.CrossRefPubMed
33.
go back to reference Mathieu J, Scott J. An introduction to turbulent flow. Cambridge University Press; 2000.CrossRef Mathieu J, Scott J. An introduction to turbulent flow. Cambridge University Press; 2000.CrossRef
34.
go back to reference Agostini D, et al. First validation of myocardial flow reserve assessed by dynamic 99m Tc-sestamibi CZT-SPECT camera: head to head comparison with 15 O-water PET and fractional flow reserve in patients with suspected coronary artery disease: The WATERDAY study. Eur J Nucl Med Mol Imaging 2018;45:1079‐90.CrossRefPubMedPubMedCentral Agostini D, et al. First validation of myocardial flow reserve assessed by dynamic 99m Tc-sestamibi CZT-SPECT camera: head to head comparison with 15 O-water PET and fractional flow reserve in patients with suspected coronary artery disease: The WATERDAY study. Eur J Nucl Med Mol Imaging 2018;45:1079‐90.CrossRefPubMedPubMedCentral
35.
go back to reference Ficaro EP, et al. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14:455‐65.CrossRefPubMed Ficaro EP, et al. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14:455‐65.CrossRefPubMed
36.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539‐42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539‐42.CrossRefPubMed
37.
go back to reference Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. A performance comparison of novel cadmium–zinc–telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med 2015;29:342‐50.CrossRefPubMed Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. A performance comparison of novel cadmium–zinc–telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med 2015;29:342‐50.CrossRefPubMed
38.
go back to reference Rubeaux M, Xu Y, Germano G, Berman DS, Slomka PJ. Normal databases for the relative quantification of myocardial perfusion. Curr Cardiovasc Imaging Rep 2016;9:1‐11.CrossRef Rubeaux M, Xu Y, Germano G, Berman DS, Slomka PJ. Normal databases for the relative quantification of myocardial perfusion. Curr Cardiovasc Imaging Rep 2016;9:1‐11.CrossRef
Metadata
Title
Anthropomorphic cardiac phantom for dynamic SPECT
Authors
A. Krakovich, MSc
U. Zaretsky, PhD
E. Gelbart, MSc
I. Moalem
A. Naimushin, MD
E. Rozen, MD
M. Scheinowitz, PhD
R. Goldkorn, MD
Publication date
27-06-2022
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 2/2023
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-022-03024-2

Other articles of this Issue 2/2023

Journal of Nuclear Cardiology 2/2023 Go to the issue