Skip to main content
Top
Published in: Journal of Nuclear Cardiology 2/2018

01-04-2018 | Editorial

Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT: Effect on clinical practice

Authors: Valeria M. Moncayo, MD, Ernest V. Garcia, PhD

Published in: Journal of Nuclear Cardiology | Issue 2/2018

Login to get access

Excerpt

PET imaging technology allows for absolute and relative myocardial blood flow analysis. In addition to the well-known positron emissions resulting in the production of annihilation radiation usually in the form of two 511 keV photons used for PET imaging, Rb-82 also emits 776 keV gamma rays with 13% abundance known as prompt gamma radiation.1 The effect on the images of these gamma emissions is different from those of random events or scatter; they produce a background signal which is incorrectly detected as coincidence events with the annihilation 511 keV photons. These unwelcomed coincidences lead to artifacts in both the appearance of the Rb-82 myocardial uptake as well as in image quantification if not corrected. Note that this is a unique characteristic of the Rb-82 radionuclide, and does not occur with any of the other radionuclides used for cardiac imaging such as N-13, O-15, or F-18. …
Literature
1.
go back to reference Esteves FP, Nye JA, Khan A, Folks RD, Halkar RK, Garcia EV, et al. Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT. J Nucl Cardiol. 2010;17:247–53.CrossRefPubMed Esteves FP, Nye JA, Khan A, Folks RD, Halkar RK, Garcia EV, et al. Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT. J Nucl Cardiol. 2010;17:247–53.CrossRefPubMed
2.
go back to reference Beattie BJ, Finn RD, Rowland DJ, Pentlow KS. Quantitative imaging of bromine-76 and yttrium-86 with PET: a method for the removal of spurious activity introduced by cascade gamma rays. Med Phys. 2003;30:2410–23.CrossRefPubMed Beattie BJ, Finn RD, Rowland DJ, Pentlow KS. Quantitative imaging of bromine-76 and yttrium-86 with PET: a method for the removal of spurious activity introduced by cascade gamma rays. Med Phys. 2003;30:2410–23.CrossRefPubMed
3.
go back to reference Hayden C, Casey M, Watson C (2011) Inventors; Siemens Medical Solutions, USA, Inc, assignee, Prompt gamma correction for non-standard isotopes in a pet scanner. United States patent US 7,894,652 B2, 22 June 1998. Hayden C, Casey M, Watson C (2011) Inventors; Siemens Medical Solutions, USA, Inc, assignee, Prompt gamma correction for non-standard isotopes in a pet scanner. United States patent US 7,894,652 B2, 22 June 1998.
4.
go back to reference Armstrong I, Memmott M, Tongue C, Arumugam P, The impact of prompt gamma compensation on myocardial blood flow measurements with rubidium-82 dynamic PET. J Nucl Cardiol (in Press). Armstrong I, Memmott M, Tongue C, Arumugam P, The impact of prompt gamma compensation on myocardial blood flow measurements with rubidium-82 dynamic PET. J Nucl Cardiol (in Press).
5.
go back to reference Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: a technical perspective. J Nucl Cardiol. 2015;22:935–51.CrossRefPubMed Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: a technical perspective. J Nucl Cardiol. 2015;22:935–51.CrossRefPubMed
6.
go back to reference Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;50:1076–87.CrossRefPubMed Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;50:1076–87.CrossRefPubMed
7.
go back to reference Ziadi MC, Williams K, Guo A, Renaud JM, Chow BJ, Klein R, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670–80.CrossRefPubMed Ziadi MC, Williams K, Guo A, Renaud JM, Chow BJ, Klein R, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670–80.CrossRefPubMed
8.
go back to reference Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovac Imaging. 2010;3:623–40.CrossRef Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovac Imaging. 2010;3:623–40.CrossRef
9.
go back to reference Dilsizian V, Bacharach SL, Beanlands SR, Bergmann SR, Delbeke D, et al (2016) ASNC/SNMMI Imaging Guidelines for Nuclear Cardiology Procedures: PET Myocardial Perfusion and Metabolism Clinical Imaging. J Nucl Cardiol. Accessed online 7 July 2016 (in press). Dilsizian V, Bacharach SL, Beanlands SR, Bergmann SR, Delbeke D, et al (2016) ASNC/SNMMI Imaging Guidelines for Nuclear Cardiology Procedures: PET Myocardial Perfusion and Metabolism Clinical Imaging. J Nucl Cardiol. Accessed online 7 July 2016 (in press).
Metadata
Title
Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT: Effect on clinical practice
Authors
Valeria M. Moncayo, MD
Ernest V. Garcia, PhD
Publication date
01-04-2018
Publisher
Springer US
Published in
Journal of Nuclear Cardiology / Issue 2/2018
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-016-0672-3

Other articles of this Issue 2/2018

Journal of Nuclear Cardiology 2/2018 Go to the issue