Skip to main content
Top
Published in: Journal of Nuclear Cardiology 3/2017

01-06-2017 | Original Article

Comparative analysis of iterative reconstruction algorithms with resolution recovery and time of flight modeling for 18F-FDG cardiac PET: A multi-center phantom study

Authors: Roberta Matheoud, PhD, Michela Lecchi, PhD, Domenico Lizio, PhD, Camilla Scabbio, PhD, Claudio Marcassa, MD, Lucia Leva, MD, Angelo del Sole, MD, Carlo Rodella, PhD, Luca Indovina, PhD, Christian Bracco, PhD, Marco Brambilla, PhD, Orazio Zoccarato, PhD

Published in: Journal of Nuclear Cardiology | Issue 3/2017

Login to get access

Abstract

Background

The purpose of this study was to evaluate the image quality in cardiac 18F-FDG PET using the time of flight (TOF) and/or point spread function (PSF) modeling in the iterative reconstruction (IR).

Methods

Three scanners and an anthropomorphic cardiac phantom with an insert simulating a transmural defect (TD) were used. Two sets of scans (with/without TD) were acquired, and four reconstruction schemes were considered: (1) IR; (2) IR + PSF, (3) IR + TOF, and (4) IR + TOF + PSF. LV wall thickness (FWHM), contrast between LV wall and inner chamber (C IC), and TD contrast in LV wall (C TD) were evaluated.

Results

Tests of the reconstruction protocols showed a decrease in FWHM from IR (13 mm) to IR + PSF (11 mm); an increase in the C IC from IR (65%) to IR + PSF (71%) and from IR + TOF (72%) to IR + TOF + PSF (77%); and an increase in the C TD from IR + PSF (72%) to IR + TOF (75%) and to IR + TOF + PSF (77%). Tests of the scanner/software combinations showed a decrease in FWHM from Gemini_TF (13 mm) to Biograph_mCT (12 mm) and to Discovery_690 (11 mm); an increase in the C IC from Gemini_TF (65%) to Biograph_mCT (73%) and to Discovery_690 (75%); and an increase in the C TD from Gemini_TF/Biograph_mCT (72%) to Discovery_690 (77%).

Conclusion

The introduction of TOF and PSF increases image quality in cardiac 18F-FDG PET. The scanner/software combinations exhibit different performances, which should be taken into consideration when making cross comparisons.
Literature
1.
go back to reference Conti M. Focus on time-of-flight PET: The benefits of improved time resolution. Eur J Nucl Med Mol Imaging 2011;38:1147-57.CrossRefPubMed Conti M. Focus on time-of-flight PET: The benefits of improved time resolution. Eur J Nucl Med Mol Imaging 2011;38:1147-57.CrossRefPubMed
2.
go back to reference Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 2012;57:R119-59.CrossRefPubMed Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 2012;57:R119-59.CrossRefPubMed
3.
go back to reference Leahy RM, Qi JY. Statistical approaches in quantitative positron emission tomography. Stat Comput 2000;10:147-65.CrossRef Leahy RM, Qi JY. Statistical approaches in quantitative positron emission tomography. Stat Comput 2000;10:147-65.CrossRef
4.
go back to reference Lecomte R, Schmitt D, Lamoureux G. Geometry study of a high resolution PET detection system using small detectors. IEEE Trans Nucl Sci 1984;31:556-61.CrossRef Lecomte R, Schmitt D, Lamoureux G. Geometry study of a high resolution PET detection system using small detectors. IEEE Trans Nucl Sci 1984;31:556-61.CrossRef
5.
go back to reference Alessio AM, Kinahan PE, Lewellen TK. Modeling and incorporation of system response functions in 3-D whole body PET. IEEE Trans Med Imaging 2006;25:828-37.CrossRefPubMed Alessio AM, Kinahan PE, Lewellen TK. Modeling and incorporation of system response functions in 3-D whole body PET. IEEE Trans Med Imaging 2006;25:828-37.CrossRefPubMed
6.
go back to reference Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907-21.CrossRefPubMed Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907-21.CrossRefPubMed
7.
go back to reference Knäusl B, Rausch IF, Bergmann H, Dudczak R, Hirtl A, Georg D. Influence of PET reconstruction parameters on the TrueX algorithm. Nuklearmedizin 2013;52:28-35.CrossRefPubMed Knäusl B, Rausch IF, Bergmann H, Dudczak R, Hirtl A, Georg D. Influence of PET reconstruction parameters on the TrueX algorithm. Nuklearmedizin 2013;52:28-35.CrossRefPubMed
8.
go back to reference Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471-80.PubMed Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471-80.PubMed
9.
go back to reference Gemini TF. Key to success, Philips Medical Systems. Cleveland: Koninklijke Philips Electronics N.V.; 2007. Gemini TF. Key to success, Philips Medical Systems. Cleveland: Koninklijke Philips Electronics N.V.; 2007.
10.
go back to reference Zoccarato O, Scabbio C, De Ponti E, Matheoud R, Leva L, Morzenti S, et al. Comparative analysis of iterative reconstruction algorithms with resolution recovery for cardiac SPECT studies. A multi-center phantom study. J Nucl Cardiol 2014;21:135-48.CrossRefPubMed Zoccarato O, Scabbio C, De Ponti E, Matheoud R, Leva L, Morzenti S, et al. Comparative analysis of iterative reconstruction algorithms with resolution recovery for cardiac SPECT studies. A multi-center phantom study. J Nucl Cardiol 2014;21:135-48.CrossRefPubMed
12.
go back to reference Surti S, Scheuermann J, El Fakhri G, Daube-Witherspoon ME, Lim R, Lim R, Abi-Hatem N, et al. Impact of time-of-flight PET on whole-body oncologic studies: A human observer lesion detection and localization study. J Nucl Med 2011;52:712-9.CrossRefPubMedPubMedCentral Surti S, Scheuermann J, El Fakhri G, Daube-Witherspoon ME, Lim R, Lim R, Abi-Hatem N, et al. Impact of time-of-flight PET on whole-body oncologic studies: A human observer lesion detection and localization study. J Nucl Med 2011;52:712-9.CrossRefPubMedPubMedCentral
13.
go back to reference El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS. Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med 2011;52:347-53.CrossRefPubMedPubMedCentral El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS. Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med 2011;52:347-53.CrossRefPubMedPubMedCentral
14.
go back to reference Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med 2010;51:237-45.CrossRefPubMedPubMedCentral Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med 2010;51:237-45.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Schaefferkoetter J, Ouyang J, Rakvongthai Y, Nappi C, El Fakhri G. Effect of time-of-flight and point spread function modeling on detectability of myocardial defects in PET. Med Phys 2014;41:062502.CrossRefPubMedPubMedCentral Schaefferkoetter J, Ouyang J, Rakvongthai Y, Nappi C, El Fakhri G. Effect of time-of-flight and point spread function modeling on detectability of myocardial defects in PET. Med Phys 2014;41:062502.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Petibon Y, Ouyang J, Zhu X, Huang C, Reese TG, Chun SY, et al. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: A cardiac lesion detection study. Phys Med Biol 2013;58:2085-102.CrossRefPubMed Petibon Y, Ouyang J, Zhu X, Huang C, Reese TG, Chun SY, et al. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: A cardiac lesion detection study. Phys Med Biol 2013;58:2085-102.CrossRefPubMed
19.
go back to reference Le Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LE, Hayes SW, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol 2010;17:414-46.CrossRefPubMed Le Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LE, Hayes SW, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol 2010;17:414-46.CrossRefPubMed
20.
go back to reference Le Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LE, Hayes SW, et al. Motion frozen (18)F-FDG cardiac PET. J Nucl Cardiol 2011;18:259-66.CrossRefPubMed Le Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LE, Hayes SW, et al. Motion frozen (18)F-FDG cardiac PET. J Nucl Cardiol 2011;18:259-66.CrossRefPubMed
21.
go back to reference Rahmim A, Tang J. Noise propagation in resolution modeled PET imaging and its impact on detectability. Phys Med Biol 2013;58:6945-68.CrossRefPubMed Rahmim A, Tang J. Noise propagation in resolution modeled PET imaging and its impact on detectability. Phys Med Biol 2013;58:6945-68.CrossRefPubMed
22.
go back to reference Sunderland JJ, Christian PE. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom. J Nucl Med 2015;56:145-52.CrossRefPubMed Sunderland JJ, Christian PE. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom. J Nucl Med 2015;56:145-52.CrossRefPubMed
23.
go back to reference Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET/CT Discovery 690. Med Phys 2011;38:5394-411.CrossRefPubMed Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET/CT Discovery 690. Med Phys 2011;38:5394-411.CrossRefPubMed
24.
go back to reference Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med 2012;53:1716-22.CrossRefPubMed Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med 2012;53:1716-22.CrossRefPubMed
25.
go back to reference Lamare F, Le Maitre A, Dawood M, Schäfers KP, Fernandez P, Rimoldi OE, et al. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging. Med Phys 2014;41:072504.CrossRefPubMed Lamare F, Le Maitre A, Dawood M, Schäfers KP, Fernandez P, Rimoldi OE, et al. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging. Med Phys 2014;41:072504.CrossRefPubMed
Metadata
Title
Comparative analysis of iterative reconstruction algorithms with resolution recovery and time of flight modeling for 18F-FDG cardiac PET: A multi-center phantom study
Authors
Roberta Matheoud, PhD
Michela Lecchi, PhD
Domenico Lizio, PhD
Camilla Scabbio, PhD
Claudio Marcassa, MD
Lucia Leva, MD
Angelo del Sole, MD
Carlo Rodella, PhD
Luca Indovina, PhD
Christian Bracco, PhD
Marco Brambilla, PhD
Orazio Zoccarato, PhD
Publication date
01-06-2017
Publisher
Springer US
Published in
Journal of Nuclear Cardiology / Issue 3/2017
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-015-0385-z

Other articles of this Issue 3/2017

Journal of Nuclear Cardiology 3/2017 Go to the issue