Skip to main content
Top
Published in: Journal of Nuclear Cardiology 5/2016

01-10-2016 | Editorial

Analysis of the 17-segment left ventricle model using generalized estimating equations

Authors: Samantha R. Seals, PhD, Inmaculada B. Aban, PhD

Published in: Journal of Nuclear Cardiology | Issue 5/2016

Login to get access

Excerpt

Consider the problem of comparing imaging techniques where the study design is such that a participant is subjected to both techniques. If the outcome of interest is such that each technique results in only one observation per participant, most of the commonly used standard methods of statistical data analyses may be applicable. However, an added complication to the analysis occurs when the outcome of interest from the imaging techniques that are being compared results in multiple observations per subject. In particular, researchers following the 17-segment left ventricular model (recommended by the American Heart Association1) who are interested in the outcomes at the segment level have to deal with 17 observations per subject in the analyses. …
Literature
1.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.CrossRefPubMed
2.
go back to reference Oldan J, Shah S, Brunken R, DiFilippo F, Obuchowski N, Bolen M. Do myocardial PET–MR and PET–CT FDG images provide comparable information? J Nucl Cardiol. doi:10.1007/s12350-015-0159-7. Oldan J, Shah S, Brunken R, DiFilippo F, Obuchowski N, Bolen M. Do myocardial PET–MR and PET–CT FDG images provide comparable information? J Nucl Cardiol. doi:10.​1007/​s12350-015-0159-7.
3.
go back to reference Seals SR, Katholi CR, Zhang J, Aban IB. Evaluating the use of spatial covariance structures in the analysis of cardiovascular imaging data. Commun Stat – Simul Comput (in press). Seals SR, Katholi CR, Zhang J, Aban IB. Evaluating the use of spatial covariance structures in the analysis of cardiovascular imaging data. Commun Stat – Simul Comput (in press).
4.
go back to reference Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986;73:13-22.CrossRef Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986;73:13-22.CrossRef
5.
go back to reference Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986;42:121-30.CrossRefPubMed Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986;42:121-30.CrossRefPubMed
6.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.CrossRefPubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.CrossRefPubMed
7.
go back to reference Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999;8:135-60.CrossRefPubMed Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999;8:135-60.CrossRefPubMed
8.
go back to reference Fisher RA. Statistical methods for research workers. London: Oliver and Boyd; 1925. Fisher RA. Statistical methods for research workers. London: Oliver and Boyd; 1925.
9.
go back to reference Lin LIK. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:255-68.CrossRefPubMed Lin LIK. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:255-68.CrossRefPubMed
10.
go back to reference Bowman FD, Waller LA. Modelling of cardiac imaging data with spatial correlation. Stat Med 2004;23:965-85.CrossRefPubMed Bowman FD, Waller LA. Modelling of cardiac imaging data with spatial correlation. Stat Med 2004;23:965-85.CrossRefPubMed
11.
go back to reference George B, Aban I. Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data. Stat Med 2015;34:145-61.CrossRefPubMed George B, Aban I. Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data. Stat Med 2015;34:145-61.CrossRefPubMed
12.
go back to reference Akaike H. Information theory and an extension of the maximum likelihood principle. Second International Symposium on Information Theory 1973;267-81. Akaike H. Information theory and an extension of the maximum likelihood principle. Second International Symposium on Information Theory 1973;267-81.
13.
go back to reference Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control 1974;19:716-23.CrossRef Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control 1974;19:716-23.CrossRef
14.
15.
go back to reference Pan W. Akaike’s information criterion in generalized estimating equations. Biometrics 2001;57:120-5.CrossRefPubMed Pan W. Akaike’s information criterion in generalized estimating equations. Biometrics 2001;57:120-5.CrossRefPubMed
Metadata
Title
Analysis of the 17-segment left ventricle model using generalized estimating equations
Authors
Samantha R. Seals, PhD
Inmaculada B. Aban, PhD
Publication date
01-10-2016
Publisher
Springer US
Published in
Journal of Nuclear Cardiology / Issue 5/2016
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-015-0186-4

Other articles of this Issue 5/2016

Journal of Nuclear Cardiology 5/2016 Go to the issue