Skip to main content
Top
Published in: Journal of Nuclear Cardiology 3/2014

01-06-2014 | Original Article

Impact of point spread function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET

Authors: Ian S. Armstrong, MSc, Christine M. Tonge, MSc, Parthiban Arumugam, MD

Published in: Journal of Nuclear Cardiology | Issue 3/2014

Login to get access

Abstract

Background

Myocardial flow reserve (MFR) obtained from dynamic cardiac positron emission tomography (PET) with rubidium-82 (Rb-82) has been shown to be a useful measurement in assessing coronary artery disease. Advanced PET reconstructions with point spread function modeling and time-of-flight have been shown to improve image quality but also have an impact on kinetic analysis of dynamic data. This study aims to determine the impact of these algorithms on MFR data.

Methods

Dynamic Rb-82 cardiac PET images from 37 patients were reconstructed with standard and advanced reconstructions. Area under curve (AUC) of the blood input function (BIF), myocardial blood flow (MBF) and MFR were compared with each reconstruction.

Results

No significant differences were seen in MFR for the two reconstructions. A relatively small mean difference in MBF data of +11.9% was observed with advanced reconstruction compared with the standard reconstruction but there was considerable variability in the degree of change (95% confidence intervals of −16.2% to +40.0%). Small systematic relative differences were seen for AUC BIF (mean difference of −6.3%; 95% CI −17.5% to +5.4%).

Conclusion:

MFR results from Rb-82 dynamic PET appear to be robust when generated by standard or advanced PET reconstructions. Considerable increases in MBF values may occur with advanced reconstructions, and further work is required to fully understand this.
Literature
1.
go back to reference Bateman TM, Heller GV, McGhie AI, et al. Diagnostic Accuracy of Rest/Stress ECG-Gated Rb-82 Myocardial Perfusion PET: Comparison with ECG-Gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13(1):24–33.PubMedCrossRef Bateman TM, Heller GV, McGhie AI, et al. Diagnostic Accuracy of Rest/Stress ECG-Gated Rb-82 Myocardial Perfusion PET: Comparison with ECG-Gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13(1):24–33.PubMedCrossRef
2.
go back to reference Flotats A, Bravo P, Fukushima K, Chaudhry M, Merrill J, Bengel F. 82Rb PET Myocardial Perfusion Imaging is Superior 99mTc-Labelled Agent SPECT in Patients with Known or Suspected Coronary Artery Disease. Eur J Nucl Med Mol Imaging 2012;39(8):1233–9.PubMedCrossRef Flotats A, Bravo P, Fukushima K, Chaudhry M, Merrill J, Bengel F. 82Rb PET Myocardial Perfusion Imaging is Superior 99mTc-Labelled Agent SPECT in Patients with Known or Suspected Coronary Artery Disease. Eur J Nucl Med Mol Imaging 2012;39(8):1233–9.PubMedCrossRef
3.
go back to reference Prior J, Allenbach G, Valenta I, et al. Quantification of Myocardial Blood Flow with 82Rb Positron Emission Tomography: Clinical Validation with 15O-Water. Eur J Nucl Med Mol Imaging 2012;39(6):1037–47.PubMedCentralPubMedCrossRef Prior J, Allenbach G, Valenta I, et al. Quantification of Myocardial Blood Flow with 82Rb Positron Emission Tomography: Clinical Validation with 15O-Water. Eur J Nucl Med Mol Imaging 2012;39(6):1037–47.PubMedCentralPubMedCrossRef
4.
go back to reference Manabe O, Yoshinaga K, Katoh C, Naya M, deKemp RA, Tamaki N. Repeatability of Rest and Hyperemic Myocardial Blood Flow Measurements with 82Rb Dynamic PET. J Nucl Med 2009;50(1):68–71.PubMedCrossRef Manabe O, Yoshinaga K, Katoh C, Naya M, deKemp RA, Tamaki N. Repeatability of Rest and Hyperemic Myocardial Blood Flow Measurements with 82Rb Dynamic PET. J Nucl Med 2009;50(1):68–71.PubMedCrossRef
5.
go back to reference Efseaff M, Klein R, Ziadi M, Beanlands R, deKemp R. Short-Term Repeatability of Resting Myocardial Blood Flow Measurements Using Rubidium-82 PET Imaging. J Nucl Cardiol 2012;19(5):997–1006.PubMedCrossRef Efseaff M, Klein R, Ziadi M, Beanlands R, deKemp R. Short-Term Repeatability of Resting Myocardial Blood Flow Measurements Using Rubidium-82 PET Imaging. J Nucl Cardiol 2012;19(5):997–1006.PubMedCrossRef
6.
go back to reference deKemp RA, Declerck J, Klein R, et al. Multisoftware Reproducibility Study of Stress and Rest Myocardial Blood Flow Assessed with 3D Dynamic PET/CT and a 1-Tissue-Compartment Model of 82Rb Kinetics. J Nucl Med 2013;54(4):571–7.PubMedCrossRef deKemp RA, Declerck J, Klein R, et al. Multisoftware Reproducibility Study of Stress and Rest Myocardial Blood Flow Assessed with 3D Dynamic PET/CT and a 1-Tissue-Compartment Model of 82Rb Kinetics. J Nucl Med 2013;54(4):571–7.PubMedCrossRef
7.
go back to reference Ziadi MC, deKemp RA, Williams MSK, et al. Does Quantification of Myocardial Flow Reserve Using Rubidium-82 Positron Emission Tomography Facilitate Detection of Multivessel Coronary Artery Disease? J Nucl Cardiol 2012;19(4):670–80.PubMedCrossRef Ziadi MC, deKemp RA, Williams MSK, et al. Does Quantification of Myocardial Flow Reserve Using Rubidium-82 Positron Emission Tomography Facilitate Detection of Multivessel Coronary Artery Disease? J Nucl Cardiol 2012;19(4):670–80.PubMedCrossRef
8.
go back to reference Ziadi MC, deKemp RA, Williams KA, Guo A, Chow BJW, Renaud JM, et al. Impaired Myocardial Flow Reserve on Rubidium-82 Positron Emission Tomography Imaging Predicts Adverse Outcomes in Patients Assessed for Myocardial Ischemia. J Am Coll Cardiol 2011;58:740–8.PubMedCrossRef Ziadi MC, deKemp RA, Williams KA, Guo A, Chow BJW, Renaud JM, et al. Impaired Myocardial Flow Reserve on Rubidium-82 Positron Emission Tomography Imaging Predicts Adverse Outcomes in Patients Assessed for Myocardial Ischemia. J Am Coll Cardiol 2011;58:740–8.PubMedCrossRef
9.
go back to reference Loghin C, Sdringola S, Gould KL. Common Artifacts in PET Myocardial Perfusion Images Due to Attenuation–Emission Misregistration: Clinical Significance, Causes, and Solutions. J Nucl Med 2004;45(6):1029–39.PubMed Loghin C, Sdringola S, Gould KL. Common Artifacts in PET Myocardial Perfusion Images Due to Attenuation–Emission Misregistration: Clinical Significance, Causes, and Solutions. J Nucl Med 2004;45(6):1029–39.PubMed
10.
go back to reference Rajaram M, Tahari AK, Lee AH, et al. Cardiac PET/CT Misregistration Causes Significant Changes in Estimated Myocardial Blood Flow. J Nucl Med 2013;54(1):50–4.PubMedCrossRef Rajaram M, Tahari AK, Lee AH, et al. Cardiac PET/CT Misregistration Causes Significant Changes in Estimated Myocardial Blood Flow. J Nucl Med 2013;54(1):50–4.PubMedCrossRef
11.
go back to reference Conti M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 2011;56(1):155–68.PubMedCrossRef Conti M. Why is TOF PET reconstruction a more robust method in the presence of inconsistent data? Phys Med Biol 2011;56(1):155–68.PubMedCrossRef
12.
go back to reference Armstrong I, Tout D, Tonge C, Arumugam P. Time-of-Flight Reduces the Severity of CT Mis-registration Artefacts in Rubidium-82 Cardiac PET [Abstract]. J Nucl Med 2013;54(Suppl 2):1636. Armstrong I, Tout D, Tonge C, Arumugam P. Time-of-Flight Reduces the Severity of CT Mis-registration Artefacts in Rubidium-82 Cardiac PET [Abstract]. J Nucl Med 2013;54(Suppl 2):1636.
13.
go back to reference Akamatsu G, Ishikawa K, Mitsumoto K, et al. Improvement in PET/CT Image Quality with a Combination of Point-Spread Function and Time-of-Flight in Relation to Reconstruction Parameters. J Nucl Med 2012;53(11):1716–22.PubMedCrossRef Akamatsu G, Ishikawa K, Mitsumoto K, et al. Improvement in PET/CT Image Quality with a Combination of Point-Spread Function and Time-of-Flight in Relation to Reconstruction Parameters. J Nucl Med 2012;53(11):1716–22.PubMedCrossRef
14.
go back to reference Andersen FL, Klausen TL, Loft A, Beyer T, Holm S. Clinical Evaluation of PET Image Reconstruction Using a Spatial Resolution Model. Eur J Radiol 2013;82:862–9.PubMedCrossRef Andersen FL, Klausen TL, Loft A, Beyer T, Holm S. Clinical Evaluation of PET Image Reconstruction Using a Spatial Resolution Model. Eur J Radiol 2013;82:862–9.PubMedCrossRef
15.
go back to reference Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of Time-of-Flight in PET: Experimental and Clinical Results. J Nucl Med 2008;49:462–70.PubMedCentralPubMedCrossRef Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of Time-of-Flight in PET: Experimental and Clinical Results. J Nucl Med 2008;49:462–70.PubMedCentralPubMedCrossRef
16.
go back to reference LeMeunier L, Slomka PJ, Dey D, et al. Enhanced Definition PET for Cardiac Imaging. J Nucl Cardiol 2010;17(3):414–26.CrossRef LeMeunier L, Slomka PJ, Dey D, et al. Enhanced Definition PET for Cardiac Imaging. J Nucl Cardiol 2010;17(3):414–26.CrossRef
17.
go back to reference DiFilippo F, Brunken R. Benefit of Time-of-Flight Reconstruction for Cardiac PET of Obese Patients [Abstract]. J Nucl Med 2013;54(Suppl 2):405. DiFilippo F, Brunken R. Benefit of Time-of-Flight Reconstruction for Cardiac PET of Obese Patients [Abstract]. J Nucl Med 2013;54(Suppl 2):405.
18.
go back to reference Armstrong I, Tonge CM, Arumugam P. The Impact of Advanced Reconstruction on Myocardial Image Noise in Rubidium Myocardial Perfusion PET. J Nucl Cardiol 2013;20(Suppl 1):S23. Armstrong I, Tonge CM, Arumugam P. The Impact of Advanced Reconstruction on Myocardial Image Noise in Rubidium Myocardial Perfusion PET. J Nucl Cardiol 2013;20(Suppl 1):S23.
19.
go back to reference Lewis J, Anton-Rodriguez J, Carter SF, Herholz K, Asselin MC, Hinz R (2012) Optimization of high resolution PET iterative reconstruction with resolution modeling for image derived input function. In: IEEE Nuclear Science Symposium Conference Record, pp 3999–4000. Lewis J, Anton-Rodriguez J, Carter SF, Herholz K, Asselin MC, Hinz R (2012) Optimization of high resolution PET iterative reconstruction with resolution modeling for image derived input function. In: IEEE Nuclear Science Symposium Conference Record, pp 3999–4000.
20.
go back to reference Vasquez AF, Johnson NP, Gould KL. Variation in Quantitative Myocardial Perfusion due to Arterial Input Selection. JACC Cardiovasc Imaging 2013;6(5):559–68.PubMedCrossRef Vasquez AF, Johnson NP, Gould KL. Variation in Quantitative Myocardial Perfusion due to Arterial Input Selection. JACC Cardiovasc Imaging 2013;6(5):559–68.PubMedCrossRef
21.
go back to reference Tout D, Tonge CM, Muthu S, Arumugam P. Assessment of a Protocol for Routine Simultaneous Myocardial Blood Flow Measurement and Standard Myocardial Perfusion Imaging with Rb-82 on a High Count Rate PET System. Nucl Med Commun 2012;33(11):1202–11.PubMedCrossRef Tout D, Tonge CM, Muthu S, Arumugam P. Assessment of a Protocol for Routine Simultaneous Myocardial Blood Flow Measurement and Standard Myocardial Perfusion Imaging with Rb-82 on a High Count Rate PET System. Nucl Med Commun 2012;33(11):1202–11.PubMedCrossRef
22.
go back to reference Coxson PG, Huesman RH, Borland L. Consequences of Using a Simplified Kinetic Model for Dynamic PET Data. J Nucl Med 1997;38(4):660–7.PubMed Coxson PG, Huesman RH, Borland L. Consequences of Using a Simplified Kinetic Model for Dynamic PET Data. J Nucl Med 1997;38(4):660–7.PubMed
23.
go back to reference Lortie M, Beanlands R, Yoshinaga K, Klein R, DaSilva J, deKemp R. Quantification of Myocardial Blood Flow with 82Rb Dynamic PET Imaging. Eur J Nucl Med Mol Imaging 2007;34(11):1765–74.PubMedCrossRef Lortie M, Beanlands R, Yoshinaga K, Klein R, DaSilva J, deKemp R. Quantification of Myocardial Blood Flow with 82Rb Dynamic PET Imaging. Eur J Nucl Med Mol Imaging 2007;34(11):1765–74.PubMedCrossRef
24.
go back to reference Bland JM, Altman DG. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res 1999;8:135–60.PubMedCrossRef Bland JM, Altman DG. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res 1999;8:135–60.PubMedCrossRef
Metadata
Title
Impact of point spread function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET
Authors
Ian S. Armstrong, MSc
Christine M. Tonge, MSc
Parthiban Arumugam, MD
Publication date
01-06-2014
Publisher
Springer US
Published in
Journal of Nuclear Cardiology / Issue 3/2014
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-014-9858-8

Other articles of this Issue 3/2014

Journal of Nuclear Cardiology 3/2014 Go to the issue